Emerging therapeutic strategies for TNBC

Molecular Triaging as a Clinical Trial Tool

Lajos Pusztai, M.D, D.Phil.

Professor of Medicine

Chief of Breast Medical Oncology

Co-Director of the Yale Cancer Center Genetics and Genomics Program

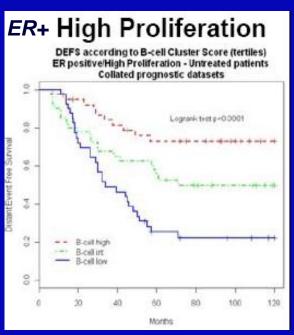
Yale School of Medicine

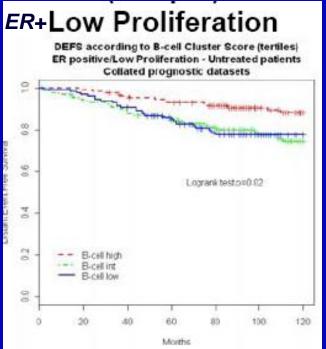
Basic Facts

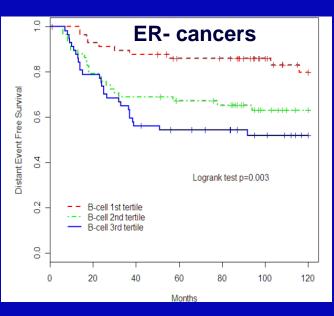
 We do not have many good drugs for metastatic TNBC (chemotherapy).

 We have many good, although untested, therapeutic ideas.

Where do good ideas come from?

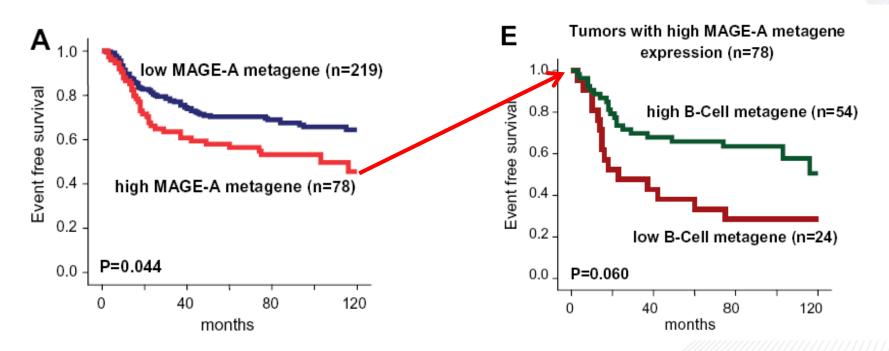

Preclinical model systems (e.g. PARP inhibitors, chemo drugs).


 Find novel targets through analysis of the cancer genome (e.g. trastuzumab, crizotinib, imatanib)



Genomic observations with potential therapeutic value

Immune cell presence is prognostic in ER+ highly proliferative and ER- cancers only



Genomic observations with potential therapeutic value

Identify bimodally expressed genes in TNBC (Wang J et al Cancer Inform 7:199-216, 2009) and test their prognostic value

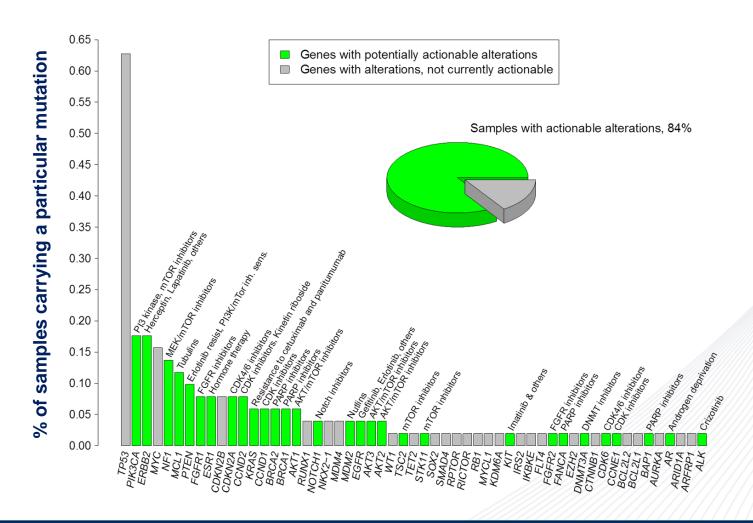
These and similar results suggest that augmenting the immune response might improve survival for ER- (and high risk ER+) cancers in the adjuvant setting

