ESMO 2012
Highlight on Lung Cancer

Professor Tony Mok
Dept of Clinical Oncology
The Chinese University of Hong Kong
New Options
New Biomarkers
New Targets
New Options
New Biomarkers
New Targets
PROFILE 1007: Crizotinib vs Chemotherapy (2nd/3rd line therapy)

Key entry criteria
- ALK+ by central FISH testing
- Stage IIIB/IV NSCLC
- 1 prior chemotherapy (platinum-based)
- ECOG PS 0–2
- Measurable disease
- Treated brain metastases allowed

Randomize

N=318

Endpoints
- Primary
 - PFS (RECIST 1.1, independent radiology review)
- Secondary
 - ORR, DCR, DR
 - OS
 - Safety
 - Patient reported outcomes (EORTC QLQ-C30, LC13)

CROSSOVER TO CRIZOTINIB ON PROFILE 1005

- Crizotinib 250 mg BID PO, 21-day cycle (n=159)
- Pemetrexed 500 mg/m2 or Docetaxel 75 mg/m2 IV, day 1, 21-day cycle (n=159)

*aStratification factors: ECOG PS (0/1 vs 2), brain metastases (present/absent), and prior EGFR TKI (yes/no)
ORRa by Independent Radiologic Review

ORR ratio: 3.4 (95\% CI: 2.5 to 4.7); \(P<0.001\)

Crizotinib (n=173)
PEM/DOC (n=174)

\begin{itemize}
\item Crizotinib (n=172)
\item PEM (n=99)
\item DOC (n=72)
\end{itemize}
Primary Endpoint: PFS by Independent Radiologic Review (ITT Population)

![Graph showing survival rates and event counts for Crizotinib and PEM/DOC treatments.]

More than an option! It is a new standard!

<table>
<thead>
<tr>
<th></th>
<th>Crizotinib (n=173)</th>
<th>PEM/DOC (n=174)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events, n (%)</td>
<td>100 (58)</td>
<td>127 (73)</td>
</tr>
<tr>
<td>Median, mo</td>
<td>7.7</td>
<td>3.0</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.49 (0.37 to 0.64)</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

No. at risk
- Crizotinib: 173, 93, 38, 11, 2, 2, 0
- PEM/DOC: 174, 49, 15, 4, 1, 0

PEM/DOC, pemetrexed/docetaxel
Intercalated combination
NVALT-10: Design

Patients
- Locally advanced or metastatic NSCLC (IIIB-IV)
- Failed first line platinum therapy
- WHO PS 0-2

Combination therapy

Squamous
- Erlotinib 150mg p.o. day 2-16
- + Docetaxel 75 mg/m² day 1 q3 weeks

Non-Squamous
- Erlotinib 150mg p.o. day 2-16
- + Pemetrexed 500 mg/m² day 1 q3 weeks

Mono therapy

Squamous and Non Squamous
- Erlotinib 150mg p.o. daily

Primary endpoint: PFS

Chemotherapy planned 4 cycles
Erlotinib until disease progression

Aerts et al ESMO 2012
PFS and OS

Adjusted for stratification factors: $p = 0.09$, HR = 0.78 (0.59 - 1.04)

Adjusted for stratification factors: $p = 0.02$, HR = 0.67 (0.50 - 0.93)
FASTACT-2 (MO22201; CTONG0902) study design

<table>
<thead>
<tr>
<th>Screening</th>
<th>Study treatment</th>
<th>Maintenance phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previously untreated stage IIIB/IV NSCLC, PS 0/1 (n=451)</td>
<td>Gemcitabine 1,250mg/m² (d1, 8) + carboplatin AUC=5 or cisplatin 75mg/m² (d1) + erlotinib 150mg/day (d15–28); q4wks x 6 cycles GC-erlotinib (n=226)</td>
<td>Erlotinib 150mg/day → PD</td>
</tr>
<tr>
<td></td>
<td>1:1; stratified by stage, histology, smoking status and chemo regimen</td>
<td>Erlotinib 150mg/day</td>
</tr>
<tr>
<td></td>
<td>Gemcitabine 1,250mg/m² (d1, 8) + carboplatin AUC=5 or cisplatin 75mg/m² (d1) + placebo (d15–28); q4wks x 6 cycles GC-placebo (n=225)</td>
<td>Placebo → PD</td>
</tr>
</tbody>
</table>

Primary endpoint: PFS with IRC confirmation

Secondary endpoints: subgroup analyses, OS in all patients and subgroups, ORR, duration of response, TTP, NPR at 16 weeks, safety, QoL

