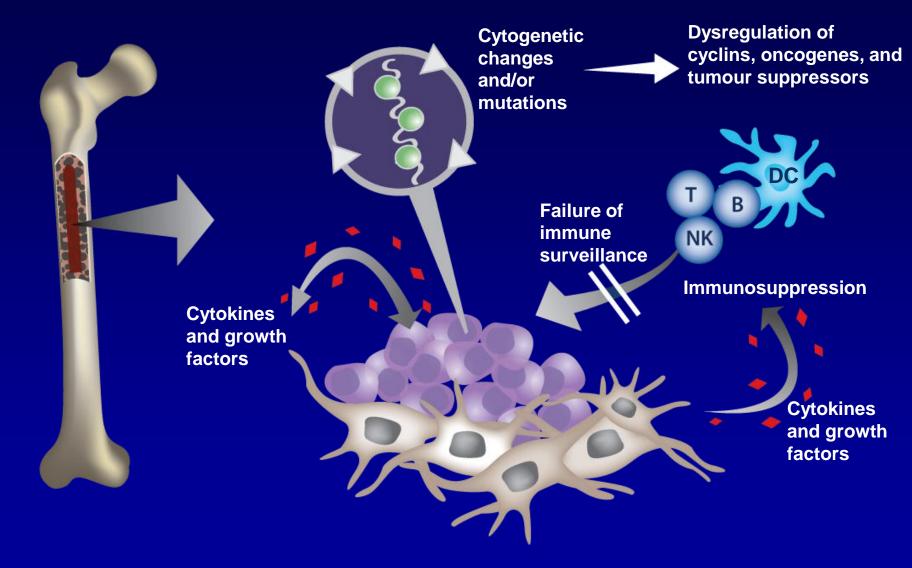
IMiDs; multiple pathways but how do they really work?


Gareth Morgan Royal Marsden Hospital and ICR London

REV/348/11-09/11-11

Outline

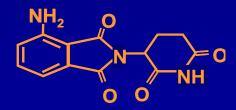
- Pathogenesis of myeloma
- IMiD drugs
- Mechanism of action of lenalidomide
 - Tumouricidal effects
 - Preclinical data
 - Immunomodulatory effects
 - Preclinical data
- New insights based on CRBN
- Conclusions

Multiple Myeloma Pathogenesis

Cytogenetic Changes in MM Cells

Feature*	Frequency
	40%
Upregulation of cyclin D1	16%
Upregulation of cyclin D3	2%
	15%
Upregulation of FGFR3 and MMSET	
	3%
Dysregulation of c-maf	1%
Overexpression of c-myc	1%
Loss of Rb1, NBEA	50%
Loss of p53	10%
Favorable prognosis	45%
Unfavorable prognosis	
	Upregulation of cyclin D1 Upregulation of cyclin D3Upregulation of cyclin D3Upregulation of FGFR3 and MMSET Dysregulation of c-mafOverexpression of c-mycLoss of Rb1, NBEA Loss of p53Favorable prognosis

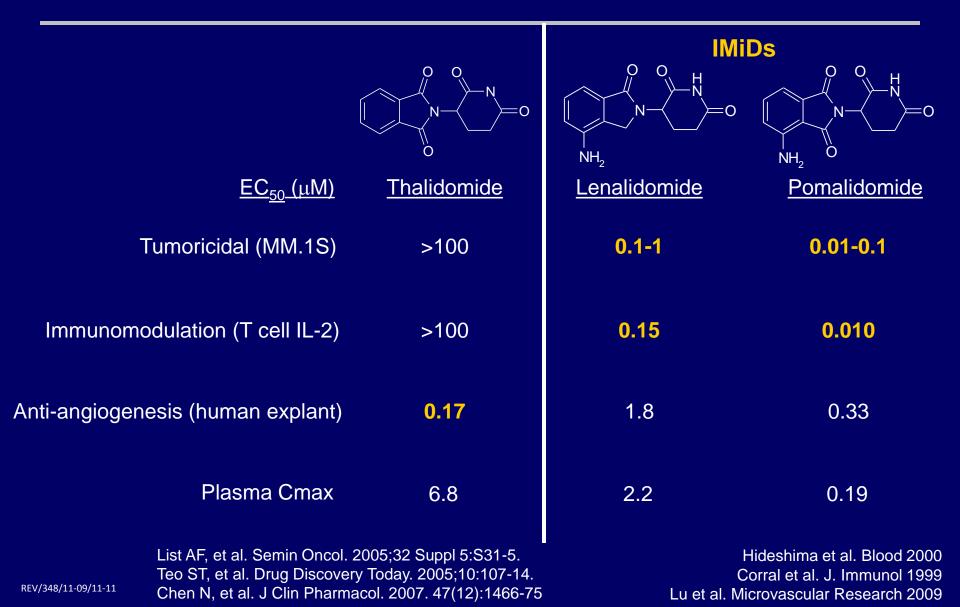
Long-Term Treatment Strategies are Needed


- Multiple myeloma is a chronic disease characterized by regrowth of residual tumour and immune suppression, thus it requires a long-term treatment strategy
 - The majority of patients with MM will eventually relapse within 3 years regardless of therapy
 - Continued therapy until disease progression may help prolong PFS
- An ideal therapy should target both tumour growth and concomitant immunosuppression while being an orally-administered drug that is well tolerated during long-term use

PFS, progression-free survival.

IMiD Drugs

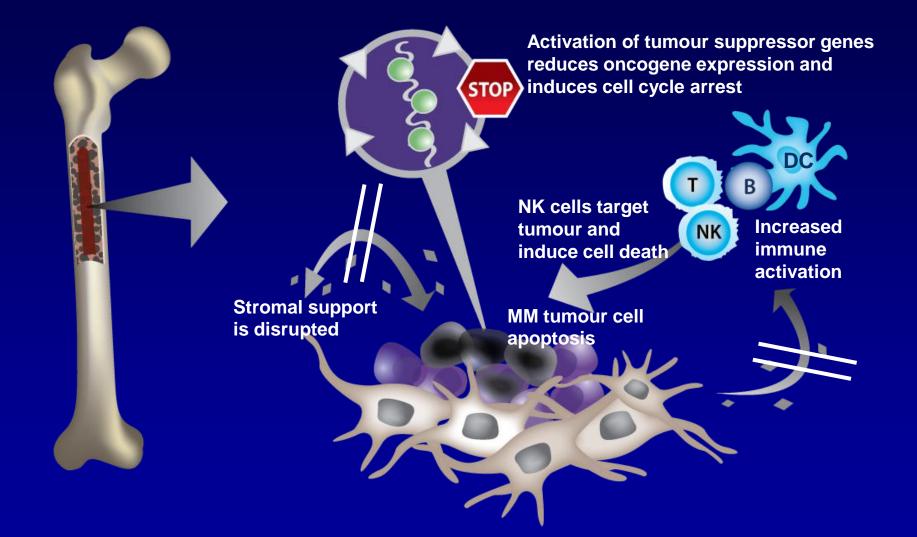
- Lenalidomide and pomalidomide represent a novel class of immunodulatory agents known as IMiDs[®]
- They are structurally related to thalidomide. All three agents are currently being used or being evaluated in the treatment of multiple myeloma
- Unlike chemotherapy, IMiDs bolster the immune response while also demonstrating tumouricidal activity



