

NSGO

High risk stage I Endometrial Cancer To give or not to give adjuvant therapy and if – what therapy? Discussion

Thomas Högberg Department of Cancer Epidemiology University Hospital Lund, Sweden

Audience Question

What to do next?:

- 1. Nothing
- 2. Pelvic radiotherapy (EBRT)
- 3. Vaginal brachytherapy (VBT)
- 4. Pelvic+para-aortic radiotherapy
- 5. Chemotherapy (CT)
- 6. Sequential chemotherapy and radiotherapy
- 7. Concomitant chemo-radiotherapy
- 8. Vaginal brachytherapy and chemotherapy

Adjuvant therapy depending on LA or not

- My view is that LA can diagnose metastases by the lymphatic route but it is unlikely that it would by itself alter the course of disease which is mainly associated with distant metastases
- LA does not obviate the need for adjuvant therapy in presence of high risk factors. Compare with radiotherapy
- Proponents for LA hope that LN- patients would not need radiotherapy as part of adjuvant therapy. This is, however, not proven

What to do next?

Nothing

- Pelvic radiotherapy (EBRT)
- Vaginal brachytherapy (VBT)
- Pelvic+para-aortic radiotherapy
- Chemotherapy (CT)
- Sequential chemotherapy and radiotherapy
- Concomitant chemo-radiotherapy
- VBT and chemotherapy

Risk groups for EC in the 2009 FIGO staging system

- Low risk: Stage IA grade 1-2 and endometrioid type EC
- Intermediate risk: Stage IA grade 3 or IB grades 1-2 and endometrioid type EC
- High intermediate risk: Age of at least 60 years and/or LVSI and Stage IA grade 3 or IB grades 1-2 and endometrioid type EC
- High risk: IB grade 3 and endometrioid type EC or stage II-III or non-endometrioid types with infiltration

Adjuvant therapy?

Annual Report vol 27

The group of women with 2009 stage IB G3 have an over 25% risk to die within 5 years

Adjuvant therapy?

2009 Stage IB G3 PORTEC register

Overall survival 58%

Creutzberg et al. J Clin Oncol 2004

Swedish population statistics

The median survival time for Swedish women is 85.5 years

A Swedish 72 year women has a mean remaining life time of ~15 years

Her chance to survive 5 years is ~90%, and 10 years ~75%

Prognostic factor evaluation and treatment

Interplay between treatment toxicity and efficacy

Conclusions on doing nothing

I would argue that adjuvant therapy is indicated in this case

but

toxicity and efficacy of available adjuvant treatments are problematic

What to do next?

Nothing

- Pelvic radiotherapy (EBRT)
- Vaginal brachytherapy (VBT)
- Pelvic+para-aortic radiotherapy
- Chemotherapy (CT)
- Sequential chemotherapy and radiotherapy
- Concomitant chemo-radiotherapy
- Vaginal brachytherapy and chemotherapy

External Beam Radiotherapy (EBRT)

Kong et al. Cochrane review Adjuvant radiotherapy for stage I endometrial cancer (update 2012)

Figure 2. Forest plot of comparison: I EBRT vs. No EBRT: All patients at 5 years, outcome: I.I Death from all causes (time-to-event data).