Kinase expression differences across breast cancer subtypes

Table 1. Differentially expressed kinases between ER-positive and ER-negative cancers (adjusted for HER2 status) and between HER2-positive and HER2-negative cancers (adjusted for ER status) in the three clinical validation data sets and a cohort of 51 breast cancer cell lines

Probe set	Gene	Primary tumors (validation data sets) Cell						Cell lin	es		
	symbol	Ratio, Wang and colleague		Ratio, TRA	NSBIG P	Ratio,* Ma	ainz <i>P</i>	Ratio,* 51 cell	P		
Kinases overexpressed in ER-positive											
203628 at	IGF1R	2.54	<1E-07	4.59	<1E-07	4.86	<1E-07	1.96	0.01		
219686_at	STK32B	4.46	<1E-07	5.16	<1E-07		<1E-07	1.46	0.01		
214053_at	ERBB4	4.67	<1E-07	7.24	<1E-07		<1E-07	1.99	0.0006		
204379_s_at			5.00E-06	2.86	1.00E-06		6.00E-05	3.74	0.004		
210523 at	BMPR1B	2.94	<1E-07	4.58	<1E-07		0,001	1.3	0.29		
222348_at	MAST4	2.67	<1E-07	3.4	<1E-07		8.00E-07	0.99	0.95		
221667_s_at			3.00E-07	2.53	<1E-07		2.00E-06	3.18	0.02		
209341_s_at		2.01	<1E-07	2	<1E-07		<1E-07	1.49	0.07		
205399_at	DCLK1	2.12	<1E-07	2.04	<1E-07	2.05	1.00E-05	1.03	0.92		
202454_s_at	ERBB3	2.05	<1E-07	2.28	<1E-07	1.99	<1E-07	5.32	<1E-07		
202786_at	STK39	1.88	<1E-07	1.98	<1E-07	1.87	<1E-07	1.07	0.76		
214786_at	MAP3K1	1.18	0.2	1.9	2.00E-06	1.56	0.0001	2.12	0.004		
206482_at	PTK6	2.45	<1E-07	2.59	<1E-07	2.2	0.0001	3.97	0.0001		
201939_at	PLK2	1.47	5.00E-05	1.63	3.00E-06	1.51	0.0009	1.02	0.93		
221035_s_at	TEX14	1.58	0.002	1.31	0.13	1.44	0.1	0.91	0.75		
205614 x at	MST1	1.95	<1E-07	1.8	1.00E-05	2.03	<1E-07	1.07	0.7		
Kinases overex	pressed in	ER-negative									
201983_s_at	EGFR	2.63	<1E-07	2.64	<1E-07	2.57	1.00E-06	8.6	2.00E-06		
204825_at	MELK	2.27	<1E-07	2.55	<1E-07	2.87	<1E-07	1.56	0.009		
204822 at	TTK	2.47	<1E-07	3.12	<1E-07	2.67	<1E-07	1.8	0.0004		
203213_at	CDC2	1.44	2.00E-05	2.1	<1E-07	1.79	3.00E-05	1.05	0.74		
209642_at	BUB1	1.91	<1E-07	2.68	<1E-07	2.45	<1E-07	1.68	5.00E-07		
208079_s_at	AURKA	1.85	<1E-07	2.3	<1E-07	2.12	3.00E-07	1.58	0.009		
204641_at	NEK2		8.00E-05		<1E-07	1.74	0.0006	1.23	0.1		
204061_at	PRKX	2.05	<1E-07	2.32	<1E-07	2.11	<1E-07	1.26	0.39		
206571_s_at		1.7	<1E-07	1.57	<1E-07		1.00E-06	5.28	<1E-07		
205805_s_at		1.26	0.002	1.43	0.003		0.009	2.7	0.0003		
209464_at	AURKB	1.59	<1E-07	1.88	<1E-07		<1E-07		5.00E-05		
202933_s_at		1.58	<1E-07	2.01	<1E-07		1.00E-07	1.41	0.03		
207011_s_at		1.65	<1E-07	1.33	0.002		0.04	2.2	0.0004		
205394_at	CHEK1	1.73	<1E-07	2.43	<1E-07		<1E-07	1.76	0.0002		
202240_at	PLK1	1.61	<1E-07	2.26	<1E-07		<1E-07	1.57	0.001		
203139_at	DAPK1	1.6	<1E-07	1.77	<1E-07		<1E-07	1.16	0.51		
221215_s_at		1.83	<1E-07	1.53	7.00E-05		0.003	1.71	0.06		
204891_s_at	LCK		1.00E-07	1.71	8.00E-05		4.00E-06	0.98	0.91		
218236_s_at		1.62	<1E-07	1.71	<1E-07		<1E-07		7.00E-05		
204887_s_at	PLK4	1.34	0.0001	1.7	2.00E-06		0.002	1.19	0.13		
202626_s_at	LYN	1.92	<1E-07	1.79	<1E-07		<1E-07	6.07	<1E-07		
202200_s_at		1.59	<1E-07	1.75	<1E-07		<1E-07		3.00E-05		
203755_at	BUB1B	1.49	<1E-07	1.82	<1E-07		<1E-07	1.4	0.003		
201587_s_at	IKAK1	1.46	<1E-07	1.51	<1E-07	1.49	<1E-07	1.94	3.00E-05		

