Association of Radiographic Progression-free Survival (rPFS) Adapted from Prostate Cancer Working Group 2 (PCWG2) Consensus Criteria With Overall Survival (OS) in Patients With Metastatic Castration-Resistant Prostate Cancer (mCRPC): Results From COU-AA-302

CJ Ryan,¹ MJ Morris,² A Molina,³ JM Piulats,⁴ P de Souza,⁵ J Li,⁶ T Kheoh,³ JS de Bono,⁷ SM Larson,² T Griffin,³ S Matheny,³ V Naini,³ HI Scher,² EJ Small¹

¹Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; ²Memorial Sloan-Kettering Cancer Center, New York, NY, USA; ³Janssen Research & Development, Los Angeles, CA, USA; ⁴Institut Català d’Oncologia de l’Hospitalet, Barcelona, Spain; ⁵St. George Private Hospital, Kogarah, Australia; ⁶Janssen Research & Development, Raritan, NJ, USA; ⁷The Institute for Cancer Research and Royal Marsden Hospital, Sutton, UK
Disclosures

- Research support was provided by Janssen Research & Development to authors or their institutions while Study COU-AA-302 was being conducted at their sites.
- Charles Ryan, Michael Morris, and Josep Piulats have no other disclosures to report.
- Paul de Souza has received fees for patient trials and has served as an abiraterone advisory board member for Janssen Research & Development.
- Johann de Bono has served as a paid consultant for Johnson & Johnson.
- Steven Larson has served as a consultant to Janssen Research & Development and Perceptive Informatics.
- Justin Li, Shannon Matheny, and Vahid Naini are employees of Janssen Research & Development.
- Howard Scher has owned stock in Johnson & Johnson, has served as an abiraterone consultant/advisory board member, and has received consulting fees/grants/travel support fees from Janssen Research & Development.
- Eric Small has served as a paid consultant for Cougar Biotechnology.

This study was sponsored by Ortho Biotech Oncology Research & Development (now Janssen Research & Development). Writing assistance was provided by I. Mills, PhD, of PAREXEL, and was funded by Janssen Global Services, LLC.
Purpose of Current Analysis

- **Assess performance of rPFS**
 - modified PCWG2 criteria\(^1\) using blinded central review (independent) in COU-AA-302

- **Compare investigator and independent review**
 - rPFS at 2 different interim analyses

- **Quantify the relationship between co-primary end points of rPFS and overall survival**

PCWG2, Prostate Cancer Clinical Trials Working Group; rPFS, radiographic progression-free survival.

www.esmo2012.org
Phase 3, Multinational, Randomized, Double-Blind, Placebo-Controlled Study

Patients
- Progressive chemo-naïve mCRPC patients (N = 1088)
- Asymptomatic or mildly symptomatic
- No visceral metastases

Randomized 1:1

AA 1000 mg daily Prednisone 5 mg BID (n = 546)

Placebo daily Prednisone 5 mg BID (n = 542)

Efficacy end points
Co-primary:
- rPFS by central review
- OS
Secondary:
- Time to opiate use (cancer-related pain)
- Time to initiation of chemotherapy
- Time to ECOG-PS deterioration
- TTPP

- Conducted at 151 sites in 12 countries; USA, Europe, Australia, Canada
- Stratification by ECOG performance status 0 vs 1
- Patients treated until radiographic progression or unequivocal clinical progression
- First use of rPFS adapted from PCWG2 criteria\(^1\) using independent review

AA, abiraterone acetate; BID, twice daily; ECOG, Eastern Cooperative Oncology Group; TTPP, time to PSA progression.

www.esmo2012.org
Adaptation of PCWG2 Consensus Criteria

COU-AA-302 Definition

- **Progressive disease (PD) by bone scan:** Adapted from PCWG2 consensus criteria
 - Review < 12 weeks after randomization
 - ≥ 2 new bone lesions plus 2 additional lesions on a subsequent scan (“2+2”)
 - ≥ 12 weeks after randomization
 - ≥ 2 new bone lesions with new lesions confirmed at subsequent scan
- **PD (soft tissue lesions) by CT/MRI** by modified Response Evaluation Criteria in Solid Tumors (RECIST)
- **Death from any cause**

Using Bone Scans To Monitor Disease Progression*

Protocol-Defined Confirmation of Progression
2 BL + 2 New + 2 New = 6 total

Disease Progression
2 BL + 2 New = 4 total

Failure to Confirm Progression (ie, Bone Flare)
2 BL + 2 New + 0 = 4 total
“4 + 0 = Flare”

BL, baseline.
*Images provided by Dr. Matthew Smith.
COU-AA-302 rPFS Determinations

