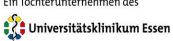

37th ESMO Congress 28th September- 2 October 2012, Vienna, Austria

Hot topics in early stage NSCLC

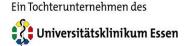
Who should be considered for surgery for stage III disease and why?

Georgios Stamatis, Ruhrlandklini/University Essen, Germany



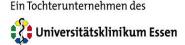
Stage III disease (IASLC 2010)

IIIA	T1-2a,b	N2	MO
	T3	N1-2	MO
	T4	NO-1	MO
IIIB	T4	N2	MO
	T1-4	N3	MO

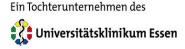


Definition of N2, N3, T4 (IASLC 2010)

- N2 Metastasis in ipsilateral and/or subcarinal LN
- N3 Metastasis in contralateral mediastinal, hilar, ipsilateral or contralateral M. scalenus LN or supraclavicular LN
- T4 Tumor any size with infiltration of mediastinum, heart, trachea, recurrens n., esophagus, main carina, vertebral body or metastasis in other lobe ipsilateral

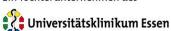


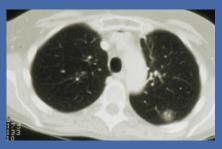
The heterogenity in the subgroups of stage III disease demands an implications of patients selection. It is for the treatment choice and the prognosis of important significance (Recommendation grade B)

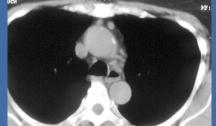


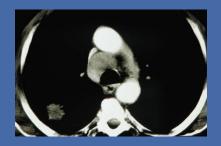
Relation between Evidence and Recommendation grade

Evidence	Recommendation	Grade
1a-c	strong	Α
2a-c, 3a-b	moderate	В
4	poor	С
5	absent/incosistent studies	D

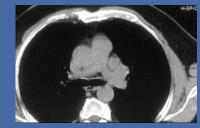

Oxford Center of Evidence-based Medicine 2001



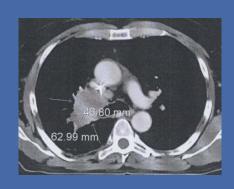

Wich are the candidates for surgery in N2 disease?



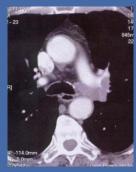
NSCLC N2-disease



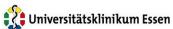
T1bN2M0




T2aN2M0


Ein Tochterunternehmen des
Universitätsklinikum Essen

NSCLC N2-disease

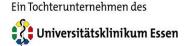


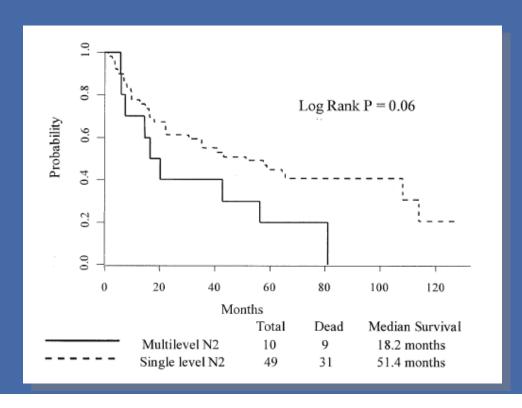
T3N2M0

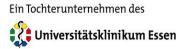
T4N2M0

T4N2M0

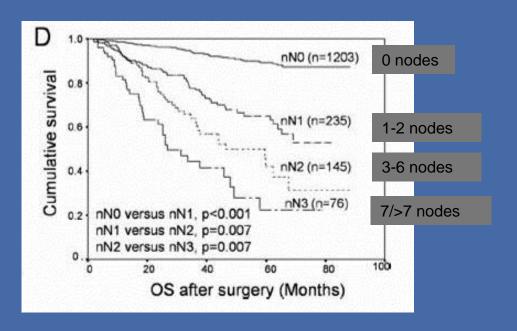
Ein Tochterunternehmen des



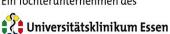

- Single vs. multilevel disease?
- Absolute number of involved lymph nodes?
- Patients with "bulky disease"?
- Downstaging after Induction?



