

Integrating Novel Therapies: Sequential Or Concomitant Treatment?

Professor Johann S de Bono Professor of Experimental Cancer Medicine The Institute of Cancer Research and Royal Marsden Hospital

Faculty Disclosure

Johann Sebastian de Bono, MB, ChB, FRCP, MSc, PhD, has disclosed that he receives a salary from the Institute of Cancer Research which has a commercial interest in abiraterone acetate and PI3K/AKT inhibitors, and has received consulting fees from Medivation, Astellas, AstraZeneca, Johnson & Johnson, sanofi-aventis, Genentech, Dendreon, Merck and others. I have served as Chief Investigator of many trials including the pivotal cabazitaxel, abiraterone and MDV3100 trials.

Overview

- Background
- Goals
 - Maximizing patient benefit
 - Maximizing drug regulatory approval
- Conclusion

Progress: CRPC Patients are Living Longer. Royal Marsden Data

- CRPC patients treated on trials evaluated
 - Almost 500 patients treated; median age 62 yrs
 - Median interval: diagnosis to CRPC was 2.7 years (range 0.2 to 21.7 years)
 - Predicted OS by Halabi and Smaletz nomograms were 21 & 18 months respectively for this population
 - Observed OS was 32 months (95%CI 28-38m; p<0.0001)</p>

Pezaro C et al ESMO 2012

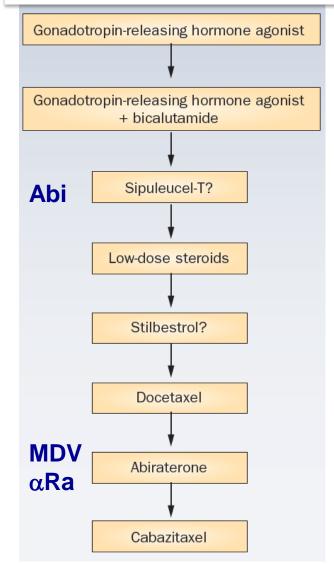
Halabi et al, JCO, 2003 CALGB Smaletz et al, JCO, 2002 MSKCC

Advanced Prostate Cancer Unprecedented Progress

In the last 2 years, 5 treatments with different mechanisms of action improved OS with several of these agents also improving QOL

- Abiraterone^[a]
- Sipuleucel-T^[b]
- Cabazitaxel^[c]
- Alpharadin^[d]
- MDV3100^[e]

a. de Bono JS, et al. *N Engl J Med*. 2011;364:1995-2005.
b. Kantoff PW, et al. *N Engl J Med*. 2010;363:411-422.
c. de Bono JS, et al. *Lance*t. 2010;376:1147-1154.
d. Parker C, et al. ESMO 2011.
e. Scher H et al, *N Engl J Med 2012.*


Multiple other exciting new agents

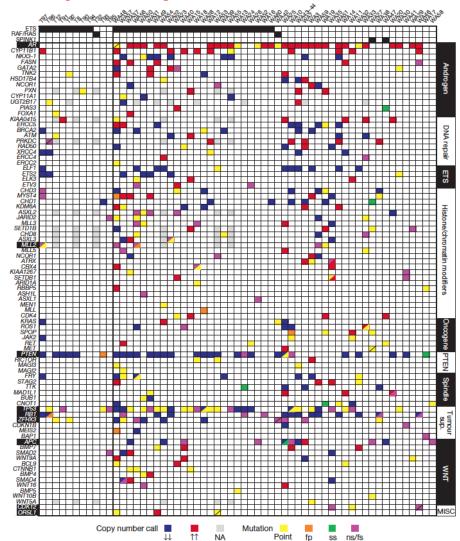
Brave New World

- Abiraterone will likely be administered earlier in 2013 (possibly enzalutamide too but this would be off label until the PREVAIL trial reports).
- There is concern regarding cross-resistance:
 - Taxanes/abiraterone/enzalutamide?
- Optimal sequence of administration of these drugs now needs defined; <u>but all were</u>
 <u>developed as single agents!</u>

Yap TA, et al. *Nat Rev Clin Oncol.* 2011;8:597-610
 Mezynski et al, Annals of Oncology 2012.

