

Dose painting for Medical Oncologists

Jordi Giralt
Department of Radiation Oncolgy
Vall d'Hebron University Hospital
Barcelona

Disclosures

Dr. Jordi Giralt has no disclosures

Radiotherapy Techniques

3D-RT

Homogeneous dose in the whole treatment volume

IMRT

Sculpting the dose to the target shape, allows normal tissue protection

Dose painting (IMRT Dose intensification)

The prescription of a nonuniform radiation dose distribution to the target volume based on functional / molecular images

3D-RT

Patterns of relapse

Author	Regimen	Year	TD (Gy)	LocoReg	Distant
Rischin Bourhis Bonner Vermorken Posner	RT-cisplatin RT-carbo/5FU RT- cetuximab $TPF \rightarrow RT$ $TPF \rightarrow RT-carbo$	2010 2012 2006 2007 2007	70 70 70-77 70 70-74	26% 42% 50% 57% 30%	8% 25% 17% 13% 5%

IMRT

Administration of the radiation dose fields using

NON uniform (≡ Modulation) fluence (≡ intensity)

3DCRT IMRT

Dose distribution

IMRT reduces toxicity

- Xerostomia in nasopharyngeal carcinoma
 - Recovery stimulated saliva flow 6% (3DRT) vs. 50% (IMRT)
 - Better quality of life (QLQ-H&N35 questionnaire)

Pow et al Int J Radiat Onc Biol Phys 2006

- Xerostomia in pharyngeal squamous-cell carcinoma
 - Salivary flow rates reduction of 90% (3DRT) vs. 40% (IMRT)
 - Grade ≥ 2 xerostomia 74% (3DRT) vs. 38% (IMRT)

Nutting et al Lancet Onc 2011

- Dysphagia in pharyngeal squamous-cell carcinona
 - Pharyngeal constrictor muscles, glottis, esophagus
 - Worsening liquid swallowing was correlated with dose

Feng et al. Int J Radiat Onc Biol Phys .2007

IMRT Dose intensification Dose painting

- Definitions / examples
- Biological tumor volume
- Adaptive RT
- Clinical results

General principles

- Local recurrences arise from cells that are resistant at the standard radiation dose
- Functional imaging will allow spatiotemporal mapping of these regions of relative radioresistance
- Advances in radiation therapy facilitate the delivery of a graded dose within the GTV

General principles

- Define subvolumes with higher risk of relapse
 "biological target volume" (BTV) PET
- Define an inhomogeneous distribution of dose gradients
 Complex IMRT
- Consider impact of volume variation during treatment and its effect on dose → Adaptive RT

Plan Aims

- Maximize probability of local tumour control
- Minimize probability of toxicity due to normal tissue damage
- Physical constraints on dose delivery

Dose painting methods

Dose painting by volume

Dose painting by numbers

- Define discrete biologically different tumour regions
- Radioresistant region within a tumour
- Prescribe different doses to these volumes
- Threshold to determine extent of "Biological Target Volume"
 - SUV (PET)
 - Choline/Citrate Ratio (MRSI)

Dose painting by numbers

- Directly link image signal to prescription dose on a voxel-by-voxel basis
- Each voxel receives a different dose based on the intensity of a given image parameter
- The dose is prescribed at the voxel level
- The dose plan optimizer arrives at the best physically deliverable dose distribution

Procedure

Procedure

Procedure

Dose painting by numbers Homogeneously delivered Dose painting by volume

68 Gy

70 Gy

73 Gy

76 Gy

IMRT Dose intensification Dose painting

- Definitions / examples
- Biological tumor volume
- Adaptive RT
- Clinical results

Biological Target Volume

Biologic targets

- Tumor burden
 - FDG uptake is a good surrogate for tumor cell burden
 - In a imaging study FDG-PET leads to better estimate of true tumor volume
- Proliferation
 - [18F] fluorothymidine-PET correlates with Ki-67 index
 - Signal changes in FLT PET may precede tumor response
- Hypoxia
 - FMISO-PET imaging is associated with a high risk of LRF
 - Interval for the administration and spatiotemporal stability