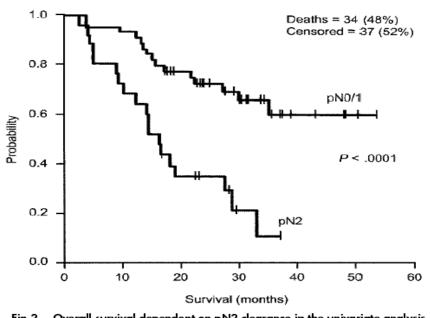
Single vs. multilevel disease



Keller SM et al., J Thorac Cardiovasc. Surg., 2004

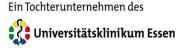


Number of involved LN



Wei S et al., J Thorac Oncol., 2011; 6, 310

Downstaging N2 disease after induction CTX

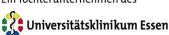


downstaged N2 ypN0/N1

persistend N2 ypN2

Fig 2. Overall survival dependent on pN2 clearance in the univariate analysis (patients with tumor resection, n = 71; P = log-rank test P value). Data were unavailable for four patients.

Betticher D et al. J.Clin. Oncol. 2003; 21, 1752


Subclassification of N2 disease

Stage IIIA N2 NSCLC represents a heterogeneous group of patients. To categorise further subsets a subdivision has been proposed

- Stage IIIA1
 Pathologic assessment of removed nodes postoperatively
- Stage IIIA2
 Pathologic assessment of removed nodes intraoperatively
- Stage IIIA3
 Single- or multistation nodal metastasis recognised by prethoracotomy staging (Mediastinoscopy, EUS, EBUS, FDG-PETscan)
- Stage IIIA4
 "Bulky" or multistation N2 disease is detected at initial staging

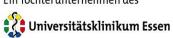
Robinson L, et al Chest (2003)

N2 disease Results after surgery alone


Author	Year	n	Subgroup	5-J Survival
Patterson	1985	62	single 5L	24%
Watanabe	1991	43	single N2	35%
Naruke	2001	414	only T1-2	22%
Andre	2002	-	single N2	34%
Keller	2004	49	single N2	42%

N2 disease - Phase III studies

Author	Jahr	N Patienten	5-J Überleben	р
Pass	1992	27	CTx+S 42%	ns
			5 22%	
Rosell	1992	60	CTx+S 17%	0,005
			5 0%	
Roth	1994	60	CTx+S 36%	0,04
			S 15%	
Depierre	2002	167	CTx+5 28%	ns
			S 21%	



Intergroup 0139 - Outcomes

	Surgery	CTx/RTx
Overall survival	27%	20%
PFS	22%	11%
Local recurrence	10%	22%
- primary tumor	2%	14%

Albain K. et al, Lancet 2009

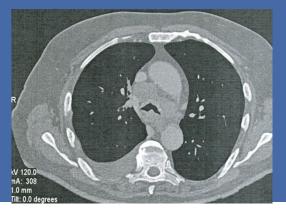
StageT1-3 N2A3 disease

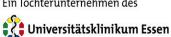
For technically resectabel patients induction treatment (CTx or CTx/RTx) followed by resection is recommended (grade B)

For patients with surgery and RO resection after induction CTx alone, postoperative RTx is recommended (grade B)

For patients with single LNstation involved, primary Surgery followed by CTx/RTx is possible (grade C)

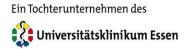





N2 bulky - Stage IIIA4

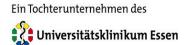
Bulky mediastinal nodal disease is defined as those

- involving lymph nodes >2 cm in the short-axis diameter measured by CT-scan,
- with extra nodal infiltration,
- multistation nodal disease and/or
- groupings of multiple, positive smaller lymph nodes
 Robinson L, et al Chest (2003)



N2 bulky Stage IIIA4

1	Autor	n P.	Induction	Resection	Letality	5J-Survival
	Grossi (2002)	16	CTx	6/16	0%	n R
	Johnstone	26	CTx	20/26	7,6%	70% at 1 year
	(2002)	19	CTx/RTx	-	5,2%	66% at 1 year
	RTOG 89-01					
	Giannitto (2005)	52	CTx	22/52	0%	15% at 2 years
	Yokomise (2007)	41	CTx/RTx	41/41	0%	85;7% NO/N1 52,4% N2
	Stamatis (2007)	144	CTx/RTx	111/144	3,6%	36% NO/N1 20% N2


EORTC 08941 - Outcomes

	Radiotherapy(n=165)	Surgery (n=167)
Median follow-up (mo)	73	67
Overall survival		
Median (mo)	17.5	16.4
2 years (%)	41	35
5 years (%)	14	15.7
Site of relapse		
Locoregional	71 (54%)	37 (32%)
Distant	50 (39%)	70 (61%)
Both	9 (7%)	8 (7%)
PFS		
Median (mo)	11.3	9
2 years (%)	24	27