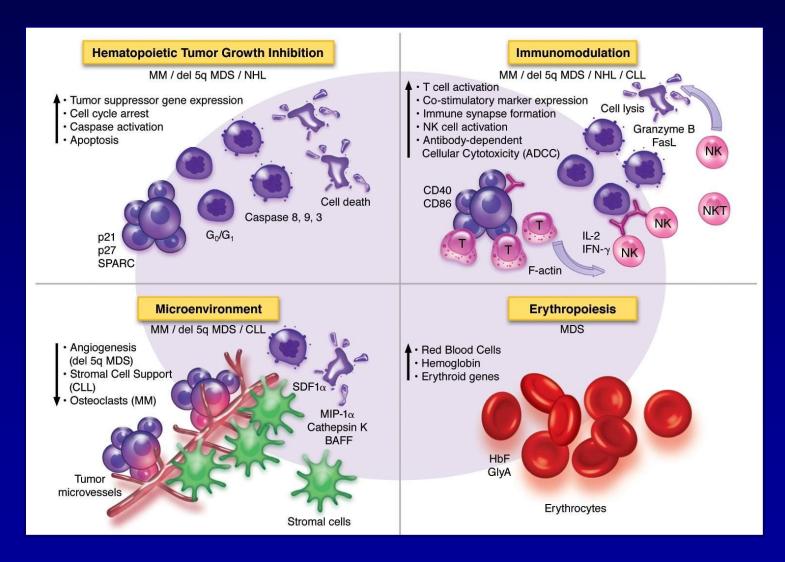
Pomalidomide

1. Chanan-Khan A, et al. *J Clin Oncol.* 2008;26:1544-1552. 2. Lenalidomide product insert. Celgene Corp. Summit, NJ. Jan 2009.

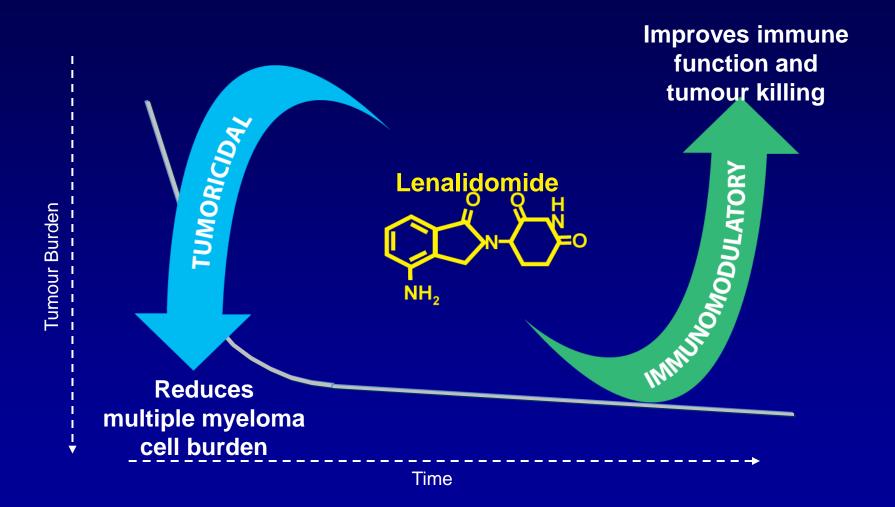
Thalidomide, Lenalidomide and Pomalidomide


Lenalidomide

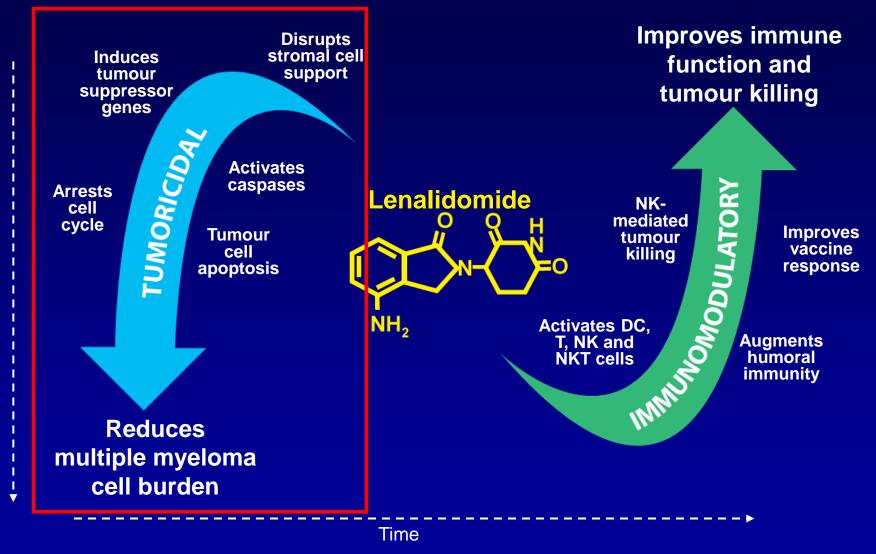
- Lenalidomide is an oral IMiD[®] with a mechanism of action that consists of dual effects:
 - Tumouricidal: treatment leads to direct tumour cell death
 - Immunomodulatory: treatment improves the immune system


Lenalidomide is currently indicated in combination with dexamethasone for the treatment of multiple myeloma (MM) patients who have received at least one prior therapy

Lenalidomide Mechanism of Action


Lenalidomide activity in myeloma and other hematological malignancies

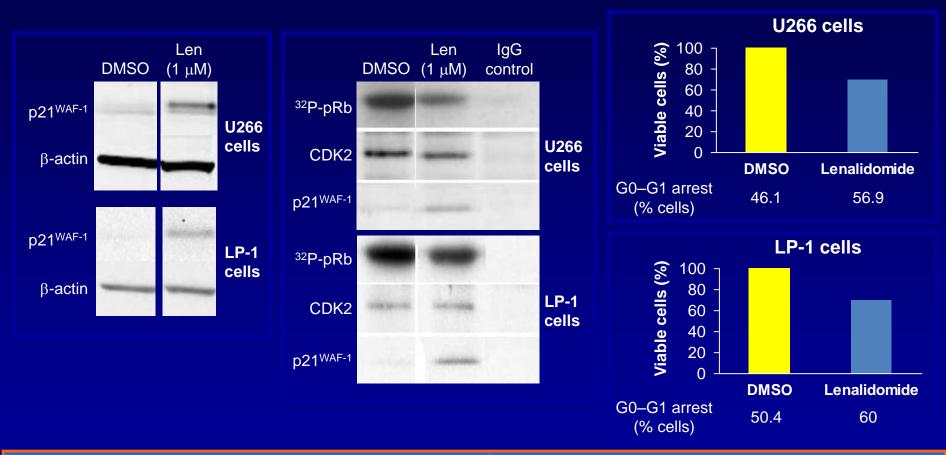
REV/348/11-09/11-11


Heise et al., Expert Rev Anticancer Ther, 2010; 10: 1663

Tumouricidal and Immunomodulatory Effects of Lenalidomide

These dual effects make lenalidomide the optimal foundation therapy for the necessary long-termREV/348/11-09/11-11treatment of multiple myeloma