Potential new drug targets ? (TTK, PTK7)

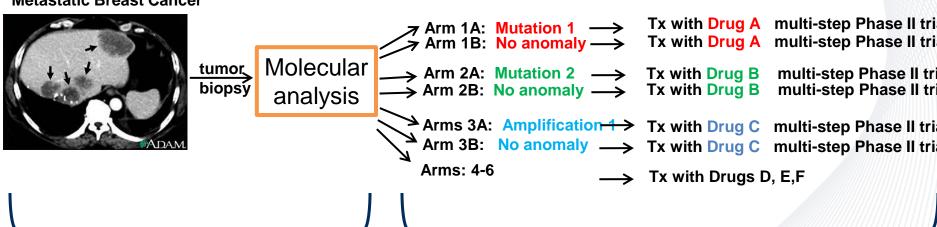

G Bianchini et al. Cancer Res 70:8852, 2010

Drugable mutations in breast cancer

Gene symbol	Genomic and codon positions, base and amino acid substitutions*	Number (%) of cases with mutations at allele level	Number (%) of cases with mutation at gene level	Drugs that inhibit gene function or block the involved signaling pathway
AKT1	$c.49G > A/p.E17K^{I}$	5 (1.9 %)	5 (1.9 %)	MK2206, GSK690693, KRX-041 (Perifosine), GSK2141795
BRAF	c.1391G > T/p.G464V ^I c.1397G > T/p.G466V ^I c.1396G > C/p.G466R ^I c.1798G > A/p.V600M ^I c.1799T > A/p.V600E ^I	1 (0.4 %) 1 (0.4 %) 4 (1.5 %) 1 (0.4 %) 1 (0.4 %)	8 (3 %)	Sorafenib Tosylate (Nexavar, or Bay 43-9006), CI-1040 (PD184352), PLX4720, GDC0879, AZD6244 (Selumetinib), PD98059, SL327, PD0325901, BIRB796 (Doramapimod), SD169, SB202190, SB203580, PD169316, PLX4032, AS703026
CTNNB1	c.101G > T/p.G34V ^{I} c.121A > G/p.T41A ^{I}	1 (0.4 %) 4 (1.5 %)	5 (1.9 %)	AVN316, inhibitors of beta catenin—Wnt signaling
EGFR	c.2573T > G/p.L858R ¹	7 (2.6 %)	7 (2.6 %)	Erlotinib Hydrochloride (Tarceva, CP-358774, OSI-774, NSC 718781), Lapatinib Ditosylate (Tykerb, Tyverb, o GW-572016), Gefitinib (Iressa o ZD-1839), Cetuximab (IMC-C225 o Erbitux), CI-1033 (Canertinib, PD-183805, CI1033, o PD183805), ZD6474 (Vandetanib), BIBW-2992 (Afatinib, INN, Tovok o Tomtovok), XL647, CUDC101, AG-1478 (NSC 693255, Tyrphostin AG-1478), PD153035 hydrochloride, AG-18 (RG-50810, Tyrphostin AG-18, Tyrphostin 23, TX 825, RG-50858), AG-213 (Tyrphostin AG-213), NVP-AEE788
FBXW7	c.1436G > T/p.R479L ² c.1514G > A p.R505H ² or c.1514G > T/p.R505L ² or c.1514G > C/p.R505P ² c.1745C > T/p.S582L ² c.1379A > G/p.H460R ²	1 (0.4 %) 14 (5.1 %) 4 (1.5 %) 2 (0.7 %)	21 (7.9 %)	Tumor cell with FBXW7 mutation are particularly sensitive to inhibitors of the mTOR pathway