NSCLC = non-small cell lung cancer; PS = performance status; PD = disease progression; AUC = area under the curve; q4wks = every 4 weeks; IRC = independent review committee; OS = overall survival; ORR = objective response rate; TTP = time to progression; NPR = non-progression rate; QoL = quality of life
OS in ITT population (22 Jun 2012)

HR = 0.79 (95% CI 0.64–0.99)
\(p = 0.0420 \)

Erlotinib (n=226)
Placebo (n=225)

E 226 219 202 191 176 165 154 138 129 114 98 85 68 52 39 23 9 6 1 0
P 225 218 206 185 168 156 138 120 103 92 78 68 53 37 24 13 6 4 0 0

Time (months)
PFS and OS in **EGFR Mut+** subgroup (22 Jun 2012)

PFS

- Erlotinib (n=49) vs Placebo (n=48)
 - HR=0.48 (0.27–0.84)
 - p=0.0092

OS

- Erlotinib (n=49) vs Placebo (n=48)
 - HR=0.25 (0.16–0.39)
 - p<0.0001
PFS and OS in \textit{EGFR WT} subgroup (22 Jun 2012)

PFS

- Erlotinib (n=69)
- Placebo (n=67)
- HR=0.97 (0.69–1.36)
- p=0.8467

OS

- Erlotinib (n=69)
- Placebo (n=67)
- HR=0.77 (0.53–1.11)
- p=0.1612
Intercalated combination of chemotherapy and EGFR TKI benefit mostly patients with EGFR mutation but remains as an option for patients with UNKNOWN mutation status.
CATS TRIAL (Cisplatin And TS-1 TRIAL)
Treatment Schema

- Advanced NSCLC
- PS 0 or 1
- 20-74 years
- No prior chemotherapy

Control arm (DP) n=305
- Docetaxel: 60mg/m² d1
- Cisplatin: 80mg/m² d1
- repeated every 3-4 weeks

Experimental arm (SP) n=303
- S-1: 40-60mg*/body b.i.d d1-21
- Cisplatin: 60mg/m² d8
- repeated every 4-5 weeks

*According to body surface area
- BSA < 1.25 m² 80 mg/day
- 1.25=<BSA <1.5 100 mg/day
- BSA >=1.5 120 mg/day

Randomized
- Stratified by
 Gender (Male/Female)
 Stage (IIIB/IV/postoperative)
 histology (Adeno/Non-adeno)

- Follow-up : Jan/2009 - Jun/2011
- Enrolled : N=608

Sakai et al ESMO 2012 Abst 1234PD
Overall survival

<table>
<thead>
<tr>
<th></th>
<th>SP (n=301)</th>
<th>DP (n=295)</th>
<th>SP (n=251)</th>
<th>DP (n=247)</th>
<th>SP (n=50)</th>
<th>DP (n=48)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>301</td>
<td>295</td>
<td>251</td>
<td>247</td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td>Events</td>
<td>244</td>
<td>236</td>
<td>247</td>
<td>236</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>HR (96.4% CI)</td>
<td>1.013 (0.837-1.227)</td>
<td>1.239 (0.819-1.874)</td>
<td>1.013 (0.837-1.227)</td>
<td>1.239 (0.819-1.874)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median OS</td>
<td>17.1 months (13.7-20.3)</td>
<td>16.1 months (14.0-18.5)</td>
<td>17.1 months (13.7-20.3)</td>
<td>16.1 months (14.0-18.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95% CI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall survival probability (%)

- **Docetaxel + CDDP**
- **S-1 + CDDP**

Time From Random Assignment (months)

Median Overall Survival by Histology

- **Non-squamous**
 - SP (n=251): Median OS (M) (95% CI) = 17.4 (14.6-20.7) HR (95% CI) = 0.973 (0.797-1.187)
 - DP (n=247): Median OS (M) (95% CI) = 19.1 (14.6-21.4) HR (95% CI) = 1.239 (0.819-1.874)

- **Squamous**
 - SP (n=50): Median OS (M) (95% CI) = 12.3 (8.1-15.8) HR (95% CI) = 1.239 (0.819-1.874)
 - DP (n=48): Median OS (M) (95% CI) = 11.7 (8.9-17.7) HR (95% CI) = 1.239 (0.819-1.874)
Patients responded to EORTC QLQ-C30 3 times:
1. before each treatment
2. 1 week after the first dose of cisplatin
3. at the end of the second course.

A higher score of LC-13 represents a worse condition in lung cancer-associated symptoms, treatment-related side effects and pain.