			EBRT	No EBRT		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	M, Random, 95% Cl	IV, Random, 95% Cl
1.1.1 EBRT vs no add	itional treatment						
000.98	-0.15	0.25	190	202	15.0%	0.86 [0.53, 1.40]	
PORTEC-1	0.2	0.2	354	360	23.5%	1.22 [0.83, 1.81]	
Subtotal (95% CI)			544	562	38.5%	1.06 [0.76, 1.48]	•
Heterogeneity: Tau?=	0.01; Chi ^a = 1.20, di	f=1 (P =	= 0.27)	; P=16%			
Test for overall effect	Z = 0.33 (P = 0.74)						
1.1.2 EBRT vs no add	itional treatment (V	BT bala	nced a	icross grou	ips)		
ASTEC/EN.5 (1)	0.05	0.175	452	453	30.7%	1.05 [0.75, 1.46]	
Borbe 2011 (2)	-0.14	0.23	264	263	17.8%	$0.87 \left[0.55, 1.36 ight]$	
Subtotal (95% CI)			716	716	48.4%	0.98 [0.75, 1.29]	+
Heterogeneity: Tau*=	0.00; Chi ^a = 0.43, di	f=1 (P =	= 0.51)	; P = 0%			
Test for overall effect	Z = 0.14 (P = 0.89)						
1.1.3 EBRT vs VBT							
PORTEC-2 (3)	-0.16	0.260	214	213	13.1%	0.85[0.50, 1.44]	
Subtotal (95% CI)			214	213	13.1%	0.85 [0.50, 1.44]	-
Heterogeneity: Not ap	plicable						
Test for overall effect	Z = 0.60 (P = 0.55)						
							1
Total (95% CI)			1474	1491	100.0%	0.99 [0.82, 1.20]	🕈
Heterogeneity: Tau ^e =	0.00; Chi≊= 2.16, di	f = 4 (P =	= 0.71)	; F = 0%			
Test for overall effect	Z = 0.06 (P = 0.95)						Favours EBRT Favours No EBRT
Test for subgroup diff	erences: Chi* = 0.47	dr = 2	$(\mathbf{P}=0)$	Γ9), Γ= 0%)			
(1) 54% in EBRT gro	oup and 52% in the i	NO EBR	Tigrou.	pirecelved ^u	/BT URRENNEN		
(2) All unman received UDT. This trial surreseard UDs in terms of UDT: we have amrassed the UD in terms of EDDT							

(3) This trial expressed HRs in terms of YBT (YBT vs EBRT); we have expressed the HR in terms of EBRT.

But this is a patient with a high risk tumor

Kong et al. Cochrane review Adjuvant radiotherapy for stage I endometrial cancer (update 2012)

High risk tumors (as defined by investigators; OR stage IB AND G3)

OS time to event no significant difference between XRT and no XRT HR 0.91 (95% CI 0.60 to 1.39) (2 trials, n=334)

OS dichotomous no significant difference between XRT and no XRT RR 0.88 (95% CI 0.63 to 1.22) (3 trials, n=429)

CCS No significant difference between XRT and no XRT HR 0.84 (95% CI 0.51 to 1.40) (2 trials, n=334)

Insufficient evidence to draw conclusions in the high risk group. A benefit cannot be excluded in this group

Conclusions on pelvic EBRT

I think routine EBRT should not be recommended in women with stage I endometrial carcinoma regardless of risk factors

but

there is still controversy around the high risk group

But

While not affecting survival EBRT is very effective in reducing locoregional recurrence

Time-to-event data HR 0.36 (95% CI 0.25 to 0.52) (5 trials, n=2965)

Dichotomous data RR 0.33 (95% CI 0.23 to 0.47) (7 trials, n=3628)

Translates to a 67% reduction in the risk that the first relapse will be locoregional (95% CI 53% to 77%) with EBRT

What to do next?

Nothing Pelvic radiotherapy (EBRT) Vaginal brachytherapy (VBT) Pelvic+para-aortic radiotherapy Chemotherapy (CT) Sequential chemotherapy and radiotherapy Concomitant chemo-radiotherapy Vaginal brachytherapy and chemotherapy

PORTEC 2

Nout et al. Lancet 2010

Primary end point vaginal recurrence rate, secondary locoregional recurrence, distant mets, OS, DFS, toxicity and QoL

Results PORTEC 2

End point	VBT (%)	EBRT (%)
Vaginal RR	1.8	1.6
Isol pelvic RR	1.5	0.5
Total pelvic RR	5.1	2.1
5-year OS	85	80
5-year DFS	83	78

- PORTEC 1: Observing100 patients for 5 years; 14 vaginal relapses 70% can be salvaged
- PORTEC 2: Observing 100 patients for 5 years; 2 vaginal relapses
- Treating 100 women with VBT would save 12 from vaginal relapses
- NNT to avoid 1 vaginal recurrence ~8, the ultimate outcome would be the same

Conclusions on VBT

- Excellent local control
- Fairly untoxic compared to EBRT
- The trial was performed on women with highintermediate risk tumors
- The local effect may be the same on high risk tumors, but the risk for progression elsewhere is greater
- VBT has replaced EBRT /EBRT+VBT in many centers for the high-intermediate risk group (and maybe also the in high risk group)

What to do next?