<table>
<thead>
<tr>
<th>Review</th>
<th>Interim Analysis</th>
<th>Total rPFS Actual Events</th>
<th>Corresponding Planned OS Events*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent review</td>
<td>Dec 2010</td>
<td>401</td>
<td>116†</td>
</tr>
<tr>
<td>Independent review (including investigator assessment of unequivocal clinical progression)‡</td>
<td>Dec 2010</td>
<td>468</td>
<td>116</td>
</tr>
<tr>
<td>Investigator review</td>
<td>Dec 2010</td>
<td>435</td>
<td>116</td>
</tr>
<tr>
<td>Investigator review</td>
<td>Dec 2011</td>
<td>607</td>
<td>311</td>
</tr>
</tbody>
</table>

*Final analysis = 773 planned OS events.
†Corresponding to 378 planned rPFS events.
‡Cancer pain requiring opiates, deterioration to Grade 3 ECOG status, initiation of cytotoxic chemotherapy, radiation/surgical intervention for prostate cancer.
Statistically Significant Improvement in rPFS Primary End Point – Independent Review (Dec 2010)¹

Survival Analysis

<table>
<thead>
<tr>
<th>Time to Progression or Death (Months)</th>
<th>Abiraterone</th>
<th>Prednisone</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>546 542</td>
<td>489 400</td>
</tr>
<tr>
<td>3</td>
<td>489 400</td>
<td>340 204</td>
</tr>
<tr>
<td>6</td>
<td>340 204</td>
<td>164 90</td>
</tr>
<tr>
<td>9</td>
<td>164 90</td>
<td>46 30</td>
</tr>
<tr>
<td>12</td>
<td>46 30</td>
<td>12 3</td>
</tr>
<tr>
<td>15</td>
<td>12 3</td>
<td>0 0</td>
</tr>
</tbody>
</table>

- **Abiraterone median (mos):** NR
- **Prednisone median (mos):** 8.3
- **HR (95% CI):** 0.43 (0.35-0.52)
- **P value:** < 0.0001

www.esmo2012.org
rPFS Benefit Demonstrated Across Full Spectrum of Prespecified Subgroups*1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Favors Abiraterone</th>
<th>Medians (months)</th>
<th>Favors Prednisone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subgroup</td>
<td>AA</td>
<td>Pred</td>
</tr>
<tr>
<td>All subjects</td>
<td>NE</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Baseline ECOG</td>
<td>NE</td>
<td>13.7</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>NE</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>Baseline BPI</td>
<td>NE</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.1</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>Bone metastasis only at entry</td>
<td>NE</td>
<td>13.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.3</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>13.7</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>< 65</td>
<td>NE</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>≥ 65</td>
<td>NE</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>≥ 75</td>
<td>NE</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>Baseline PSA above median</td>
<td>11.9</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline LDH above median</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline ALK-P above median</td>
<td>11.5</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td>NE</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>11.5</td>
<td>8.4</td>
<td></td>
</tr>
</tbody>
</table>

*Independent review Dec 2010 interim analysis.

Pred, prednisone
Majority of New Lesions at week 8 were NOT Confirmed as Progression

Adapted PCWG2 rPFS criteria identified a substantial level of false protocol-defined progression at 8 weeks

- Abiraterone: \((\frac{92}{108}) = 85\%\)
- Prednisone: \((\frac{74}{121}) = 61\%\)
Bone Scan “Improvement” Occurred in a minority of those with “Flare”

<table>
<thead>
<tr>
<th>↓Bone lesions (post 8-week bone scan), n = 47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abiraterone (n = 33)</td>
</tr>
<tr>
<td>Prednisone (n = 14)</td>
</tr>
</tbody>
</table>

- Adapted PCWGFW rPFS criteria also uncovered patients who showed PD at 8 weeks with a reduction in identified lesions on their post 8-week bone scan
 - **Abiraterone**: 31% (33/108)
 - **Prednisone**: 12% (14/121)

- Intensity of lesions was not considered

PD, progressive disease.
rPFS Was Highly Consistent Between Independent and Investigator Reviews

• Agreement between independent and investigator assessment on rPFS event status was observed (abiraterone group, 430/546 [79%]; prednisone group, 414/542 [76%])*