Lenalidomide Has Potent Tumouricidal Effects


Fumour Burden

These effects contribute to the rapid and high quality responses REV/348/11-09/11-11 that are seen when treating multiple myeloma

Tumouricidal effects are enhanced by targeting stromal support in MM

- MM cells interact directly with bone marrow stromal cells (BMSC) through receptors and cell adhesion molecules (e.g. ICAM) and indirectly through cytokines (eg. IL-6, VEGF).¹
- These interactions result in increased production of VEGF by MM cells, thus stimulating IL-6 production by BMSC. These paracrine effects lead to increased MM proliferation and cell survival²
- IMiDs disrupt stromal support by decreasing cytokine production from MM and stromal cell interactions³

Lenalidomide Induces Cell-Cycle Arrest in MM Cells via p21 Increase and CDK2 and pRb Inhibition

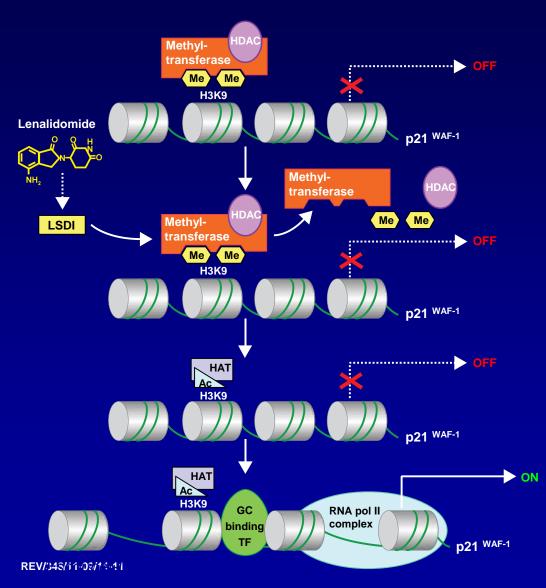
Lenalidomide enhances p21 expression, CDK inhibition which leads to cell-cycle arrest and cell death

REV/348/11-09/11-11 Verhelle D, et al. *Cancer Res.* 2007;67:746-55. CDK2 = cyclin-dependent kinase 2; DMSO = dimethyl sulfoxide; Len = lenalidomide: pRb = retinoblastoma protein.

Lenalidomide Induces Transcription of Tumour-Suppressor Genes in Myeloma Cells

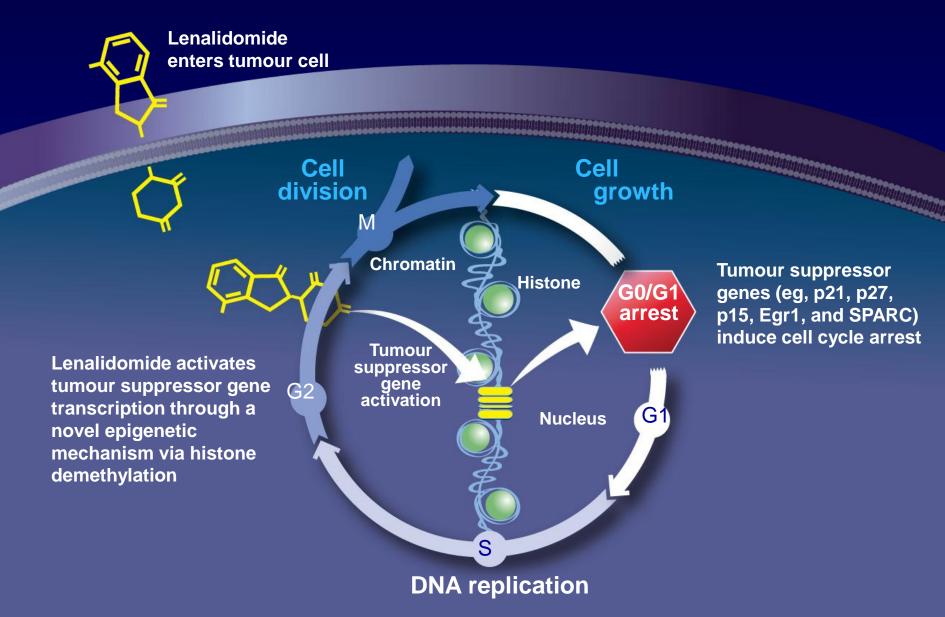
	MM Cell Line	Time (hr)	Lenalidomide	Dex	Combination
	KARPAS-620	6	Egr3	-	Egr1 ^a , p15 ^a
		24	Egr1, p15, p21	-	Egr1 ^a , Egr3 ^a , p15, p21
	NCI-H929	6	Egr2, Egr3	Egr1, p15	Egr1, p15, p21ª
		24	-	-	Egr3 ^a , p27 ^a
	LP-1	6	Egr2, Egr3	p21	p21 ^a
		24	p21	p21	p21ª
	U266B1	6	p21	-	p21ª
		24	p21	-	p21
	JJN-3	6	-	Egr1	Egr1 ^a
		24	Egr3, p15	Egr1	Egr1ª, Egr2ª, Egr3ª, p21ª
	RPMI-8226	6	Egr3	p21	Egr2 ^a , p21 ^a , p27 ^a
		24	-	-	-