Nothing Pelvic radiotherapy (EBRT) Vaginal brachytherapy (VBT) Pelvic+para-aortic radiotherapy Chemotherapy (CT) Sequential chemotherapy and radiotherapy Concomitant chemo-radiotherapy Vaginal brachytherapy and chemotherapy

Para-aortic nodes

...When the pelvic nodes were dissected and were negative, the finding of aortic node metastasis was documented in only one case (1.5%). Conversely, when pelvic node metastasis was documented, the risk of aortic node metastasis was 60%.

Boronow RC Gynecol Oncol 66, 179 (1997)

Adequate para-aortic lymphadenectomy and pelvic and para-aortal EBRT

Table 5

Lymph node recurrences at 5 years according to type of therapy"

Type of therapy	Pelvic		Para-aortic			
	No. of patients $(n = 116)^{h}$	PSW recurrences at 5 years, %	P value	No. of patients $(n = 41)$	Recurrences in PA at 5 years, %	P value
RT-, LND-	8	°		9	56	
RT-, LND+	15	68 ^d	0.003	13	34	0.09
RT+, LND+	72	10*	0.002 🤇	11	0	0.08
RT+, LND-	13	58 ^r		8:	69	
2012		11 - T				

Mariani et al. Gynecol Oncol 101, 200 (2006)

Conclusions on

para-aortic irradiation without confirmed positive para-aortal nodes?

- When the risk for pelvic LN metastases is high the risk for para-aortic LN metastases is also high (although somewhat lower)
- Adjuvant pelvic and para-aortal EBRT seems to be a logical step but there is no randomized trial to support it
- Compelling results from small unrandomized studies with histologically confirmed para-aortic LN metastases
- Concerns about toxicity especially when combined with para-aortic lymphadenectomy

What to do next?

Nothing

Pelvic radiotherapy (EBRT)

Vaginal brachytherapy (VBT)

Pelvic+para-aortic radiotherapy

Chemotherapy (CT)

Sequential chemotherapy and radiotherapy

Concomitant chemo-radiotherapy

Vaginal brachytherapy and chemotherapy

Why systemic therapy? 176 progessions among 915 patients (19%)

Hematogenous	21%
Peritoneal	18%
Lymphatic	16%
Hematogenous+lymphatic	12.5%
Hematogenous+peritoneal	11%
Hematogenous+lymphatic+peritoneal	3%
Lymphatic+peritoneal	0.5%
Subtotal	82%
Isolated vaginal	18%
Total	100%

Radiotherapy (lymphatic + isol. vag.) 34% (6.5%) Systemic therapy ± radiotherapy 66% (13%)

Mariani et al. Gynecol Oncol 2004

Chemotherapy

Johnson et al. Cochrane review Adjuvant chemotherapy for endometrial cancer after hysterectomy 2012

Figure 4. Indiscriminate forest plot for overall survival (risk of death 5 years after randomisation) from all trials of chemotherapy versus any other arm.

	Favours chemothe	erapy	Control	I		Risk Ratio	Risk	Ratio
Study or Subgroup	Events	Total	Events T	otal	Weight	IV, Random, 95% Cl	IV, Rando	m, 95% Cl

ENGOT-EN2-DCGC

Secondary: OS in edometrioid subgroup, CSS, PFS, toxicity, QoL isolated pelvic recurrence and distant metastases, and mixed relapses

Conclusions on chemotherapy vs EBRT

- Two studies (JGOG-2033 and GICOG) could not demonstrate superiority of chemotherapy over radiotherapy, both used CAP regimens
- Two studies GOG-122 (more advanced stages) and GOG-150 (carcinosarcoma, more advanced stages) showed superiority of chemotherapy over radiotherapy (whole abdominal EBRT)

What to do next?