IND, independent review; INV, investigator review

*based on the IND 2010 – INV 2010 analysis.
Consistency of rPFS Analyses

<table>
<thead>
<tr>
<th>Review</th>
<th>Interim Analysis</th>
<th>Abiraterone Median (mos)</th>
<th>Prednisone Median (mos)</th>
<th>HR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rPFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IND</td>
<td>Dec 2010</td>
<td>NR</td>
<td>8.3</td>
<td>0.43 (0.35-0.52)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>IND*</td>
<td>Dec 2010</td>
<td>12</td>
<td>7.9</td>
<td>0.42 (0.35-0.51)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>INV</td>
<td>Dec 2010</td>
<td>13.7</td>
<td>8.3</td>
<td>0.49 (0.41-0.60)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>INV</td>
<td>Dec 2011</td>
<td>16.5</td>
<td>8.3</td>
<td>0.53 (0.45-0.62)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>OS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Dec 2011†</td>
<td>NR</td>
<td>27.2</td>
<td>0.75 (0.61-0.93)</td>
<td>0.0097</td>
</tr>
</tbody>
</table>

*Including investigator assessment of unequivocal clinical progression.
†Prespecified alpha level 0.0008.
Strong Trend in OS Primary End Point1

![Graph showing survival rates for Abiraterone and Prednisone over time to death (months).]

<table>
<thead>
<tr>
<th></th>
<th>Abiraterone (median, mos)</th>
<th>Prednisone (median, mos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (95% CI)</td>
<td>0.75 (0.61-0.93)</td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>0.0097</td>
<td></td>
</tr>
</tbody>
</table>

Abiraterone (median, mos): NR
Prednisone (median, mos): 27.2
HR (95% CI): 0.75 (0.61-0.93)
P value: 0.0097

Data cutoff 12/20/2011.
Prespecified significance level by O’Brien-Fleming Boundary = 0.0008.

Positive Association of rPFS With OS

Association of rPFS and OS at Dec 2011 Interim Analysis*

<table>
<thead>
<tr>
<th>Spearman Rho (r)</th>
<th>Level of Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>Negatively associated</td>
</tr>
<tr>
<td>0</td>
<td>No association</td>
</tr>
<tr>
<td>1</td>
<td>Positively associated</td>
</tr>
</tbody>
</table>

*Per Spearman’s correlation coefficient estimated through Clayton copula.
Conclusions

• COU-302 was the first phase 3 study to require confirmatory scans for rPFS
 – Occurs q8w during first 24 weeks; q12w thereafter
 – Optimizes and tests PCWG2 criteria
 – Reduced likelihood of early discontinuation due to false positive bone scan or rising PSA

• The present rPFS results establish consistency between independent and investigator reviewers
 – Attests to validity of rPFS as an outcome measure
Conclusions (cont)

- Robust association between rPFS and OS provides possible support for use of rPFS adapted from PCWG2 criteria as
 - Outcome measure of OS
 - Primary/co-primary end point in phase 3 mCRPC studies
 - Merits validation in further phase III studies in mCRPC
Acknowledgments
The Patients, Their Caregivers and Families

Australia
A. Boyce
A. Costello
I. Davis
P. de Souza
V. Ganju
L. Horvath
R. Lynch
P. Mainwaring
G. Marx
S. Ng
F. Parnis
J. Shapiro
N. Singhal
M. Slancar
G. Van Hazel
S. Wong
S. D. Yip

Belgium
P. Carpentier
D. Luyten
S. Rottey
D. Schrijvers
F. Van Aelst
H. Van Poppel

Canada
T. Cheng
J. Chin
S. Ellard
Y. Fradet
M. Gleave
A. Joshua
L. Klotz
H. Martins
S. Mukherjee
S. North
S. Pautler
F. Saad
E. Winquist

Canada
T. Cheng
J. Chin
S. Ellard
Y. Fradet
M. Gleave
A. Joshua
L. Klotz
H. Martins
S. Mukherjee
S. North
S. Pautler
F. Saad
E. Winquist

Germany
P. Albers
M. Boegemann
J. Gleissner
J. Gschwend
P. Hammerer
A. Heidenreich
M. Kuczyn
K. Miller
R. Oetzel
J. Roigas
T. Steuber
M. Stöckle
H. Suttmann
M. Wirth

France
S. Abdel-Hamid
M. Colombel
K. Fizazi
A. Fléchon
O. Haillot
F. Joly
S. Oudard
F. Priou
E. Raymond

France
S. Abdel-Hamid
M. Colombel
K. Fizazi
A. Fléchon
O. Haillot
F. Joly
S. Oudard
F. Priou
E. Raymond

Greece
E. Efstrapthiou
C. Papandreou

Greece
E. Efstrapthiou
C. Papandreou

Netherlands
C. Bangma
T. de Reijke
W. Gerritsen
P. Mulders

Spain
J. Arranz Arija
J. Bellmunt
J. Carles
R. Lopez
M. Lopez-Brea
J. Piulats-Rodriguez