Landscape in 2012-2013

Overview


- Background
- Goals
 - Maximizing patient benefit
 - Maximizing drug regulatory approvals
- Conclusion

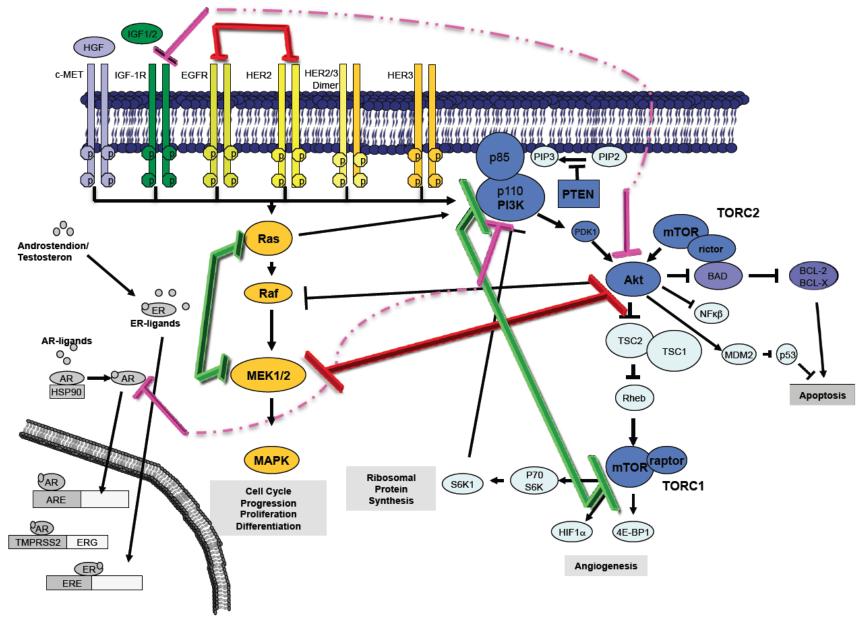
How do we Maximize Clinical Benefit?

- Maximize duration of disease control while minimizing exposure of patients to inactive drugs
 - Understand mechanisms of resistance
 - Develop biomarkers to guide therapy
 - Develop therapeutics strategies/combinations that prevent emergence of resistance, or reverse drug resistance when it emerges.

Why Must Combinations Be Pursued? Genomic Complexity

- Prostate carcinogenesis involves the hijacking/ alteration of multiple processes/pathways.
- Advanced prostate cancer NGS
 - DNA repair
 - AR signaling
 - ETS gene rearrangements
 - PTEN loss & PI3K/AKT 企
 - p53 mutation

Grasso et al, The mutational Landscape of Lethal CRPC. Nature 2012


Genomic Complexity

 This genomic complexity makes targeting multiple proteins/pathways/networks <u>necessary</u> to maximally impact CRPC.

<u>Examples:</u>

- Targeting AR signaling and PI3K/AKT/TOR signaling in CRPC
- Targeting MEK and AKT in RAS driven cancers

Yap, Omlin & de Bono; Under review, JCO

Yap, Omlin & de Bono; Under review, JCO

Which Drugs? Which Combinations? Many new agents in development for CRPC

- Novel AR antagonists
 LBD vs amino-terminal
- AR downregulating agents
 AR antisense (?ShRNA)
- SARD (AR degrading)
 - LBD targeting
- Selective 17,20 lyase inhibitors (No steroids)
- Heat shock protein inhibitors
 HSP90i; HSP27i; clusterin aso
- HDAC inhibitors
 - HDAC6/HSP90 selectivity

- PI3K/AKT/TORi
- RAF/MEKi (small subset)
- Multikinase inhibitors
 - Cabozantinib
- Src inhibitor
 - Dasatinib
- Immunoconjugates
- PARP inhibitors
- IGF-1R inhibitors
- ETS gene antagonists

Overview

- Background
- Goals
 - Maximizing patient benefit
 - Maximizing drug regulatory approvals
- Conclusion