Nothing

- Pelvic radiotherapy (EBRT)
- Vaginal brachytherapy (VBT)
- Pelvic+para-aortic radiotherapy
- Chemotherapy (CT)
- Sequential chemotherapy and radiotherapy
- Concomitant chemo-radiotherapy
- Vaginal brachytherapy and chemotherapy

NSGO-EC-9501/EORTC-55991 🖏

Primary end point PFS

Hogberg et al. Eur J Cancer 2010

CT: Doxorubicine 60 and cisplatin 50 mg/m²x3 q 3 weeks Primary end point PFS, OS

Hogberg et al. Eur J Cancer 2010

Endometrioid carcinomas

Progression-free survival

CSS HR 0.55 (CI 0.35-0.88) p=0.01; 0.78 ⇒ 0.87

www.esmo2012.org

Overall survival

Chemotherapy

Johnson et al. Cochrane review Adjuvant chemotherapy for endometrial cancer after hysterectomy 2012

Figure 4. Indiscriminate forest plot for overall survival (risk of death 5 years after randomisation) from all trials of chemotherapy versus any other arm.

Conclusions on

Sequential chemotherapy and radiotherapy

Chemotherapy in combination with EBRT seems at present to be the most promising adjuvant treatment – but multimodal therapy results in increased toxicity

What EBRT adds to chemotherapy is unknown

What to do next?

Nothing

Pelvic radiotherapy (EBRT)

Vaginal brachytherapy (VBT)

Pelvic+para-aortic radiotherapy

Chemotherapy (CT)

Sequential chemotherapy and radiotherapy

Concomitant chemo-radiotherapy

Vaginal brachytherapy and chemotherapy

PORTEC 3 ongoing

invasion

GOG 258 ongoing

Conclusions on

Concomitant chemoradiotherapy

- Trials ongoing
- Wait for results

What to do next?

Nothing

Pelvic radiotherapy (EBRT)

Vaginal brachytherapy (VBT)

Pelvic+para-aortic radiotherapy

Chemotherapy (CT)

Concomitant chemo-radiotherapy

Sequential chemotherapy and radiotherapy

Vaginal brachytherapy and chemotherapy

GOG 249 ongoing

Primary endpoint: RFS Secondary endpoints: OS, vaginal recurrence, pelvic recurrence, distant recurrence, CSS, toxicity, and QoL

Audience Question

What to do next?:

- 1. Nothing
- 2. Pelvic radiotherapy (EBRT)
- 3. Vaginal brachytherapy (VBT)
- 4. Pelvic+para-aortic radiotherapy
- 5. Chemotherapy (CT)
- 6. Concomitant chemo-radiotherapy
- 7. Sequential chemotherapy and radiotherapy
- 8. Vaginal brachytherapy and chemotherapy

Clinical case

- She is treated with pelvic radiotherapy and 18 months later returns for follow-up with complaints of persistent non-productive cough
- Chest x-ray reveals small bilateral pulmonary nodules (largest 1.8cm)
- Fine needle aspiration under CT guidance confirms endometrial adenocarcinoma
- CT scan of abdomen and pelvis shows no other evidence of recurrent disease

Audience Question What would you recommend now?

- 1. Megestrol acetate (Megace)
- 2. Megestrol acetate alternating with tamoxifen
- 3. An aromatase inhibitor
- 4. Doxorubicin/epirubicin + cisplatin
- 5. Doxorubicin/epirubicin + cisplatin + paclitaxel
- 6. Carboplatin + paclitaxel

Discussion

• Thomas Hogberg

What would you recommend now?

