

The European Thoracic Oncology Platform Lungscape project: A way to bridge NSCLC molecular characteristics and clinical data

S. Peters, U. Dafni, L. Bubendorf, P. Meldgaard, K.J. O'Byrne, A. Wrona, W. Weder, M. Canela, S. Malatesta, J.F. Vansteenkiste, A-M.C. Dingemans, M.C. Nicolson, S. Savic, P. Baas, R. Peck, S. Lu, E.F. Smit, E. Jantus-Lewintre, R. Rosell and R. Stahel, on behalf of ETOP

2 | Disclosures

S. Peters / ETOP declare no conflict of interest

3 | Aims

- Lungscape addresses the challenges of studying the molecular epidemiology of lung cancer
 - By coordinating and harmonizing the procedures of lung cancer specialists working in translational research across Europe
 - By performing analysis of larger series of cases.

This will:

- Expedite knowledge of the prevalence and context of current and emerging molecular biomarkers
- Facilitate more rapid application of biomarker usage in the clinic
- Provide a platform for biomarker-driven trials of novel therapeutics.

4 | Overall Objectives

- Establish a decentralized NSCLC biobank (iBiobank)
- Generate new biological hypotheses
- Establish a clinical trial platform (ETOPdata)
- Develop practical diagnosis algorithms

Methodology: Case inclusion criteria

- Histological diagnosis of NSCLC
- Radically resected non-pretreated stage IA-IIIB NSCLC
- Diagnosis after January 2003 (10% before 2003)
- Adequate quantity and quality of formalin-fixed paraffin embedded tissue
- Documented ethical approval for tissue sample and associated clinical data
- 3 years of follow-up
- Mandatory clinical data available

6 | Methodology: Sites selection

- Survey to ETOP members
 - 20 institutions replied
- Additional requirements for site selection:
 - Patient consent for biobanking according to local regulations
 - TMA building capability
 - External Quality Assessment acceptance (ALK lungscape abstract 193P)
 - (Matched fresh frozen tissue available)
- Number of selected sites:
 - 14 European sites and one Chinese site

Outside of Europe • China – Shanghai Chest

Hospital (S. Lu, Z. Jie)

Belgium

· Leuven:

J. Vansteenkiste,

E. Verbeken, C. Dooms

Denmark

· Aarhus:

P. Meldgaard, H. Hager

Greece

Frontier Science Hellas:

U. Dafni

Ireland

• Dublin:

K. O'Byrne, S. Finn,

S. Gray

Italy

• Chieti:

A. Marchetti, S. Malatesta

Poland

· Gdansk:

R. Dziadziuszko,

W. Biernat, A. Sejda,

A. Wrona

United Kingdom

Aberdeen:K.M. Kerr, N. Price,M. Nicolson

Manchester:F. Blackhall, D. Nonaka,R. Peck

Spain

 Barcelona:
 E. Felip, J. Hernandez-Losa, M. T. Salcedo, M. Canela

Badalona:R. Rosell, M. Taron

· Valencia:

C. Camps, M. Martorell, E. Jantus-Lewintre

Switzerland

 ETOP Coordinating Center:

A. Hiltbrunner, S. Peters, R. Kammler, R. King,

R. Stahel

Basel:

L. Bubendorf, S. Savic

• Zurich:

W. Weder, A. Soltermann

The Netherlands

 Amsterdam VU (E. Thunnissen, E. Smit

Amsterdam NKI:
 P. Baas, J. de Jong

Maastricht:

 A.-M. Dingemans,
 E-J.M. Speel

8 Lungscape project responsibilities

Project design and guidance:

Lungscape steering committee

Project execution:

- ETOP office
- Frontier Science Foundation-Hellas

Lungscape financial support:

- Consortium approach
- Contributions for this specific project:
 Roche, Pfizer

9 | Methodology: iBiobank mandatory parameters

Patient	DATE OF BIRTH
Demographics and	GENDER
Characteristics	ETHNICITY
	SMOKING HISTORY
NSCLC pathology	DATE OF SURGERY
	HISTOLOGY (ADENOCARCINOMA, SQUAMOUS,
	LARGE CELL, UNDIFFERENTIATED, MIXED)
	LOCALISATION OF PRIMARY TUMOUR
	PATHOLOGY (7 th TNM + report attached)
Treatment	ADJUVANT CHEMOTHERAPY
Information	ADJUVANT RADIOTHERAPY
Patient status at last	DATE OF LAST FOLLOW UP
FU	PATIENT STATUS AT LAST FOLLOW UP
	DATE OF DEATH (IF APPLICABLE)
1st line treatment at	ADMINISTRATION OF ANTITUMOUR TREATMENT
recurrence	AT RECURRENCE
2nd line treatment at	ADMINISTRATION OF ANTITUMOUR TREATMENT
recurrence	AT RECURRENCE
Subsequent line of	ADMINISTRATION OF ANTITUMOUR TREATMENT
treatment	AT RECURRENCE

Data Acquisition Workflow: Focus on Upstream Quality Control

11 | Table example

12 | Methodology: Current report statistics (1)

Descriptive statistics for the Lungscape cohort:

- Demographic and clinical data Histology
- Outcome: Primary: OS Secondary: RFS and TTR

Outcome Definitions:

- Overall Survival (OS): date of surgery to death from any cause
- Relapse Free Survival (RFS): date of surgery to first relapse or death from any cause
- Time to Relapse (TTR): time from date of surgery to first relapse.