^aSynergistic combination

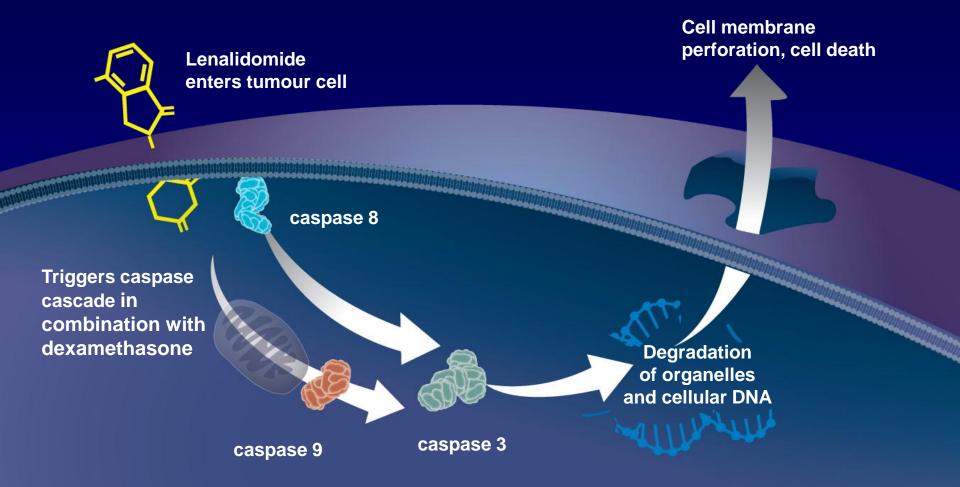

Most

Lenalidomide Sensitivity

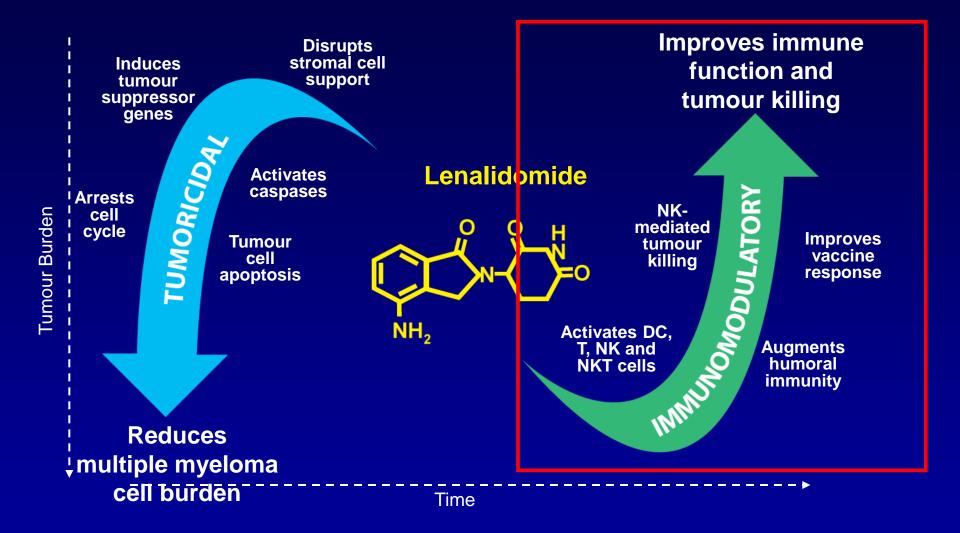
Least


Induction of tumour suppressor genes contributes to cell cycle arrest
of tumour cells
1. Schafer et al. 2008. ASH Abstract #2761. American Hematology Society.

Lenalidomide Activation of LSD1 Mediates the Epigenetic Regulation of Tumour Suppressor Genes



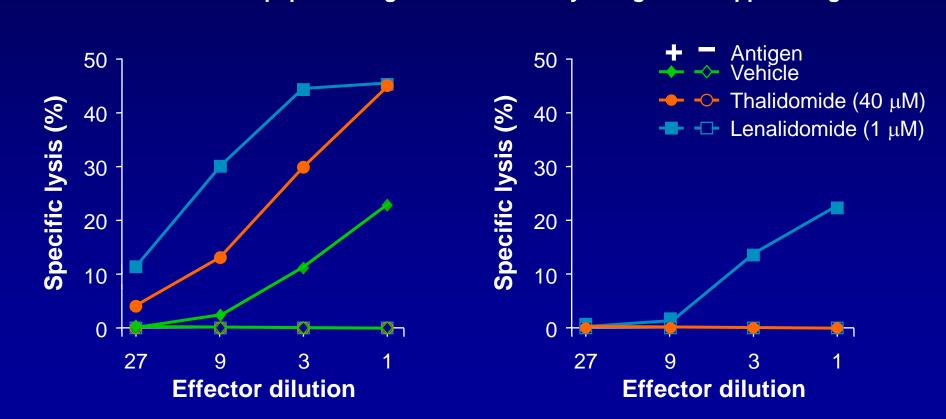
- Lenalidomide upregulates p21 through a novel epigenetic mechanism of histone demethylation via LSD-1 activation
- Lenalidomide-induced upregulation of p21 can occur in p53-independent fashion which leads to inhibition of cell growth in p53 mutated or deleted tumours
- This epigenetic mechanism may play a role in the activation of other tumour suppressor genes by lenalidomide


Lenalidomide induces MM cell cycle arrest

Lenalidomide Activates Caspases, Triggering Tumour Cell Apoptosis

Lenalidomide Has an Immunomodulatory Effect

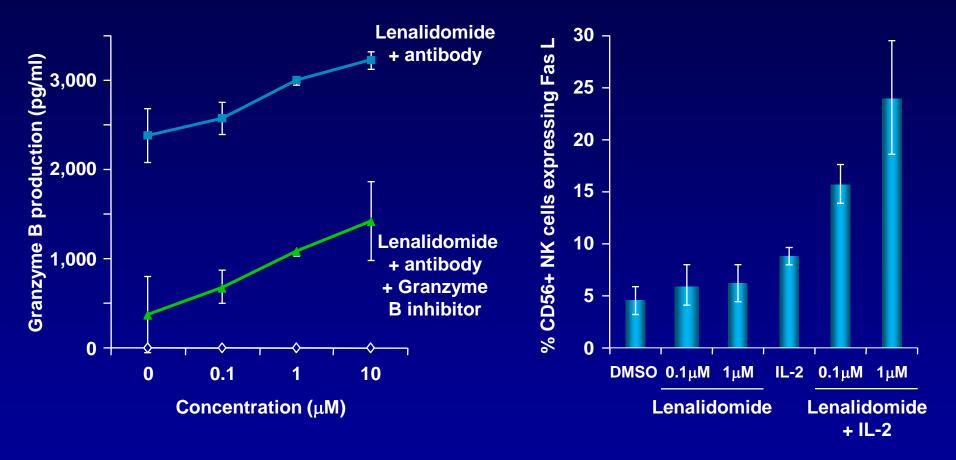
Lenalidomide Immunomodulatory Activity


- Lenalidomide enhances antigen-specific CD8⁺ T-cell cytolysis¹
- Lenalidomide increases death effector molecules in NK cells²
 - Lenalidomide enhances antibody-induced NK-cell expression of the potential effector molecules granzyme B and FasL
- Lenalidomide enhances cytokine production and T-cell activation in patients with advanced cancer³

Haslett PAJ, et al. *J Infect Dis*. 2003;187:946-55.
Wu L, et al. *Clin Cancer Res*. 2008;14(14):4650-4657.
Bartlett JB, et al. *Br J Cancer*. 2004;90:955-61.