- Megestrol acetate (Megace)
- Megestrol acetate alternating with tamoxifen
- An aromatase inhibitor
- Doxorubicin/epirubicin + cisplatin
- Doxorubicin/epirubicin + cisplatin + paclitaxel
- Carboplatin + paclitaxel

Endocrine treatment for advance or recurring EC

Hormone	Studies	Number	References	RR mean	Range	PFS mean	Range
Progestogens	8	1303	48, 49, 52-57	23	11-56	7.5	6-7
SERMs	7	319	26, 51, 58-61	29.8	10-53	4.9	1.9-7
Combinations	3	136	19, 23, 62, 63	25	5-33	4.6	1.8-5.8
Aromatase inhibitor	2	55	24, 64	10	NS	8.8	NS
GNRH analogs	5	143	18, 57, 65-67	28.8	7-58	NS	NS
Other	1	25	68	0	NS	NS	NS

Table 1. Hormone studies by treatment type grouping

NS, not stated; GNRH, gonadotrophin-releasing hormone; RR, response rate. Decruze and Green Int J Gynecol Cancer 2007

- RR 11-56% PFS 2.5-14 months for progestogens in previously untreated patients with G1 or G2 tumors
- Higher response rates in progesterone receptor-positive case
- Heterogeneity between studies meta-analysis was not possible
- G3 or G4 toxicity less than 5%
- Receptor-negative status should not be an absolute contra-indication
- Aromatase inhibitors an open question
- Low dose progesterone is better than high-dose (HR PFS 1.35, OS 1.31)*
- Sequential tamoxifen progesterone may be beneficial (phase II-data)**

Decruze and Green Int J Gynecol Cancer 2007 Kokka et al. Cochrane rev. The Cochrane library 2010 * Thigpen 1999**Fiorica 2004, Whitney 2004

Audience Question

1. I always try to get receptor status before decision on endocrine therapy

- I only use metastatic tissue if available
- If I don't get metastatic tissue I use tissue from the primary tumor

2. I don't care about receptor status before decision on endocrine therapy, I chose salvage therapy individually mainly depending on the performance status of the patient

What would you recommend now?

- Megestrol acetate (Megace)
- Megestrol acetate alternating with tamoxifen
- An aromatase inhibitor
- Doxorubicin/epirubicin + cisplatin
- Doxorubicin/epirubicin + cisplatin + paclitaxel
- Carboplatin + paclitaxel

What chemotherapy?

Endometrial cancer is a chemosensitive tumor. Single drug phase II studies have shown response rates exceeding 20 % for

- > Anthracyclines [doxorubicin (A), epirubicine (E)]
- Platinum drugs [cisplatin (P), carboplatin (cP)]
- Taxanes [paclitaxel (T), docetaxel (dT)]

Standard for many years AP

Aapro et al. Ann Oncol 2003, Thigpen et al. J Clin Oncol 2004

What chemotherapy? GOG 177 - TAP versus AP. Fleming et al. J Clin Oncol 2004 OS PFS

Paclitaxel 150, doxorubicin 60 and cisplatin 50 mg/m² (TAP) with filgrastim versus Doxorubicin 60 and cisplatin 50 mg/m² (AP)

Slide from GOG – Miller et al. SGO 2012

GOG-209

Response			ΤΑΡ		тс
RECIST 1.0	Total	n	%	n	%
Complete	71	31	8.7	40	10.8
Partial	302	152	42.6	150	40.4
Stable	229	107	30.0	122	32.9
Increasing	47	17	4.8	30	8.1
Not evaluable	79	50	14.0	29	7.8

RR TAP 51.3% vs TC 51.2%

Slide from GOG – Miller et al. SGO 2012

VIENNA 2012

F

Median PFS (months) TAP 13.5 vs TC 13.3 HR=1.03

Median OS (months) TAP 40.3 vs TC 36.5 HR=1.05

Adjusted 90% upper confidence limit for the death hazard ratio (HR) of TC relative to TAP was 1.16 and excludes the inferiority region bounded at 1.2