S1 + Cisplatin should be considered one of the first line options.
New Standard
New Biomarkers
New Targets
Molecular findings in 95 patients from the EURTAC trial (All pts with EGFR mutations)

<table>
<thead>
<tr>
<th></th>
<th>Total (N=95) N (%)</th>
<th>Erlotinib (N=50) N (%)</th>
<th>Chemotherapy (N=45) N (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EML4-ALK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detected</td>
<td>15 (15.79)</td>
<td>11 (22.00)</td>
<td>4 (8.89)</td>
<td>0.0968</td>
</tr>
<tr>
<td>Not detected</td>
<td>79 (83.16)</td>
<td>39 (78.00)</td>
<td>40 (88.89)</td>
<td></td>
</tr>
<tr>
<td>No data</td>
<td>1 (1.05)</td>
<td>0 (0.00)</td>
<td>1 (2.22)</td>
<td></td>
</tr>
<tr>
<td>T790M mutation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not detected</td>
<td>59 (62.11)</td>
<td>32 (64.00)</td>
<td>27 (60.00)</td>
<td>0.6882</td>
</tr>
<tr>
<td>Detected</td>
<td>36 (37.89)</td>
<td>18 (36.00)</td>
<td>18 (40.00)</td>
<td></td>
</tr>
<tr>
<td>TP53 mutation status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutated</td>
<td>23 (24.21)</td>
<td>10 (20.00)</td>
<td>13 (28.89)</td>
<td>0.5953</td>
</tr>
<tr>
<td>Wild-type</td>
<td>58 (61.05)</td>
<td>33 (66.00)</td>
<td>26 (57.78)</td>
<td></td>
</tr>
<tr>
<td>No data</td>
<td>13 (13.68)</td>
<td>7 (14.00)</td>
<td>6 (13.33)</td>
<td></td>
</tr>
<tr>
<td>BIM expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low/intermediate</td>
<td>53 (55.79)</td>
<td>26 (52.00)</td>
<td>27 (60.00)</td>
<td>0.5418</td>
</tr>
<tr>
<td>High</td>
<td>30 (31.58)</td>
<td>16 (32.00)</td>
<td>14 (31.11)</td>
<td></td>
</tr>
<tr>
<td>No data</td>
<td>12 (12.63)</td>
<td>8 (16.00)</td>
<td>4 (8.89)</td>
<td></td>
</tr>
</tbody>
</table>

Rosell et al ESMO 2012
Multivariate analyses

- Multivariate analyses included sex, smoking status, PS, treatment group, brain mets, bone mets, type of EGFR mutation, T790M, BIM, TP53 and EML4-ALK

- **Markers of longer PFS**
 - erlotinib (HR, 0.36; P=0.0005)
 - high BIM expression (HR, 0.55; P=0.033)

- **Markers of longer OS**
 - high BIM expression (HR, 0.47; P=0.025)
EGFR del 19 / L858R w/ or w/out

- **T790M**
- **BIM mRNA**
- **TP53**
- **EML4/ALK**

Compensatory survival pathways that can inhibit BIM

- **ROR1 (Pan-HER i)**
- **ZNF217 (β-TGF i)**
- **GATA2/STAT5/BCL2**
- **NOTCH3 (Gsi), HES1, Numb**
- **ADAM17 (MEK i)**
- **Tankyrases 1&2 (TNKS)**

Seshagiri et al. Nature 2012

- **erlotinib**

HR = 2.46 (p=0.04)

Baumgart et al. Cancer Res 2010

Seshagiri et al. Nature 2012

Vienna ESMO Congress 2012

[wesmo2012.org]
LACE-Bio Pooled Analysis of the Prognostic and Predictive Value of $TP53$ mutations in Completely Resected Non Small Cell Lung Cancer (NSCLC)

- Mutations in the Tumour Suppressor Gene $TP53$ (encoding p53) occur in about 50% of Stage II-III NSCLC.

- This study has assessed the prognostic and predictive value of $TP53$ mutations for survival after cis-platin-based adjuvant therapy in a pooled analysis of 4 randomized trials (IALT, ANITA, CALGB, JBR10; n=1209 patients)

- Hazard ratio (HR; 95% CI) were estimated with a Cox model stratified on trial and adjusted for gender, age and clinico-pathological variables (histology, T and N status). A test was considered significant if p-value was inferior to 0.01.
LACE-Bio Pooled Analysis of the Prognostic and Predictive Value of *TP53* mutations in Completely Resected Non Small Cell Lung Cancer (NSCLC)