Maximizing Approvals

- Robust biological hypotheses needed for combination studies
- Smart trials required to test and answer these questions
- Sequential and combo strategies are necessary
 - But combo strategies are challenging

Some important questions

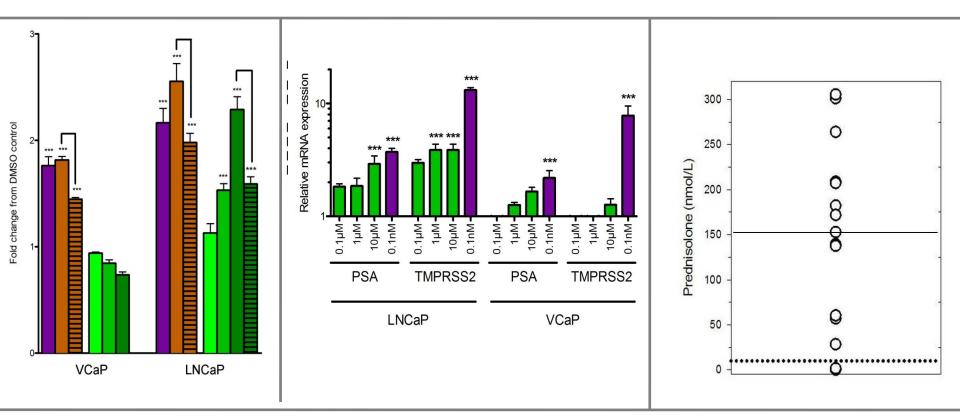
Hypothesis I

- Multiple different clones/sub-clones in same patient
 - Multiple mechanisms of resistance probably operate at the same time in one patient
 - Clone/s may evolve (in a Darwinian fashion) based on therapeutic selective pressures and may 'emerge, regress and re-emerge contingent on the therapeutic pressures imposed on them

We must find ways to interrogate this clonal evolution: tumor biopsies, CTC, plasma nucleic acids, molecular imaging.

Questions

• Will a drug that had anti-tumour activity in a patient, to which resistance developed, 'work again' at a later time point if the 'sensitive' clone re-emerges?


Hypothesis II

• Does CRPC remain hormone driven despite abiraterone and/or enzalutamide?

Questions

- If CRPC remain hormone driven despite abiraterone and/or enzalutamide:
 - Should we maintain CYP17/AR blockade after progression?
 - Do we need to target:
 - 1. AR post-translational changes (eg phosphorylation)?
 - 2. Altered AR cofactor expression/function (CoF^{mt})?
 - 3. Constitutively active splice variants lacking the LBD?
 - Must we block upregulated steroid synthesis enzymes?
 - Can pred or abi or enza become AR^{mt} agonists?

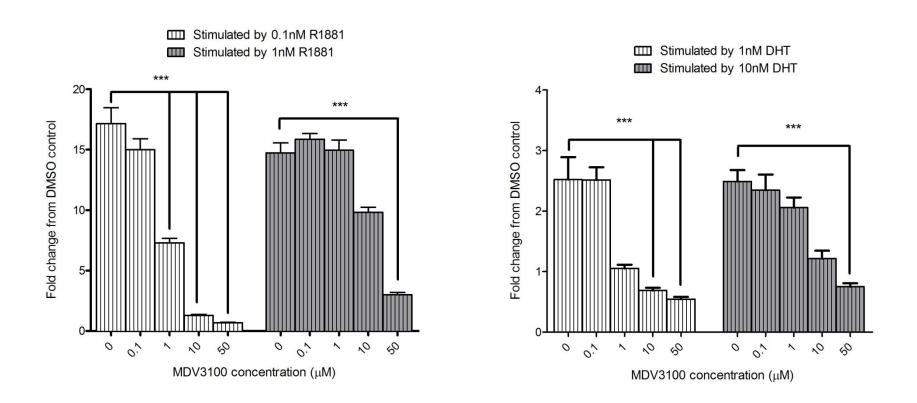
AR promiscuous activation

Spironolactone, eplerenone, prednisolone can activate AR or AR^{mt}

Pred levels at 5mg bid in patients high enough to activate AR

Answering some of these questions

- Do patients progressing on enzalutamide and abiraterone have a reactivated AR....
 - Due to ligand driven activation of AR (Abi/Pred/Enza)?