Lenalidomide Enhances Antigen-Specific CD8+ T-Cell Cytolysis

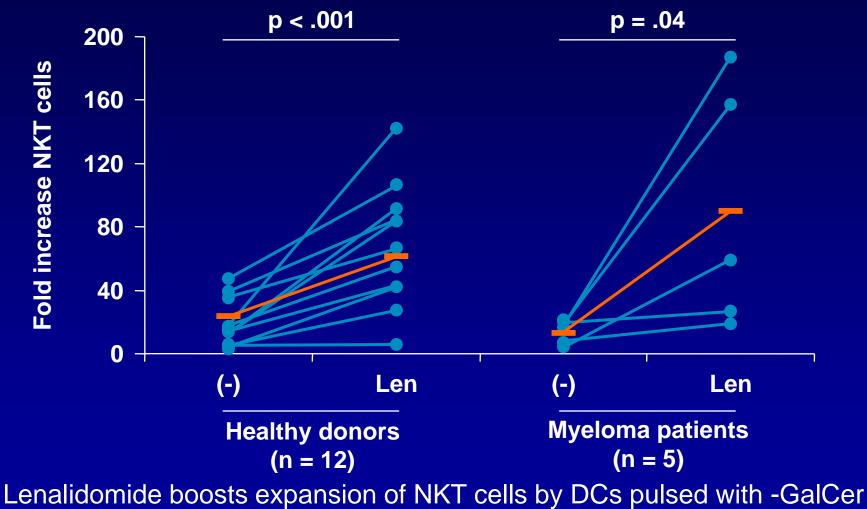
Cytolytic activity of CD8⁺ T-cells against autologous HLA-A*0201 dendritic cells pulsed with:


Cytomegalovirus pp65 antigen

Haslett PAJ, et al. J Infect Dis. 2003;187:946-55.

Influenza matrix peptide antigen

Effect of Lenalidomide + Antibody on NK Cell Granzyme B Production & Fas L Expression

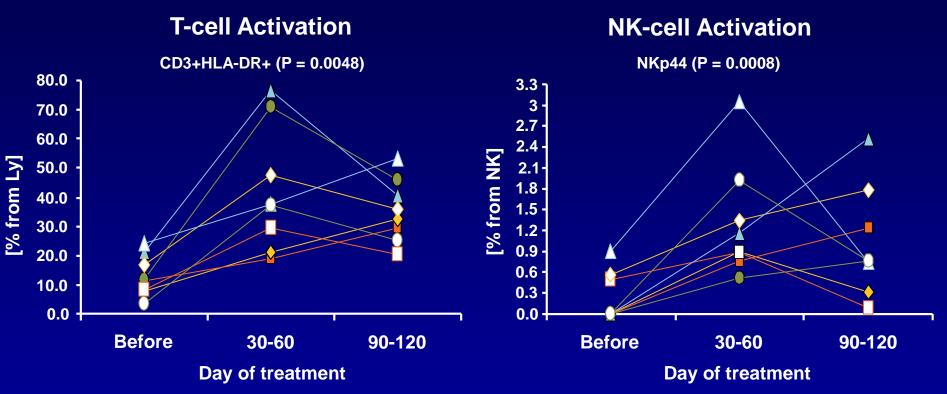


Lenalidomide enhances antibody-induced NK-cell expression of the potential effector molecules Granzyme B and Fas L

REV/348/11-09/11-11

Wu L, et al. Clin Cancer Res. 2008;14(14):4650-4657.

Lenalidomide Boosts Expansion of NKT Cells from MM patients

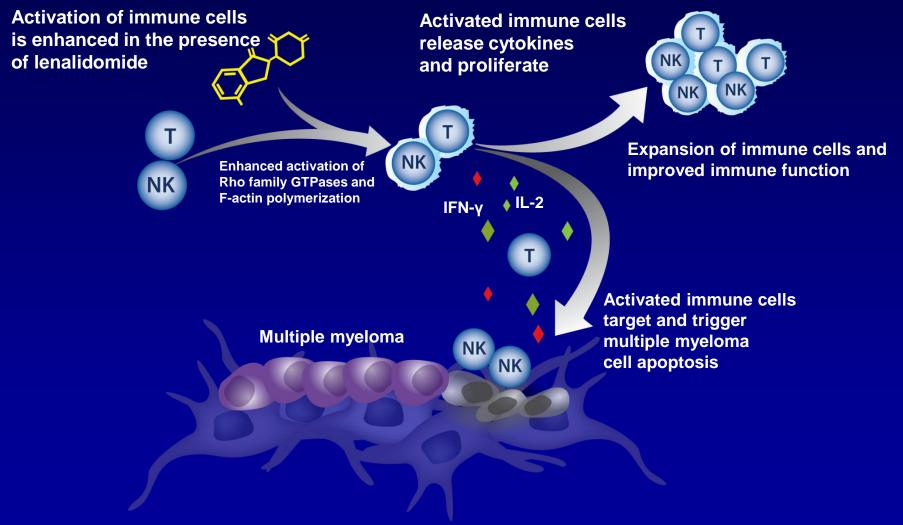

in both healthy donors and patients with myeloma

REV/348/11-09/11-11

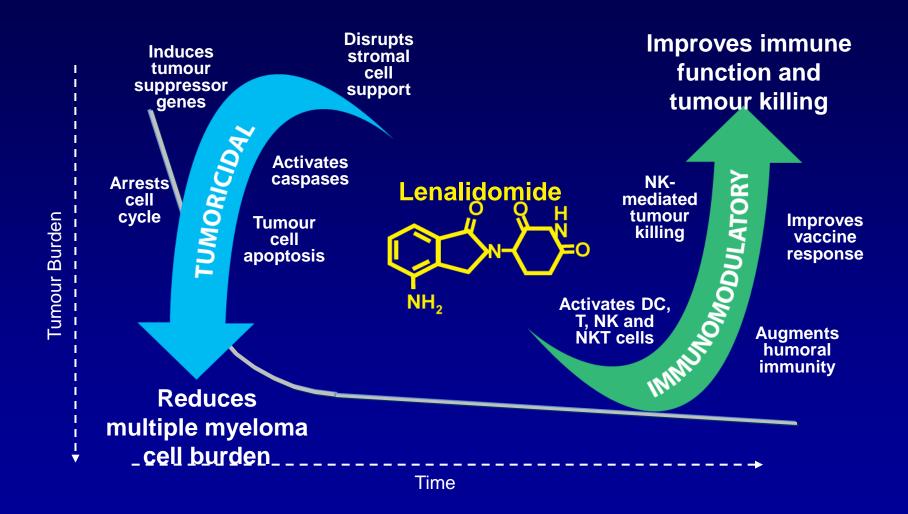
Chang, et al. *Blood*. 2006;18(2):618-621.

Lenalidomide Increases the Frequency of Activated T and NK Cells in Patients with Multiple Myeloma

--- BF --- HL --- NM --- PC --- PT --- PG --- SD --- UT

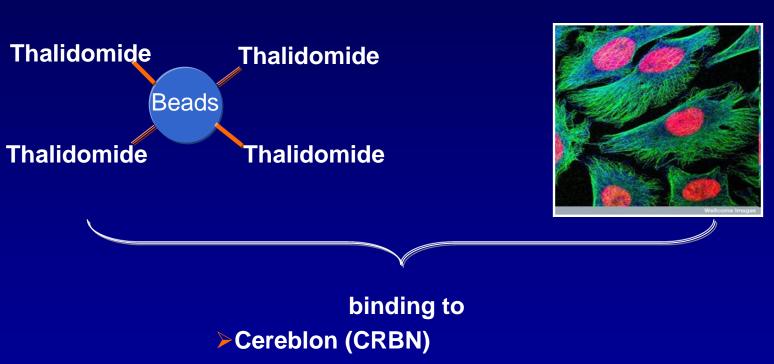

- Patients received lenalidomide post-relapse following SCT
- Median number of 6 earlier chemotherapy regimens (range: 2-13)
- Immunomonitoring by flow cytometry before and after initiation of lenalidomide based therapy

REV/348/11-09/11-11


NK, natural killer; SCT, stem cell transplant.

