

The characterization of lung cancer: molecular and pathway analysis

Jean-Charles SORIA, MD, PhD

JNIVERSITÉ

Disclosure Slide

Consultancy fees from

- → Abbott, Amgen, AstraZeneca, BMS, EOS, GSK, Lilly, Merck-Serono, MSD, Pfizer, Roche-Genentech, Sanofi.
- My talk will focus on NSCLC

Overview

- Lung cancer from histology to biology
- Molecular classification of adenocarcinomas
- Molecular classification of squamous cell carcinomas
- Towards an integrative approach
 - \rightarrow clonal architecture, new targets and resistance mechanisms
 - \rightarrow DNA repair complexity and related biomarkers
 - \rightarrow biomarkers of activity of immunotherapies

World Cancer Incidence and Mortality

International Agency for Research on Cancer World: Both sexes, all ages

What is lung cancer ? The old perception

Current definition of cancer

a tumor

an organ

a pathological sample

A definition from the XIXth century Significantly mutated pathways in adenocarcinoma of the lung

Ding et al. Nature 455, 1069, 2008

In daily practice, histology remains the main classifier of NSCLC

Classification			Characteristics ¹	
Non-squamous [‡]	Adenocarcinoma 30–50%*		 Malignant epithelial tumors with glandular differentiation Subtypes are acinar, papillary, bronchoalveolar carcinoma (BAC), and solid adenocarcinoma with mucin production Usually peripherally located 	
	Large cell carcinoma 10%*		 Involves large cells (subtypes are giant cell, clear cell) with large nuclei No evidence of squamous or glandular differentiation Usually peripherally located 	
Squamous	Squamous cell carcinoma 30% [†]		 Involves cells of the squamous epithelium Usually centrally located 	

*Image from www.surgical-pathology.com; †Image from http://www.Imp.ualberta.ca/resources/pathoimages/PC-S.htm; ‡Other less common subtypes of non-squamous NSCLC include adenosquamous carcinoma and sarcomatoid carcinoma.³

Selecting the right therapy

Cancer Patient

Tumor type

Therapy

Wrong

match

Oncologist Selects therapy based on experience histology and tumor site

Wrong match

The right drug for the tumor type

Modified from D Weaver, On-Q-ity

Driver-pathways will increase in number notably because of the reduced cost of sequencing

MacConaill L E , Garraway L A JCO 2010;28:5219-5228

Overview

- Lung cancer from histology to biology
- Molecular classification of adenocarcinomas
- Molecular classification of squamous cell carcinomas
- Towards an integrative approach
 - \rightarrow clonal architecture, new targets and resistance mechanisms
 - \rightarrow DNA repair complexity and related biomarkers
 - \rightarrow biomarkers of activity of immunotherapies

Many previous large-scale sequencing efforts in adenocarcinoma

Ding et al 2008 623 genes in 188 Lung Adeno

LETTERS

The mutation spectrum revealed by paired genome sequences from a lung cancer patient

William Lee¹, Zhaoshi Jiang¹, Jinfeng Liu¹, Peter M, Haverty¹, Yinghui Guan¹, Jeremy Stinson², Peng Yue¹, Yan Zhang¹, Krishan P, Yan¹, Depail Bharti, Connie Ha¹, Stephanie Johnson¹, Michael I. Kennemer³, Sankar Mohan³, Igor Nazarenko¹, Colin Watanabe¹, Andrew B, Sparks¹, David S, Shame², Robert Gentleman¹, Frederic J. de Sauvage¹, Howard Stern³, Japp Pandita³, Dennis G. Ballinger³, Radoje Drmanac³, Zora Modrusan⁴, Somasekar Seshag¹¹, & Zemin Zhang¹

Lee et al 2010 WGS of a single Lung Adeno T-N pair

LETTERS

Diverse somatic mutation patterns and pathway alterations in human cancers

Zhengyan Kan¹, Biyy S, Jalewal J, Jeremy Stinon ¹, Vasantherajan Janokinaman¹, Deepali Bibat¹, Howard M, Stern¹, Peng Yuz², Peter M, Naverty², Richtan Borgan², Janiba Zheng⁴, Martin Monda⁴, Subhard Chadhuri, Lymn P, Tomsho³, Brock A, Peters¹, Kanan Pujan², Shaun Cordes¹, David P, Davis¹, Victoria E, H, Carlton⁴, Weinin Yuan³, Uli Y, Weiru Wang², Charles Egenberg¹, Chauba S, Kaminke², You Ad, A Eberhard¹, Pul Warin²g, Stephan C, Schuster³, Zora Modrusan³, Zemin Zhang², David Stoke³, Frederic J. de Sauvage⁴, Malek Faham⁶

Kan et al 2010 1507 genes in 57 Lung Adeno

Ju et al 2011 WGS of a single Lung Adeno T-N pair

Incidence of driver mutations in adenocarcinoma

Mutations found in 67% (IGR exprience)

The "targeted therapome" in lung adenocarcinoma

Courtesy M Meyerson

Pao and Chmielecki, Nature Reviews Cancer 2011

Actionable alterations leading to clinical benefit

Patient No.