• Solutions

- Look for withdrawal responses on drug withdrawal
- Find AR mutations activated by pharmacological compounds
- Switch prednisolone to other steroids (dexamethasone)
- Develop selective 17,20 lyase inhibitors (no need for pred)
- Add AR antagonist at PD on abiraterone/CYP17i

Detect molecular changes and determine their function to drive therapeutic switch

Increased steroid ligand levels in patients can result in resistance to MDV3100

Resistance mechanisms to MDV3100: Androgen levels may increase after MDV3100 due to decreased AR transcriptional activity and can result in acquired resistance (Efstathiou et al)

Answering some of these questions

• Do patients progressing on enzalutamide with reactivated AR have increased ligand synthesis?

• Potential solutions

- Increase AR antagonist dose
- Develop more potent AR inhibitors (target LBD or not)
- Add CYP17i to enzalutamide at PD on enzalutamide

But single agent abiraterone after enzalutamide has modest antitumour activity; Similarly single agent enzalutamide after abiraterone may have limited activity

Answering some of these questions

- Patients progress on enzalutamide and abiraterone with reactivated AR due to
 - Increased AR expression
 - Novel AR mutations
 - Constitutively active splice variants

Potential solutions

Develop novel AR degrading compounds: SARDs, Heat Shock
 Protein Inhibitors, Antisense/SiRNA to AR

Hypothesis III

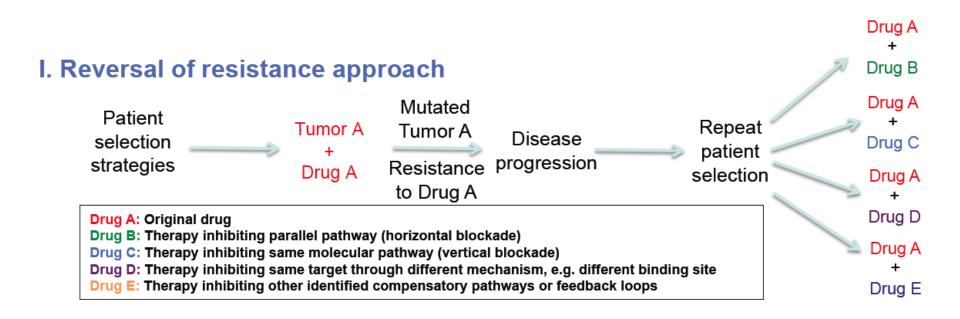
• Are other pathways key to CRPC cell survival?

Questions

- Will targeting other signaling pathways provide patient benefit?
 - PI3K/AKT/TOR?
 - (SRC? HER3? MET? RAF/MEK/ETS?)?
 - Pathways driving epithelial-mesencyhmal transition (EMT)?
 - Apoptosis pathways

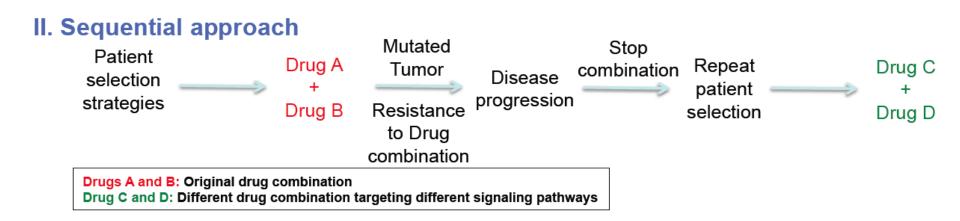
Maximizing Approvals

- Robust biological hypotheses needed
- Smart trials required to test and answer these questions
- Sequential and combo strategies are necessary
 - But combo strategies are challenging