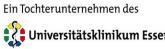
Van Meerbeeck JP et al,2007



EORTC 08941 - Survival

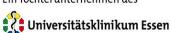
Subgroup	Median	5 year(%)
Extend of resection		
(Bi-)Lobectomy	25.4	27
Pneumonectomy	13.4	12
Mediastinal nodes		
ypNO-1	22.7	27
ypN2	14.9	12
Type of resection		
Complete	24.1	27
Incomplete	12.1	7

Van Meerbeeck JP et al,2007


StageT1-3 N2A4 bulky disease

For patients with acceptable performance status, combination of Chemotherapy and Radiation is the choice of treatment (grade A)

For selected cases after induction CTx/RTx and good response the integration of surgery could be followed (if possible inside of studies) (grade D)



Is there any role for surgery in N3 disease?

Downstaging for N3 disease

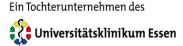
SWOG 8805 (phase II)

Induction ChemoRT follow

Induction ChemoRT followed by resection for patients with cStage IIIA and cStage IIIB

Path CR in 22%

3 years survival 25% in 27 patients with N3 disease

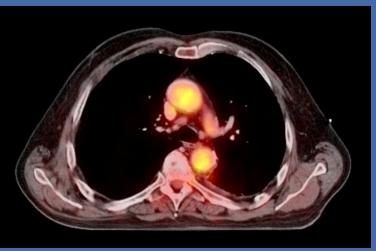

(-) residual mediastinal LN

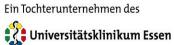
(+) residual mediastinal LN

Median 30 mo Median 10 mo (p=0.0005)

Albain K. et al 1994

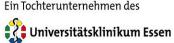


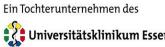



N3 disease

before CTx/RTx

before surgery




N3 disease

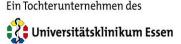
* 2-years ** 3-years

Authors/trial	n	nodes removed	nodes pCR	5 y-survival
SWOG 8805	27	ipsilateral	53%	25%*
Stamatis et al, 1999	32	27 ipsilateral/ 5 bilateral	25%	28%
Grunenwald et al, 2001	18	bilateral	30%	17%
DeCamp MM et al, 2003	21	ipsilateral	30%	15%*
Ichinose Y et al, 2003	7	bilateral	26%	67%
Galetta D et al, 2003	5	ipsilateral	-	23%
Yokomise H et al, 2007	4	ipsilateral	25%	50%
SAKK 2009	9	-	38%	47%**

T1-3N3 disease

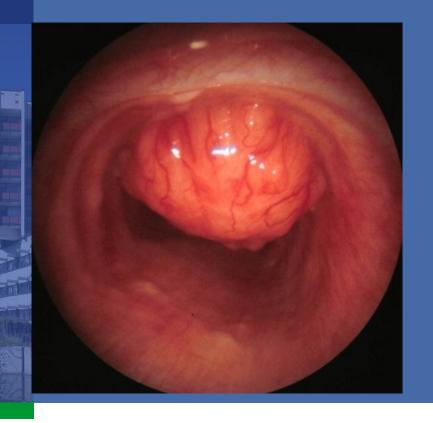
For patients with acceptable performance status, combination of Chemotherapy and Radiation is the choice of treatment (grade A)

For selected cases after induction CTx/RTx and good response (N3 in ipsilateral sulcus superior tumor or limited N3 in station 2R/4R) the integration of surgery could be followed (if possible inside of studies) (grade D)

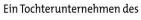


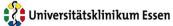
StageT4 NO-1 disease

Primary surgery or integration of surgery in a multimodality treatment is recommended for patients with functional and medical operability and involvement of

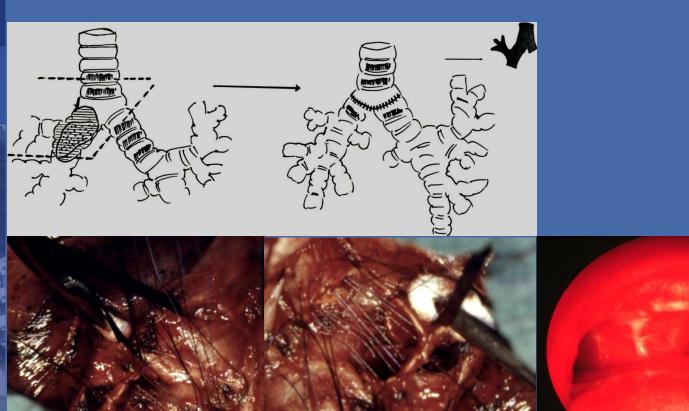

- carina
- trachea
- atrium
- vena cava
- pulmonary artery
- vertebral body
- metastasis other lobe ipsilateral (grade B)