Kwak NEJM 10

Missing key driver oncogenes in lung adenocarcinoma

Courtesy M Meyerson

Overview

- Lung cancer from histology to biology
- Molecular classification of adenocarcinomas
- Molecular classification of squamous cell carcinomas
- Towards an integrative approach
 - \rightarrow clonal architecture, new targets and resistance mechanisms
 - \rightarrow DNA repair complexity and related biomarkers
 - \rightarrow biomarkers of activity of immunotherapies

The Cancer Genome Atlas (TCGA): Complete cancer genome description

Focal copy number alterations in squamous cell lung carcinoma

Amplification

Deletion

The Cancer Genome Atlas (TCGA) initiative

Courtesy M Meyerson

FGFR1 as a relevant target in squamous cell carcinoma

FGR1 amplification

- 10% of SCC by CGH
- 20% of SCC by FISH (high levels > 8 copies)
- specific cell lines with FGR1 amplification sensitive to PD170374

The Clinical Lung Cancer Genome Project

Weiss J et al. Sci Transl Med 2010

Targeting FGFR family

Courtesy N Auger

Turner N, Nature Reviews Cancer, 2010

Lung SCC at 100 mg BJG398: PR

baseline

day 28

baseline

day 56

• Confirmed PR at D56 – patient presently in 7th cycle of treatment

Wolf et al. AACR 2012

SCC has a very high rate of somatic mutations

The Cancer Genome Atlas (TCGA) initiative

Courtesy M Meyerson

Top mutated genes in SCC

The Cancer Genome Atlas (TCGA) initiative

Oxidative response and differentiation pathway alterations in lung SCC

The Cancer Genome Atlas (TCGA) initiative

Courtesy M Meyerson

Therapeutic targets in squamous cell lung carcinomas, defined by TCGA

40 to 60% of lung SCCs have a possible therapeutic target—more if we include *CDKN2A* alterations—in a disease with no targeted therapies today

Targets will need to be validated In the clinical setting

FGFR1/2, PIK3CA and DDR2 inhibitor trials are ongoing

The Cancer Genome Atlas (TCGA) initiative

Frequencies of potentially actionable/targetable genetic abnormalities present in SCC of the lung

Overview

- Lung cancer from histology to biology
- Molecular classification of adenocarcinomas
- Molecular classification of squamous cell carcinomas
- Towards an integrative approach
 - \rightarrow clonal architecture, new targets and resistance mechanisms
 - \rightarrow DNA repair complexity and related biomarkers
 - \rightarrow biomarkers of activity of immunotherapies

Individual tumor heterogeneity: a limitation to MTA

Clone architecture in NSCLC

How de we move forward for patients with unidentified alterations ???

DNA Repair Pathways Are Critical in Cancer

Normal cells

Cancer cells

Six normal DNA repair pathways

The specific pathway changes determine the best course of chemotherapy and radiation (personalized medicine)

DNA repair pathways

Postel-Vinay S, NRCO 2012

Adenocarcinomas express low levels of PARP1 and BRCA1/2 compared to squamous histology

Expression values (normalized) / histology

class

F Commo

CHEK1 expression according to histotype

PC1

Target	Antibody	Molecule	Company	Development stage
PD-1	BMS-936558/MDX- 1106/ONO-4538	Fully human IgG4 mAb	Bristol-Myers Squibb	Phase II multiple tumors
	CT-011	Humanized IgG1 mAb	CureTech	Phase II multiple tumors
	MK-3475	Humanized IgG4 mAb	Merck	Phase I
	AMP-224	B7-DC/IgG1 fusion protein	Amplimmune	Phase I
PD-L1	MDX-1105/BMS- 936559	fully human IgG4 mAb	Bristol-Myers Squibb	Phase I
PD-L1	MPDL3280A	fully human IgG1 mAb	Genentech	Phase I

Clinical Activity of PD1 Antibody

Demonster	BMS-936558 Dose, mg/kg							
Parameter	1	3	10					
ORR, No. patients* (%)								
Squamous	0 n=5 6/18	= 33% (95%)	3 (43) <mark>CI 13%-59</mark> %)					
Non-squamous	0 n=1: 7/56	=12.5% (95%	4 (13) CI 5%-24%)					
SD ≥24 wk, No. patients (%)								
Squamous	0	0	0					
Non-squamous	1 (8)	2 (15)	2 (6)					
PFSR at 24 wk, (%)								
Squamous	0	50	43					
Non-squamous	14	37	21					

The path of survival of NSCLC patient

Specific mutation/amplification

Courtesy D Planchard