1. Lioznov M, et al. Bone Marrow Transpl. doi: 10.1038/bmt.2009.155.

Lenalidomide Improves Immune Function and Facilitates Tumour Cell Killing



The Tumouricidal and Immunomodulatory Effects of Lenalidomide Induce Rapid and Sustained Responses

These dual effects make lenalidomide the optimal foundation therapy for the necessary long-term REV/348/11-09/11-11 treatment of multiple myeloma

Cereblon Identified as a Thalidomide Binding Protein

Damged DNA binding protein (DDB1)

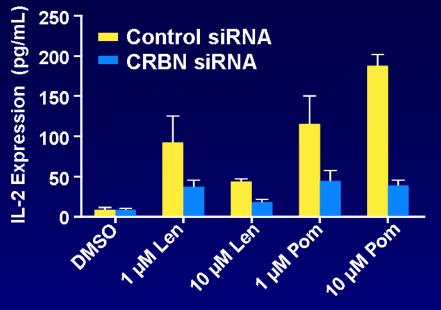
REV/348/11-09/11-11

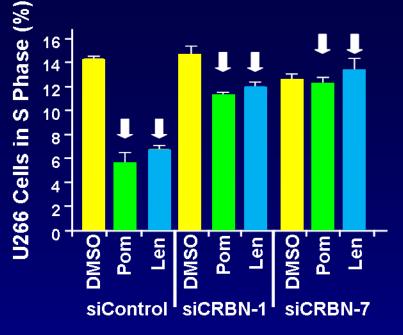
Ito T, et al. Science. 2010;327:1345-50.

Identification of Cereblon: Implications for IMiD MOA

Takumi Ito, Hideki Ando, Takayuki Suzuki, Toshihiko Ogura, Kentaro Hotta, Yoshimasa Imamura, Yuki Yamaguchi, Hiroshi Handa

- Half a century ago, thalidomide was found to be teratogenic, causing multiple birth defects......Here, we identified cereblon (CRBN) as a thalidomide-binding protein.
- CRBN forms an E3 ubiquitin ligase complex with damaged DNA binding protein 1 (DDB1) and Cul4A that is important for limb outgrowth and expression of the fibroblast growth factor Fgf8 in zebrafish and chicks.
- Thalidomide initiates its teratogenic effects by binding to CRBN and inhibiting the associated ubiquitin ligase activity.


Cereblon (CRBN) and the Mode of Action of Thalidomide and IMiD Drugs

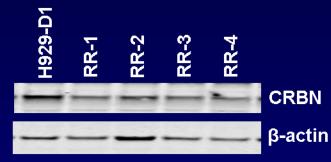

- Thalidomide binds to CRBN, a protein required for the teratogenic effects of Thal in zebrafish and chicken embryos¹
 - CRBN forms an ubiquitin E3 ligase complex with DDB1, Cul4A, and Roc1
 - CRBN is ubiquitously expressed across cell types and is highly conserved across species
 - Thal treatment has been shown to inhibit the ubiquitin ligase activity of the complex
- Is CRBN required for immunomodulatory and antiproliferative responses of Len and Pom²

CRBN, cereblon; Cul4A, cullin 4A; DDB1, DNA damage-binding protein 1;**REA**(346(14)(2001));**RE**

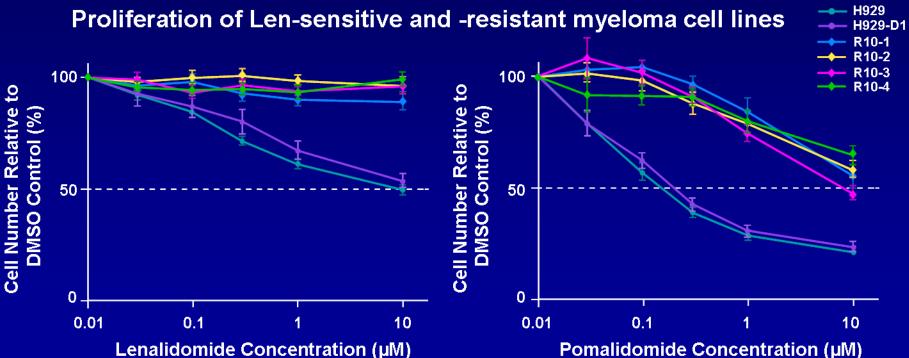
 Ito T, et al. *Science*. 2010;327:1345-1350.
Lopez-Girona A, Mendy D, Miller K, et al. Direct binding with cereblon mediates the antiproliferative and immunomodulatory action of lenalidomide and pomalidomide. *Annual Meeting and Exposition of the American Society of Hematology*. 2011; December 10-13; San Diego, CA. Abstract 738.

CRBN Effects on Len and Pom Activity

• Len and Pom bind to CRBN via the agents' glutarimide moiety^a

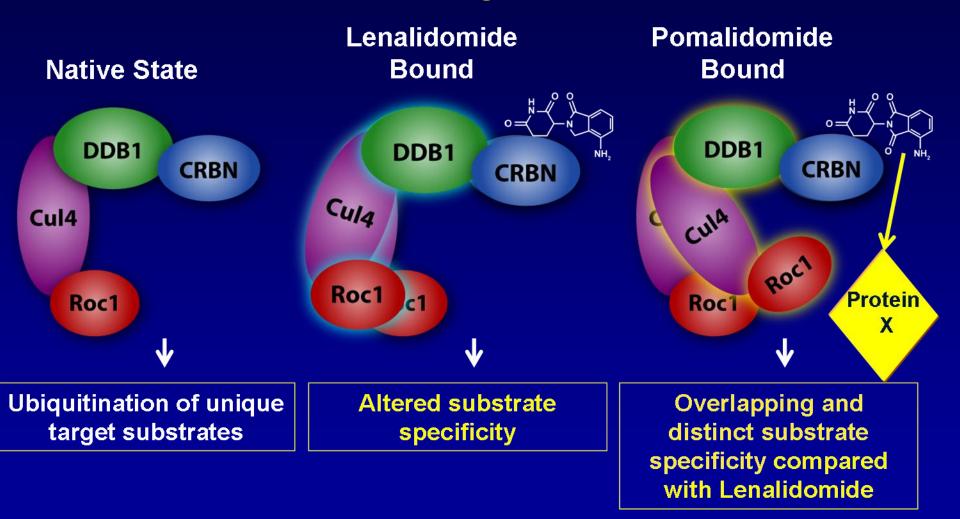

Knockdown of CRBN via siRNA had the following effects in:

- T cells: Abrogated T-cell induction of IL-2 by Len and Pom
- U266 MM cell line:
 - Decreased Len- and Pom-induced inhibition of cell-cycle progression
 - Attenuated Len- and Pom-mediated downregulation of the oncogene IRF4^a and upregulation of the tumor suppressor gene p21^a