T4 Carina/Trachea

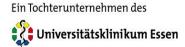




Adenoidcystic Ca Trachea/Carina

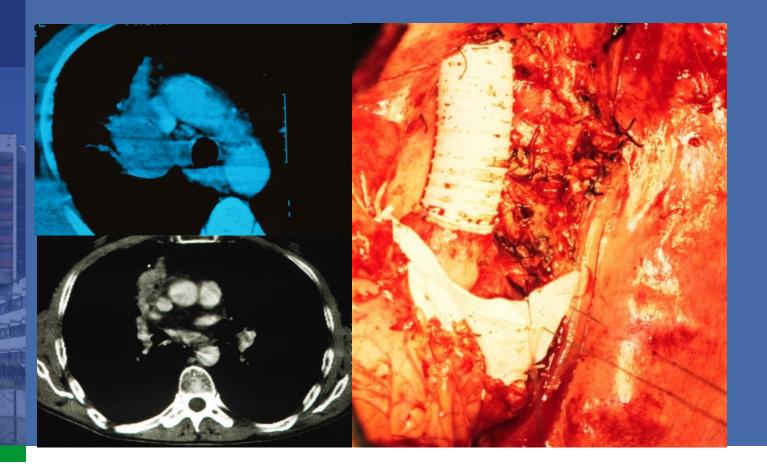

LCNEC RUL/R main bronchus

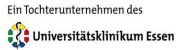
T4 Carina/Trachea



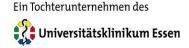
T4 Carina/Trachea

Author	n	Induction	Letality	5J Survival
Liu (2009)	32	no	9,4%	40,6%
Jiang (2009)	41	no	2,4	26,8%
Rea (2008)	49	CTx (19P)	6,1%	27,5%
Yamamoto (2007)	35	no	8,5%	28,3%
Macchiarini (2006)	50	CTx/RTX (18P)	4%	51%
De Perrot (2006)	119	no	7,6%	44%
Regnardt (2005)	65	no	7,7%	26,5%
Mathisen (2004)	60	no	15%	42%


- Publications with large experience
- Not exactly define between T3 and T4 Tumoren
- · Not only patients with lung cancer
- · Induction treatment not acceptable because of healing complications
- Good long term results by RO-Resection und NO/N1 pathology

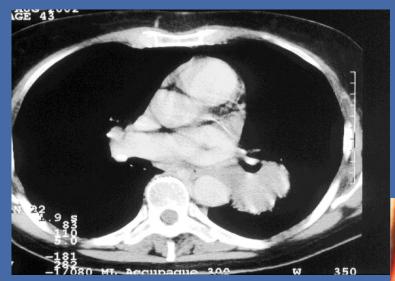


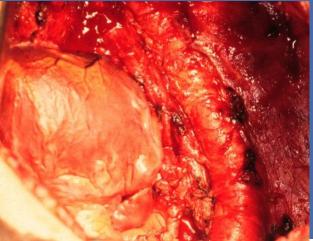
T4 Vena cava



T4 Vena cava

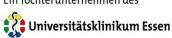
Author	n	Induction	Letality	5J Survival
Lanuti (2009)	9	CTx/RTx	11,1%	30%
Politi (2007)	16	СТх	6,25%	20 months
Spaggiari (2007)	52	CTx	7,7%	31% (52%N0-1, 21%N2)
Redina (1999/2007)	9/140	CTx	11,1%	30,5%


- Series with small number of cases
- Technical feasibility also without extracorporal circulation
- Induction treatment is recommended
- For the prognosis important the RO Resektion und NO/N1 pathology