HIF1-α	c.2089C > G/p.Q697E ³	1 (0.4 %)	1 (0.4 %)	PX478, RX0047, SF1126, 2 methoxyestradiol (2-ME2)
IDH2	$c.515G > A/p.R172K^{I}$	1 (0.4 %)	1 (0.4 %)	Gliomas with IDH2 mutation may have higher sensitivity to temazolamide
KIT	c.2446G > C/p.D816H ^{I} c.1924A > G/p.K642E I c.1727T > C/p.L576P I	1 (0.4 %) 1 (0.4 %) 2 (0.7 %)	4 (1.5 %)	Imatinib mesylate (Gleevec), Nilotinib (AMN107), Axitinib (AG-013736), XL184, Masitinib mesylate, Dasatinib (BMS-354825, Sprycel, o BMS354825), AZD0530 (Saracatinib)
KRAS	c.35G > A/p.G12D ^I c.181C > A/p.Q61K ^I c.182A > T/p.Q61L ^I c.183A > C/p.Q61H ^I	1 (0.4 %) 1 (0.4 %) 1 (0.4 %) 1 (0.4 %)	4 (1.5 %)	AZD6244 (Selumetinib), U0126-EtOH, PD98059, AS703026, MEK pathway inhibitors
PDGFR-α		1 (0.4 %) 2 (0.7 %)	3 (1.1 %)	IMC-3G3a, MEDI 575a, Pazopanib Hydrochloride (GW786034, VOTRIENT), Sunitinib Malate (Sutent), PKC412 (Midostaurin o CGP 41251), Gleevec (Imatinib mesylate, STI-571), Axitinib (AG-013736), ZD6474 (Vandetanib), Sorafenib Tosylate (Nexavar, or Bay 43-9006), Dasatinib (BMS-354825, Sprycel, o BMS354825), Nilotinib (AMN107), MP470, Masitinib mesylate (AB1010), Tandutinib, Vargatef (BIBF1120), AG18, AG-213 (Tyrphostin AG 213), TSU-68 (SU6668), AP24534 (Ponatinib), Imatinib mesylate (Gleevec)

Currently drugable abnormalities are individually rare but collectively effect more than 50% of breast cancers

The new challenge


Way too many good ideas to explore

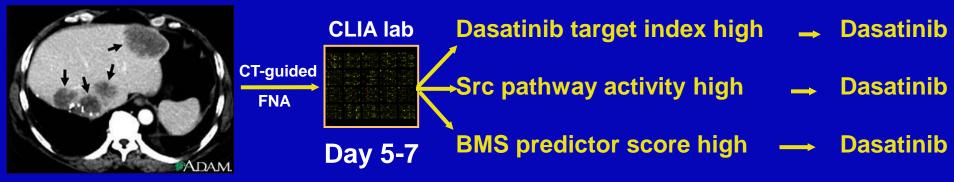
Molecular triaging

Molecular triaging is one approach to rapidly try to identify promising drugs for a particular molecularly defined patient subset