Pretreatment PET and failure

- Correlation between pretreatment PET-BTV with anatomical sites of loco-regional failure
- Retrospective study of 61 patients treated definitively with either
 3-D CRT or IMRT who had a pre-therapy PET/CT
- A recurrence volume (Vr) was identified and was mapped to the pretreatment planning CT and pretreatment PET scan
- LRF 9/61; 100% (9/9) of failures were inside the GTV
- Only 1/9 (11%) had Vr outside pretreatment PET-BTV, while 8/9 patients had Vr within the PET-BTV

Pretreatment PET and failure

Pretreatment PET and failure

Adaptive RT

- Involves changes to the radiotherapy plan during treatment on the basis of patients specific changes
 - ✓ Patients weight
 - ✓ Tumor volume
 - ✓ Position
- Tumor assessed by repeated CT shrink by 1-2% daily
- Progressive increase in dose

Study design

TARGETS: GTV, CTV, PTV1 & PTV2

OAR: Parotids, Spinal cord, Oral cavity & Mandible

On CT-1, CT-2 and CT-3

CLINICAL WEEKLY ASSESSMENT:

- Weight control
- Acute toxicity control

Weight loss

	CT-1	CT-2	СТ-3	Variation (CT-1/CT2)	Variation (CT1/CT3)	Range
Mean weight (kg)	69.1	66.4	63.3	- 3.91 %	- 7.89 %	1.46% / 20.54%

CT-1 CT-2 CT-3

Mean dose variation

	CT- 1	CT-2	СТ-3	Variation CT-1/CT-3	Range
Mean V100% GTV	72.1	79.3	83.5	11.44 %	- 10.6 % / + 41.46 %
Mean V95% GTV	99.1	99.0	99.2	0.08 %	- 5.4 % / +3.8 %
Mean V100% PTV50	50.1	55.8	57.7	7.57 %	-3.4 % / +29.6 %
Mean V95% PTV50	82.3	82.4	84.6	2.3 %	-8.5 % / +3.8 %
Mean D parotid	39.32	43.58	45.01	16.11 %	(- 1.8 % / + 63 %)
Mean V26 parotid (%)	78.75%	80.06	85	9.18 %	(-7.8% / +35.6%)
D max spinal cord	42.6	44.13	44.21	3.9 %	(-4.8 % / +14.57%)
Mean D oral cavity (Gy)	46.46	47.26	47.26	1.47 %	(-8.6% / +9.07%)

Beltran et al J of Applied Clin Med Phy in press

Adaptive biological image-guided IMRT

- To assess the impact of anatomical/functional imaging modalities acquired prior to and during RT on the target delineation
- 10 patients treated with RT_QT (70 Gy + carbo/FU) in 7 weeks
- CT, T2-MRI, fat suppressed T2-MRI, and static and dynamic FDG-PET were acquired, basal and after doses of 14, 25, 35 and 45 Gy
- GTVs significantly decreased for all imaging modalities (p<0.001)
- PET-based GTVs significantly smaller compared to anatomical imaging modalities
- Adaptative PET IMRT has a significant impact on the delineation of target volumes

Dose escalation

- Simultaneous treatment of PTV's with several levels of dose fractionation
- Median dose of 80.9 85.9Gy to the highdose clinical target volume (GTV_{high dose})
- 21 patients (7pt. 81 Gy / 14 pt. 86 Gy)
- No Grade 4 acute toxicity

Toxicity	Dose level I	Dose level II
Dysphagia Mucositis Pain due to radiothera Dermatitis Weight loss	5 (71%) 3 (43%) py — 1 (14%) 1 (14%)	5 (36%) 5 (36%) — 3 (21%)

Duprez F. IJROBP 80:1045-55; 2011

Dose escalation

- 18F-FMISO was administered intravenously for PET imaging.
- 10 HNC patients achieved 84 Gy to the GTVh and 70 Gy to the GTV, without exceeding the normal tissue tolerance.

Adaptive and innovative Radiation Treatment FOR improving Cancer treatment outcomE (ARTFORCE)

CT scan in RT position is performed week 2 with replanning in week 3 in adaptive radiotherapy fashion

Summary

- Technological development enables more precise RT
- Dose painting is a new strategy for optimal dose intensification
- Biological target volume means high-risk for relapse
- Controlled trials have shown dose painting it is feasible
- Clinical trials are required to validate this strategy