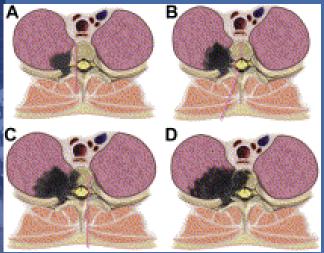
T4 PA/ Atrium

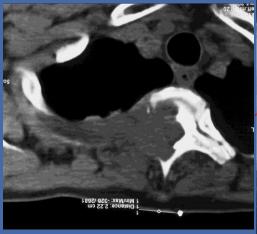
Ein Tochterunternehmen des



T4 PA/ Atrium

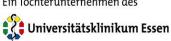
Author	n	Resection	Letality	5y survival
Wu (2009)	46	30Pn/16Lo	0%	22%(23%N1, 18%N2)
Mu (2008)	32	22Pn/10Lo	6,2%	43%(70%N0, 45%N1, 15%N2)
Akopov (2007)	28	16Pn/2Lo	3,5%	17% /23 Months
Spaggiari (2005)	15	15Pn	0%	39% (at 3 years)
Bobbio (2004)	23	22Pn/1Lo	8,7%	10%


- Small number of cases
- Induction treatment is necessary
- Technical feasibel, often with extracorporal circulation
 Letality low but high rates of morbidity
- · Important for the prognosis RO Resection and NO/N1 pathology



T4-vertebral body

(A) Right non-small cell lung cancer (NSCLC) invading thoracic inlet (TI) and the transverse processes. (B) Right NSCLC invading the TI and the intervertebral foramina. (C) Right NSCLC invading the TI and the cancellous bone. (D) Massive invasion of the vertebral body by a right NSCLC preventing en bloc resection (From Fadel et al. Ann Thorac Surg 2011;92:1024-30)


T4- vertebral body

Author	n	Induction	Letality	5J survival
Bolton (2009)	39	CTx/RTx	5%	27%
Yokomise (2007)	7	CTx/RTx	0%	67,7%
Koizumi (2007)	8	CTx/RTx	0%	22,9%
Mazel (2003)	36	CTx-RTx*	2,7%	28%
Fadel (2002)	17	CTx-Rtx*	0%	20%

* Not all patients

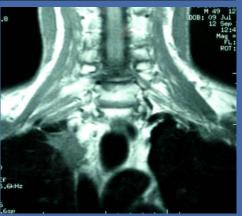
- Experience with small number off patients
- · Most resections with Pancoast Tumos
- Resection after CTx/RTx
- Cooperation with neurosurgeon/orthopedics necessary
- Good long term results by RO-Resection and NO/N1 pathology

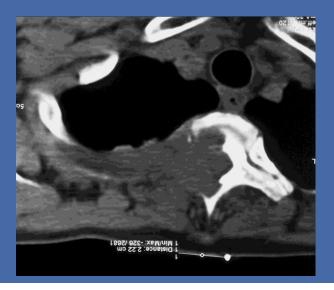
Wich are the candidates for surgery in T4 Tumors?

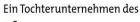
For T4 disease operability is not always clear defined

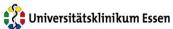
Induction treatment is necessary and results in tumor reduction, so that surgery and RO resection could be reached

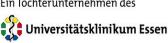
For patients with central tumors and carina resection induction treatment is not acceptable because of healing complications








Pancoast tumors

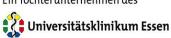


Pancoast Tumor Stage II-IIIB

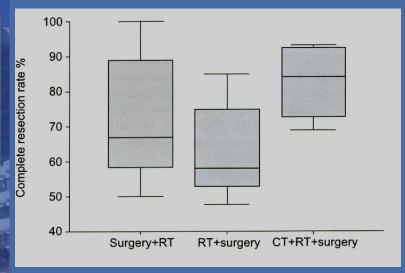
For sulcus superior tumors stage II-IIIB induction CTx/RTx followed by surgery is recommended (grade A)

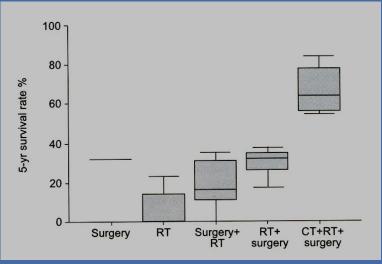
Technical or functional inoperable patients should receive a definitive CTx/RTx (grade C)

Pancoast Tumor Stage II-IIIB



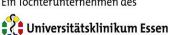
Transmanubrial approach with chest wall resection and vena cave replacement


Chest wall resection with vertebral body resection and stabilisation

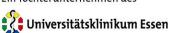


Role of induction treatment

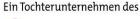
Mara et al, ERS 2007

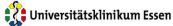


RO-resection and treatment concept


Survival and treatment concept

Inderdisciplinary approach of stage IIIA/B disease is today the basis of successfully treatment (grade A)





Thank you for your attention

georgios.stamatis@ruhrlandklinik.uk-essen.de