Some important questions

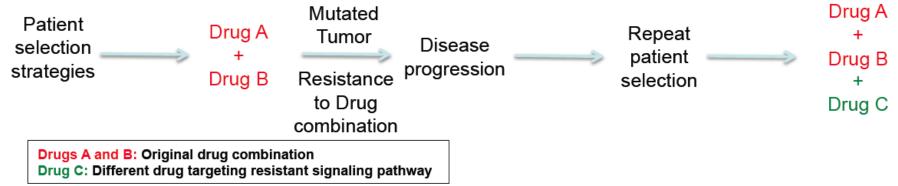
Trials to Acquire Proof of Concept

- Response with a combination may mean just one of the drugs works and does not prove value of the combination <u>unless</u>:
 - Incontrovertible evidence that neither drug has single agent activity in that disease;
 - Drug A first administered alone and on progression A+B administered (but this is biologically different to giving A+B from the start).
- If such strategies are not pursued proof of concept not acquired until end of Phase III trial (costly, risky)
 - Randomized Phase II trials carry high α (false positive) and β (false negative)


Consider A + B vs A with cross-over in only a proportion of patients

Reversal of Resistance Can be Very Informative

Important approach for proof of concept studies when one of the drugs has antitumor activity; But A+B after PD on A is not the same as A+B from the outset!


Other Approaches for Combos: Sequential Combinations Approach

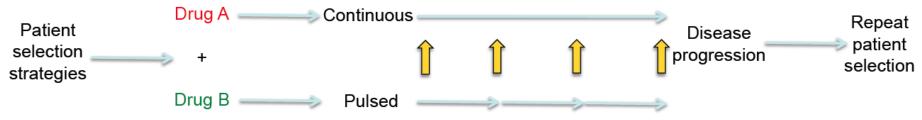
Arguably the 'traditional route' used in cancer medicine today


Other Approaches for Combos: Addition Approach

III. Addition approach

May be more rational if combination tolerable. Eg LHRHa + abiraterone + MDV3100, OR LHRHa + abiraterone + PI3K/AKT/TOR inhibitor.

Other Approaches for Combos: Alternating Approach



Drugs A and B: Alternating combination of targeted therapies

This approach clearly has some merit if tolerability an issue; and targeted drugs do have significant toxicities

Other Approaches for Combos: Pulsed Dose Approach

Arguably more likely to impact tumor survival if tolerability is an issue

Maximizing Approvals

- Robust biological hypotheses needed
- Smart trials required to test and answer these questions
- Sequential and combo strategies are necessary
 But combo strategies are challenging

Some important questions

Challenges

- Targeted drugs and their combinations have narrow therapeutic indices.
- Drug interactions
 - Both abiraterone and enzalutamide have pharmacological liabilities with regards to CYP3A4; enzalutamide inhibits CYP3A4 and decreases midazolam exposure by 80-90%.
- Inter-patient PK (and PD) variability can be an issue.
 - How much target blockade is enough (to kill CRPC cells)?

Some Solutions: Preclinical Studies

- Preclinical studies (xenografts and/or transgenic models) should determine the required degree and duration of target blockade required to generate tumor cell kill in different biological contexts.
 - How much is enough? Is 50% pAKT inhibition sufficient? Or 90%? Is 6 hours of blockade enough? 24 hours? 72 hours?
 - <u>Context dependency</u>: Is a prostate cancer with both PTEN loss and INPP4B loss or PHLLP1 loss different to prostate cancer with just PTEN loss with regards to AKTi combinations?

Some Solutions: Clinical Trials

- More precise treatment requires maximal/optimal target blockade (in tumor) in individual patient:
 - Pursue <u>intra-patient dose escalation</u> (or de-escalation).
 - Pursue <u>multiple schedules</u> in Phase I combo studies, specifically schedules with 'drug holidays' or pulsatile therapy.
 - Develop drugs that target mutated but not wild-type target.
- **Determine biological context** in patients
 - <u>Targeted/focused molecular profiling for patient selection</u>
 - More broad whole exome/genome DNA & RNA studies

Overview

- Background
- Goals
 - Maximizing patient benefit
 - Maximizing drug regulatory approvals
- Conclusion

Conclusions

- We have made major progress
- Robust hypotheses based on reiterative translational research will be critically important
- Combinations will be necessary
 - Multiple ways to do combinations
 - Therapeutic indices of combos challenging
 - Patient selection based on biomarkers required