Molecular Analysis of Breast Cancer Prior to Investigational Therapy (MAP-IT)

A series of independent Phase I and Phase II trials (with early stopping rules for futility)

www.mycancergenome.org

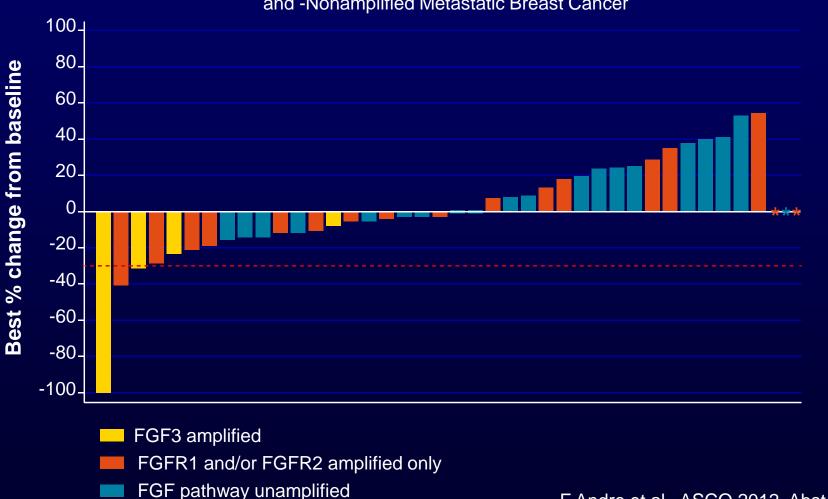


Does This approach work?

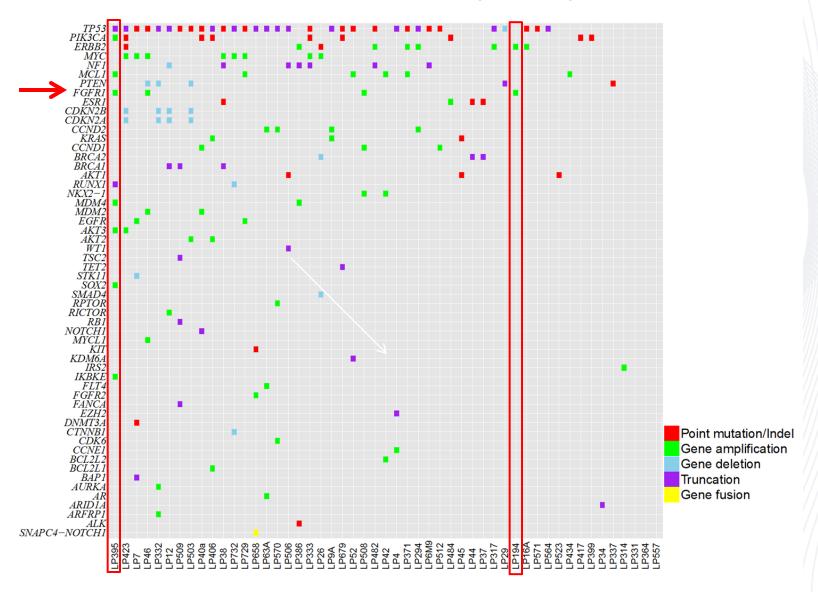
MDACC 2007-0754, Parallel, multi-arm, 2-step Phase II response marker evaluation study for dasatinib

The objective is to assess the PPV of candidate markers and determine if selection of patients by one of 3 a priory defined gene signatures will increase clinical benefit rate (OR + SD > 6 months) to dasatinib.