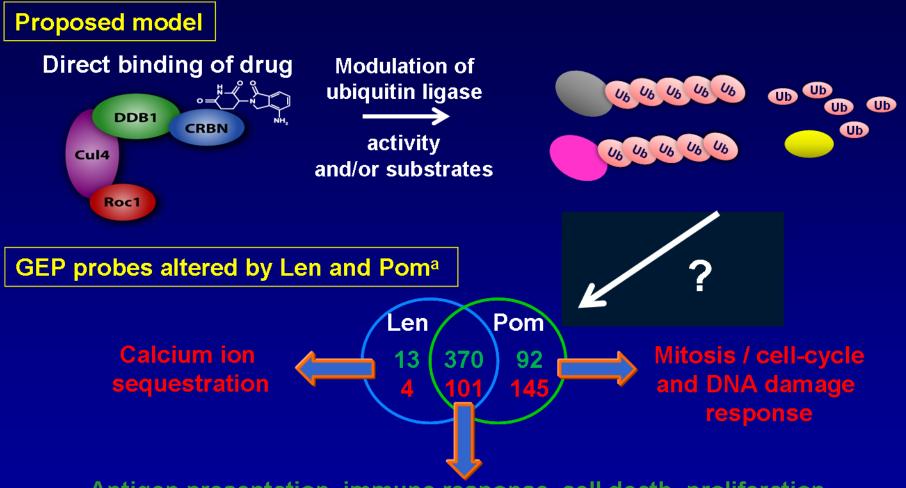

^a Data not shown.

CRBN, cereblon; DMSO, dimethyl sulfoxide; IL-2, interleukin-2; IRF4, interferon regulatelyl face of 14,1Len, lenalidomide; Pom, pomalidomide; siRNA, small interfering RNA.

Selection for Lenalidomide Resistance in MM Cell Lines Correlates With Reduced CRBN Expression



Lenalidomide-resistant myeloma cell lines demonstrate reduced levels of CRBN protein

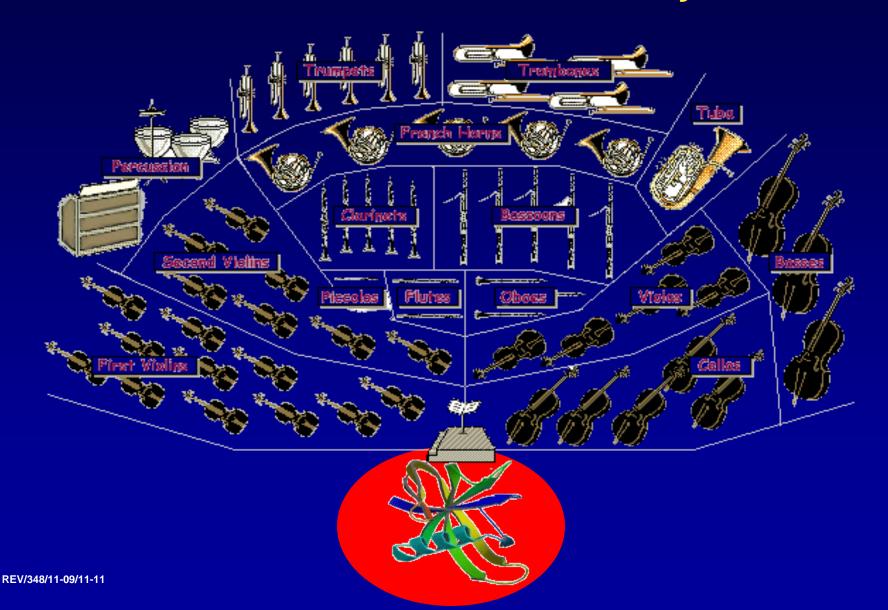

CREW3461698/h; DMSO, dimethyl sulfoxide; Len, lenalidomide; MM, multiple myeloma.

Hypothesis: Differences in mode of action of lenalidomide and pomalidomide are due to differences in complex conformation which affects interactions with target substrates

C ለጫ/ራዕዝሰነ ዲዓር ጽፅእ, cereblon; DDB1, damaged DNA binding protein 1; Roc1, regulator of cullins 1.

Downstream Consequencees of Binding Either Lenalidomide or Pomalidomide are Different

Antigen presentation, immune response, cell death, proliferation

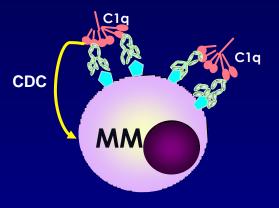

Green — high expression; Red — low expression

Conclusions

- Thalidomide, lenalidomide, and pomalidomide bind CRBN through the glutarimide moiety in each compound
- CRBN expression correlates with clinically relevant responses to lenalidomide in human T cells and multiple myeloma cells
 - Lenalidomide resistance correlates with reduced CRBN
- Lenalidomide and pomalidomide induce an overlapping but distinct mRNA profile in U266 myeloma cells
- Pomalidomide retains antiproliferative activity in CRBNdepleted lenalidomide-resistant myeloma cells

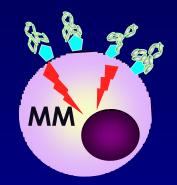
REV/348/11-09/11-11 CRBN, cereblon; mRNA, messenger ribonucleic acid.

CRBN is a Central Orchestrator of Lenalidomide and Pomalidomide Activity


Monoclonal antibody-based therapeutic targeting of myeloma

Antibody-dependent Cellular cytotoxicity (ADCC) Effector cells: ADCC MM Lucatumumab or Dacetuzumab (CD40)

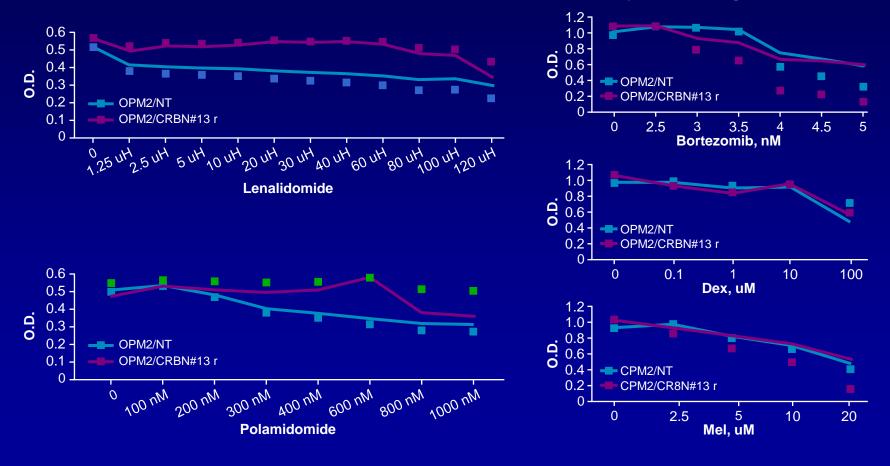
- Elotuzumab (CS1)
- Daratumumab (CD38)
- XmAb[®]5592 (HM1.24) REV/348/11-09/11-11