TTR is measuring direct clinical benefit, by censoring deaths without documented relapse. It is useful, when the majority of deaths are unrelated to lung cancer.

Methodology: Current report statistics (2)

Outcome analysis according to characteristics of interest, including:

- Age
- Gender
- PS
- Stage
- Smoking history
- Histology
- Kaplan-Meier estimates
- Multivariate Cox Regression Analysis with backward selection (p<0.10)

Cases by provider (n=2130)

Median follow-up: 58 months

Patient characteristics (N=2130)

Gender (%)	Male Female	63.8 36.2
Ethnicity (%)	Caucasian East Asian Other	93.4 6.2 0.4
Age at surgery – yrs	Median (Min-Max)	65.5 (22.6-89.5)
Smoking History N=2058 (%)	Current Former Never	33.2 50.7 16.1
Performance status at diagnosis N= 1134 (%)	0 1 2 3	62.2 35.0 2.2 0.6

16 | Stage grouping

OS by Stage

Logrank Test: p-value < 0.001 n= 480 70.0 % n = 56963.9 % Overall Survival (%) n= 354 52.2 % 45.1 % 437 27.9 % n = 3610.9 % **Months** No at Risk Illa IIIb

Note: Number of patients and 5-year OS by stage, depicted in the figure

18 OS by Histology

Note: Number of patients and 5-year OS by Histology, depicted in the figure

19 | OS by Gender

Note: Number of patients and 5-year OS by gender, depicted in the figure

Multivariate Cox model for OS (N=2128, deaths=991)

Variable	HR	95% CI	p-value
Age – cat			
"60-70" vs "<60"	1.39	(1.19, 1.64)	<0.001
">70" vs "<60"	1.50	(1.27 1.77)	<0.001
Gender			
Male vs Female	1.13	(0.98, 1.30)	0.032
Performance status at diagnosis			
1 vs 0	1.31	(1.08, 1.59)	0.0071
2&3 vs 0	1.83	(1.16,2.90)	0.018
Unknown vs 0	1.25	(1.04, 1.50)	0.012
Missing vs 0	1.66	(1.41,1.97)	<0.001
Smoking history			
Current vs Never	1.26	(1.02, 1.56)	0.032
Former vs Never	1.20	(0.98, 1.47)	0.079
Unknown vs Never	1.42	(0.98, 2.06)	0.063
Stage			
lb vs la	1.38	(1.11,1.71)	0.0035
lla vs la	1.90	(1.51,2.38)	<0.001
Ilb vs la	2.56	(2.01,3.24)	<0.001
Illa vs la	4.11	(3.36,5.03)	<0.001
IIIb vs la	6.44	(4.28,9.71)	<0.001

21 | RFS by Stage

Note: Number of patients and 5-year RFS by stage, depicted in the figure

22 | RFS by histology

Note: Number of patients and 5-year RFS by histology, depicted in the figure

Multivariate Cox model for RFS (N=2128, RFS events=1119)

Variable	HR	95% CI	p-value
Age "60-70" vs "<60" ">70" vs "<60"	1.29	(1.11, 1.50)	<0.001
	1.34	(1.15, 1.56)	<0.001
Gender Male vs Female	1.13	(0.99, 1.28)	0.057
Performance status at diagnosis 1 vs 0 2&3 vs 0 Unknown vs 0 Missing vs 0	1.31	(1.10 1.57)	0.0029
	1.93	(1.25, 3.00)	0.0031
	1.32	(1.12, 1.56)	0.0013
	1.55	(1.32, 1.81)	<0.001
Stage Ib vs la Ila vs la Ilb vs la Illa vs la Illa vs la	1.31	(1.08, 1.60)	0.007
	1.80	(1.46, 2.22)	<0.001
	2.29	(1.83,2.86)	<0.001
	3.99	(3.32,4.81)	<0.001
	5.58	(3.77,8.26)	<0.001

24 | TTR by Stage

Note: Excluding 118 patients with missing date of death or relapse diagnosis and 2 patients without reported "Status at last follow-up"

25 | Conclusions (1): Lungscape collection

- Through Lungscape, we have collected a large clinical dataset of resected NSCLC including not only raw survival data but also OS, RFS and TTR outcomes according to main clinical and pathological characteristics.
- All patients have tissue available for biomarker analysis and determination of their impact on outcome (ALK lungscape, ESMO abstract 1670)
- Application of the 7th TNM classification has been successful in distinguishing prognostic categories in our dataset and OS similar to published data

26 | Conclusions (2) : Lungscape data report

- We report on the first multivariate survival analysis of OS identifying age, gender, PS and smoking status as independent prognostic characteristics in addition to TNM stage
- TTR outcome, by omitting deaths from other causes, allows to evaluate direct clinical benefit in lung cancer, especially for older age patient
- TTR will represent an optimal parameter to define the impact of biomarkers in NSCLC outcome definition

27 | Acknowledgments

Rick King, Leftbrain, Geneva

ETOP office

- Anita Hiltbrunner
- Rudolf Maibach
- Rosita Kammerle
- Marc Marbot
- Urania Dafni

Daily collaborators:

- Rolf Stahel
- George Coukos
- Olivier Michielin
- Stefan Zimmerman

And all ETOP colleagues...