Day 1

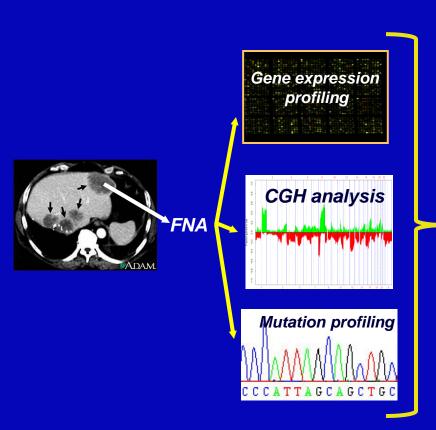

Each arm accrued 10 patients:

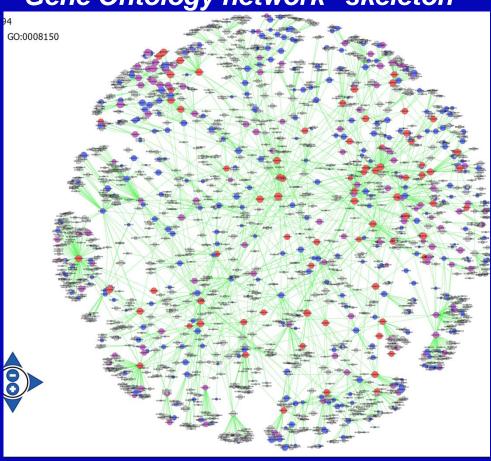
No sufficient clinical benefit in any of the 3 arms to move to next phase


The trial worked, these 3-gene signatures do not warrant further study

Does this approach work?

A Multicenter, Open-Label Phase 2 Trial of Dovitinib, an FGFR1 Inhibitor, in *FGFR1*-Amplified and -Nonamplified Metastatic Breast Cancer




What is next?
Rational individual combination of targeted drugs....

Integrated analysis of mutation, gene expression and copy number changes in individual cases (www.NETGOPLOT.org)

Conclusions

- Molecular markers are increasingly used in clinical trials as patient selection criteria or as an enrichment strategy.
- Due to low marker prevalence (i.e. marker positive status), the most expeditious way to accommodate this important research strategy is to perform multiple tests at once and use the results to triage patients to targeted therapies
 - In-house portfolio
 - www.mycancergenome.org
- One of the most important future challenges is to design tools and obtain proof of concept results on how to combine targeted agents to match the multiple abnormalities that individual cancers have.

Acknowledgments

Yale Cancer Center:

Weiwei Shi, Rene Natowicz

MDACC:

W. Fraser Symmans, Yun Gong, Yun WuVicente Valero,, Francisco Esteva, Satcy Moulder, Daniel Booser, Richard Theriault, Ana Gonzalez-Angulo, Gabriel N. Hortobagyi Bailiang Wang, Christine Shiang, Bhaskar Dutta, Gabor Balazsi

Okayama University

Takayuki lwamoto, Junji Matsuoka

Univerity of Prato

Libero Santarpia, Angelo DiLeo

University Pierre et Marie Curie, Paris

6 and Tenon Hospital, Paris

Roman Rouzier, Charles Coutant

Institut Jules Bordet, Brussels, Belgium

Christos Sotiriou, Christine Desmedt,

Sherene Loi

Institut Gustave Roussy, Paris, France

Fabrice Andre, Vladimir Lazar, Suzette Delaloge,

Chafika Mazouni

Instituto Nacional de Enfermedades Neoplasticas Lima,

Peru

Henry L Gomez, Tatiana Vidaurre

Nuvera Biosciences Inc. Woburn, MA

Christos Hatzis

Bristol Myers Squibb Co, Princton, NJ

Edwin Clark, Mark Ayers

University of Munster.

Cornelia Liedtke, Ludwig Kiesel

Hospital san Rafaele, Milan

Giampaolo Bianchini, Luca Gianni

ICRF, London

Charles Swanton

Harvard Children's Hospital, Bioinformatics, Boston

Zoltan Szallasi

Goethe University, Frankfurt

Thomas Karn, Achim Rody, Manfred Kauffmann

We are grateful for all of our patients who volunteered for these studies

Funded by: RO1 CA106290-01, Department of Defense, Breast Cancer Research Foundation, Susan Komen Foundation, Dee Simmons Fund, Goodwin/Commonwealth Foundation, Nelly B Connally Breast Cancer Research Fund,