Complement-dependent

Cytotoxicity (CDC)

 Daratumumab (CD38) Apoptosis/growth arrest via targeting

signaling pathways


- huN901-DM1 (CD56)
- nBT062-maytansinoid (CD138)
- 1339 (IL-6)
- BHQ880 (DKK1)
- RAP-011 (activin A)
- Daratumumab (CD38)

Myeloma Mechanism of Disease and MoA of Lenalidomide Summary

- Multiple myeloma is a chronic disease that requires effective, longterm treatment strategies
 - Disease recurrence and immunosuppression represent two fundamental challenges for management of the disease
- Lenalidomide has a MOA with a duality of effects: it directly leads to tumour cell death and improves the immune system to keep the tumour in remission
 - These effects provide rapid and sustained control of multiple myeloma when used long term
- Unlike chemotherapy, lenalidomide bolsters the immune response while also demonstrating tumouricidal activity

CRBN silencing confers resistance to lenalidomide and pomalidomide, but not other agents

MTT analysis at day 3 of OPM2 cells with or without CRBN knockdown, and exposure to various anti-myeloma agents

MREV/3480r1(49)51dimethylthiazol)-2,5-diphenyl tetrazolium; NT = non-targeting.

Zhu YX, et al. Blood. 2011;118:4771-9.

Features of Symptomatic Multiple Myeloma

Common features of symptomatic myeloma include:

- **C** Calcium elevation (> 10 mg/L)^{1,2}
 - Due to myeloma-associated bone destruction
- R Renal dysfunction (creatinine > 2 mg/dL)^{1,3}
 - Caused by hypercalcemia and accumulation of light chains
- $A Anemia (hemoglobin < 10 gm/dL)^{1,4}$
 - Caused by inhibition of erythropoiesis due to renal failure and cytokines such as TNF- α
- **B** Bone disease (lytic lesions or osteoporosis)^{1,2}
 - Characterized by increased osteoclast generation mediated by cytokines and chemokines such as IL-6, TNF-α, and RANKL

MM is associated with the development of Immunosuppression

- MM tumour cells induce immunosuppression
 - Suppression of normal B cell and HSC proliferation¹
 - Induction of T and NK cell apoptosis¹
 - Impaired cytokine production following cellular activation²
 - Overall immunosuppression³

HSC, haematopoetic stem cell; MGUS, monoclonal gammopathy of unknown significance; NK, natural killer.

REV/348/11-09/11-11

Lenalidomide Activates a Caspase Cascade in **Myeloma Cells**

	MM cell line	Time (hr)	Lenalidomide	Dex	Combination
	KARPAS-620	24	3, 8, 9	-	3 ^a , 8 ^a , 9 ^a
Most		48	3, 8, 9	3, 8	3, 8, 9
M	KMS-12-BM	24	3, 8, 9	8	3
ity		48	3, 8	3, 8	3
Lenalidomide Sensitivity	NCI-H929	24	-	-	-
Sen		48	-	3, 8	3 ^a , 8
ide	LP-1	24	-	-	-
dom		48	-	-	3 ^a
nali	U266B1	24	8	-	-
Le		48	-	-	3 ^a , 9 ^a
st	JJN-3	24	-	3, 8, 9	3, 8, 9
Least		48	-	3, 8, 9	3 ^a , 8 ^a , 9 ^a
	RPMI-8226	24	8	9	8
	KPWII-0220	48	-	-	3

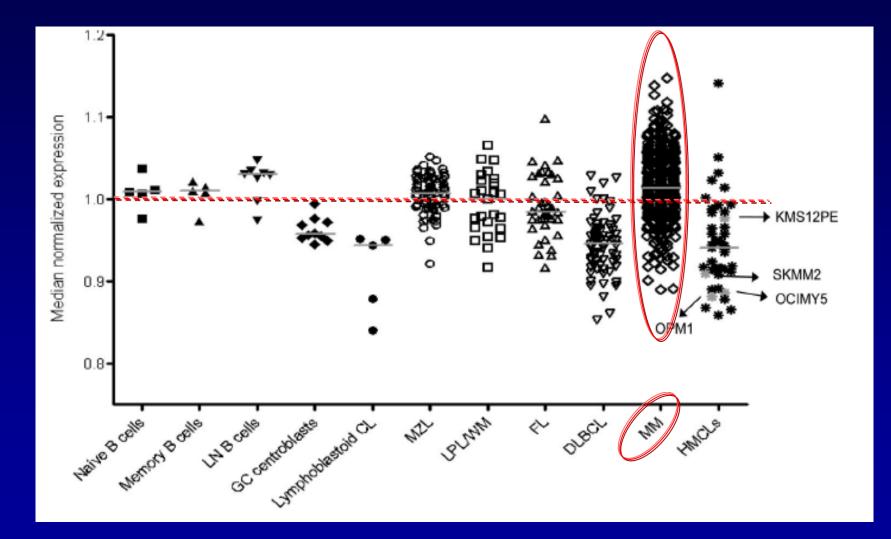
^aSynergistic combination

Synergistic tumouricidal activities of Len + Dex contribute to rapid responses
REV/348/11-09/11-11

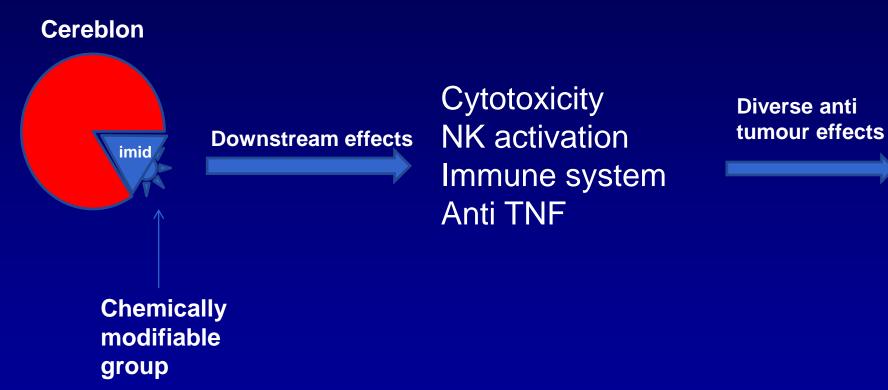
1. Schafer et al. 2008. ASH Abstract #2761. American Hematology Society.

Thalidomide induced inhibition of limb growth still poorly understood

Ubiquitination and degradation leads to accumulation of Fibroblast growth factor 8 and 10 (which are reduced with thalidomide treatment) and to impaired limb development.


Cereblon

442 amino acids location in nucleus, cytoplasm, cell membrane gene located on 3p


- Highly expressed in Cerebellum, hypocampus, Dorsal ganglion
- CD 4- and CD 8 positive T cells
- B-cells
- Oocytes
- Iocalized in cytoplasm with a calcium channel membrane protein
- A specific mutation of CRBN results in mild mental retardation with a standard IQ between 50-70

Cereblon expression in different stages of B cell development and B cell tumors

Zhu YX, et al. Blood. 2011;118:4771-9.

Target the immune system