Spain
J. Arranz Arija
J. Bellmunt
J. Carles
R. Lopez
M. Lopez-Brea
J. Piulats-Rodriguez

Sweden
A. Bjartell
J. Damber
M. Hagman
M. Hellstrom
M. Seke

Sweden
A. Bjartell
J. Damber
M. Hagman
M. Hellstrom
M. Seke

Germany
P. Albers
M. Boegemann
J. Gleissner
J. Gschwend
P. Hammerer
A. Heidenreich
M. Kuczyn
K. Miller
R. Oetzel
J. Roigas
T. Steuber
M. Stöckle
H. Suttmann
M. Wirth

Greece
E. Efstrapthiou
C. Papandreou

United Kingdom
J. Brown
S. Chowdhury
J. de-Bono
T. Elliott

United States
F. Ahmann
G. Andriole
E. Arrowsmith
V. Assikis
A. Baron
W. Berry
G. Bubley
J. Carney
L. Chu
T. Cosgriff
S. Denmeade
H. Deshpande
D. Duchene
A. Ferrari
T. Flaig
L. Fong
C. Formaker
J. Fox
E. Frenkel
N. Gabrail
J. Garcia
D. Georgel
L. Gomella
O. Goodman
I. Gore
J. Gullo
J. Hainsworth
O. Hamid
A. Harzstark
T. Hutson
D. King
H. Koh
A. Koletsky
F. Kudrik
A. Lin
P. Lara
C. Logothetis
R. Lyons
J. Maranchie
M. Modiano
J. Nieva
L. Nordquist
J. Pinski
A. Pantuck
B. Polesz
J. Polikoff
D. Rathkopf
D. Quinn
C. Redfern
S. Riggins
C. Ryan
T. Rodvelt
M. Saleh
A. Sartor
M. Scholz
N. Shore
E. Small
M. Smith
S. Srinivas
M. Taplin
U. Vaishampaya
J. Vieweg
M. Vira
N. Vogelzang
G. Wilding
Y. Wong
E. Yu

United Kingdom
J. Brown
S. Chowdhury
J. de-Bono
T. Elliott

United States
F. Ahmann
G. Andriole
E. Arrowsmith
V. Assikis
A. Baron
W. Berry
G. Bubley
J. Carney
L. Chu
T. Cosgriff
S. Denmeade
H. Deshpande
D. Duchene
A. Ferrari
T. Flaig
L. Fong
C. Formaker
J. Fox
E. Frenkel
N. Gabrail
J. Garcia
D. Georgel
L. Gomella
O. Goodman
I. Gore
J. Gullo
J. Hainsworth
O. Hamid
A. Harzstark
T. Hutson
D. King
H. Koh
A. Koletsky
F. Kudrik
A. Lin
P. Lara
C. Logothetis
R. Lyons
J. Maranchie
M. Modiano
J. Nieva
L. Nordquist
J. Pinski
A. Pantuck
B. Polesz
J. Polikoff
D. Rathkopf
D. Quinn
C. Redfern
S. Riggins
C. Ryan
T. Rodvelt
M. Saleh
A. Sartor
M. Scholz
N. Shore
E. Small
M. Smith
S. Srinivas
M. Taplin
U. Vaishampaya
J. Vieweg
M. Vira
N. Vogelzang
G. Wilding
Y. Wong
E. Yu

United States
F. Ahmann
G. Andriole
E. Arrowsmith
V. Assikis
A. Baron
W. Berry
G. Bubley
J. Carney
L. Chu
T. Cosgriff
S. Denmeade
H. Deshpande
D. Duchene
A. Ferrari
T. Flaig
L. Fong
C. Formaker
J. Fox
E. Frenkel
N. Gabrail
J. Garcia
D. Georgel
L. Gomella
O. Goodman
I. Gore
J. Gullo
J. Hainsworth
O. Hamid
A. Harzstark
T. Hutson
D. King
H. Koh
A. Koletsky
F. Kudrik
A. Lin
P. Lara
C. Logothetis
R. Lyons
J. Maranchie
M. Modiano
J. Nieva
L. Nordquist
J. Pinski
A. Pantuck
B. Polesz
J. Polikoff
D. Rathkopf
D. Quinn
C. Redfern
S. Riggins
C. Ryan
T. Rodvelt
M. Saleh
A. Sartor
M. Scholz
N. Shore
E. Small
M. Smith
S. Srinivas
M. Taplin
U. Vaishampaya
J. Vieweg
M. Vira
N. Vogelzang
G. Wilding
Y. Wong
E. Yu