Slide from GOG – Miller et al. SGO 2012

	ТАР				
Adverse Effect	Grade ≤ 2	Grade ≥ 3 (%)	Grade ≤ 2	Grade ≥ 3 (%)	p*
Neutropenia	300	327 (52.1)	133	522 (79.7)	<0.001
Thrombocytopenia	484	143 (22.8)	578	77 (11.8)	<0.001
Other Hematologic	435	192 (30.6)	516	139 (21.2)	<0.001
Fatigue	550	77 (12.3)	592	63 (9.6)	0.129
Nausea	571	56 (8.9)	618	37 (5.6)	0.024
Vomiting	583	44 (7.0)	632	23 (3.5)	0.006
Diarrhea	591	36 (5.7)	642	13 (2.0)	<0.001
Stomatitis	619	8 (1.3)	654	1 (0.2)	0.019
Other Gastrointestinal	581	46 (7.3)	623	32 (4.9)	0.079
Creatinine	615	12 (1.9)	651	4 (0.6)	0.044
Infection w/o neutropenia	606	21 (3.3)	643	12 (1.8)	0.111
Metabolic	541	86 (13.7)	604	51 (7.8)	<0.001
Myalgia	619	8 (1.3)	635	20 (3.0)	0.035
Arthralgia	621	6 (1.0)	637	18 (2.8)	0.022

*p-value from Fisher's Exact Test (two tail)

Slide from GOG – Miller et al. SGO 2012

Conclusion

- TC is not inferior to TAP in terms of PFS and OS based on interim analysis results
- > Overall, the toxicity profile favors TC
- Thus, TC as prescribed in this study is an acceptable backbone for further trials in combination with "targeted" therapies

Slide from GOG – Miller et al. SGO 2012

Audience Question What would you recommend now?

- 1. Megestrol acetate (Megace)
- 2. Megestrol acetate alternating with tamoxifen
- 3. An aromatase inhibitor
- 4. Doxorubicin/epirubicin + cisplatin
- 5. Doxorubicin/epirubicin + cisplatin + paclitaxel
- 6. Carboplatin + paclitaxel

2nd cancers after EBRT

Lonn et al Epidemiol Biomarkers Prev 2010

SEER 1973-2003 60,949 patients with EC surviving ≥1 year IRR(incidence rate ratios) for 2nd cancers among irradiated patients vs those treated with surgery only

- VBT 1.07 (95% CI 1.00-1.16) EBRT 1.15 (95% CI 1.08-1.22)
- EBRT+VBT 1.26 (95% CI 1.16-1.36)

11% of 2nd solid cancers ≥5 years after radiation could be attributed to RT

The risk for leukemia (excl CLL) and non-Hodgkin lymphoma were doubled

2nd cancers after EBRT

Kumar et al Gynecol Oncol 2009

SEER 1973-2004 90,502 patients with EC 52,182 got no RT and 5,563 developed 2nd cancers, 31,643 received RT and 4,203 developed 2nd cancers

RR for 2nd cancers among irradiated patients vs no irradiation

RR 1.25 (95% CI 1.20-1.29)

At ten years a 40% increased risk p<0.001

The increased risk of second cancers was most pronounced in the field of exposure and was affected by latency since exposure

Lindeman et al.: Update of a 1980 Classic Trial

Postoperative External Irradiation and Prognostic Parameters in Stage I Endometrial Carcinoma

CLINICAL AND HISTOPATHOLOGIC STUDY OF 540 PATIENTS

JAN AALDERS, MD, VERA ABELER, MD, PER KOLSTAD, MD, AI MATHIAS ONSRUD, MD

From 1968 to 1974, 560 patients with stage I adenocarcinoma of the corpus uteri entered a prospective clinical trial to evaluate the effect of postoperative external pelvic intadiation. After primary surgery all patients received intrarecommendations vary fro combined with removal and/ vic lymph nodes^{1,2} to radius hysterectomy.^{3,4}

Annual 12

Meeting

Lindeman et al.: Update of a 1980 Classic Trial

568 pts

- Treated 1968-1974
- Median age 60 years
- Extraordinary F/U
 - Median 20.5 years
 - Nearly complete
- Conclusions
 - No overall benefit
 - Harm > benefit for young patients—2nd cancers

Annual 12

Meeting

Poorer outcome for young patients

PRESENTED BY: Patricia J. Ellel

PRESENTED AT: ASO

Risk of secondary cancer <60 years – per protocol

Univariate Cox regression HR: 1.99 (95% CI: 1.27-3.10)

PRESENTED AT ASO

Annual 12 Meeting