<table>
<thead>
<tr>
<th>TP53 mutation</th>
<th>Chemotherapy group (Nb deaths / Nb patients)</th>
<th>Control group (Nb deaths / Nb patients)</th>
<th>HR for event CT vs. no CT [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-Type n=772</td>
<td>153/377</td>
<td>190/395</td>
<td>0.77 [0.62;0.96] p=0.02</td>
</tr>
<tr>
<td>Mutant n=432</td>
<td>127/233</td>
<td>100/199</td>
<td>1.05 [0.81;1.37] p=0.71</td>
</tr>
<tr>
<td>HR for event Mutant vs. WT [95% CI]</td>
<td>1.39 [1.09;1.77] p=0.008</td>
<td>1.02 [0.79;1.30] p=0.90</td>
<td>Test for interaction p53*treatment p=0.07</td>
</tr>
</tbody>
</table>
The European Thoracic Oncology Platform Lungscape project: A way to bridge NSCLC molecular characteristics and clinical data

New Standard
New Biomarkers
New Targets
Selumetinib for KRAS mutation

<table>
<thead>
<tr>
<th></th>
<th>Selumetinib + docetaxel</th>
<th>Placebo + docetaxel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best objective response (RECIST 1.0), number (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PR</td>
<td>16 (37.2)*</td>
<td>0</td>
</tr>
<tr>
<td>SD ≥6 weeks</td>
<td>19 (44.2)</td>
<td>20 (50.0)</td>
</tr>
<tr>
<td>PD</td>
<td>8 (18.6)</td>
<td>18 (45.0)</td>
</tr>
<tr>
<td>Not evaluable</td>
<td>0</td>
<td>2 (5.0)</td>
</tr>
<tr>
<td>Median DoR, days</td>
<td>182</td>
<td>-</td>
</tr>
</tbody>
</table>

1-sided p value
*11 confirmed, 5 unconfirmed
§One patient was classed as non-evaluable due to non-evaluable non-target lesions and would have had a partial response according to RECIST 1.1 criteria

Janne et al ESMO 2012
Progression Free Survival

• There was a statistically and clinically significant improvement in PFS
 – 71/83 events (85.5%): selumetinib + docetaxel 35/43, placebo + docetaxel 36/40

<table>
<thead>
<tr>
<th></th>
<th>Median PFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selumetinib + docetaxel, N=43</td>
<td>5.3 mo</td>
</tr>
<tr>
<td>Placebo + docetaxel, N=40</td>
<td>2.1 mo</td>
</tr>
<tr>
<td>HR 0.58; 80% CI 0.42, 0.79; 1-sided p=0.0138*</td>
<td></td>
</tr>
</tbody>
</table>

Symbols represent censored observations
Target expression:
NeuGc GM3 is a tumor specific antigen, expressed in melanoma, breast cancer, lung cancer and several neuroectodermal pediatric tumors.

Mechanism of Action: Racotumomab induces a specific Ab3 (IgM and IgG) and cellular response against NeuGcGM3.
Phase II/III, multicentric, randomized, double blind and placebo-controlled.

Two stages in the trial:
Stage 1 - 15 immunizations during a period of one year.
Stage 2 - Follow up for all patients. Blind was opened and monthly re-immunizations continued only for patients receiving racotumomab. Vaccination continued beyond progression (no second line therapy) until worsening PS or unacceptable toxicity.

Vaccination Schedule:

<table>
<thead>
<tr>
<th>Induction Period</th>
<th>Maintenance Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 doses every 14 days</td>
<td>10 doses every 28 days (1 year of treatment)</td>
</tr>
</tbody>
</table>

176 patients with:
NSCLC Stages IIIB/IV
After completion of standard first line chemotherapy (CT) and
Response: PR, CR, SD.
Overall Survival (OS) Analyses

OS (ITT)

<table>
<thead>
<tr>
<th>Arm</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Racotumomab</td>
<td>15.7</td>
<td>8.3</td>
</tr>
<tr>
<td>Events: 73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>10.6</td>
<td>6.3</td>
</tr>
<tr>
<td>Events: 77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OS (PPP)

<table>
<thead>
<tr>
<th>Arm</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Racotumomab</td>
<td>18.9</td>
<td>10.9</td>
</tr>
<tr>
<td>Events: 54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>11.4</td>
<td>6.9</td>
</tr>
<tr>
<td>Events: 58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OS Rate

<table>
<thead>
<tr>
<th>OS Rate</th>
<th>6 m</th>
<th>12 m</th>
<th>18 m</th>
<th>24 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Racotumomab</td>
<td>68</td>
<td>38</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Placebo</td>
<td>55</td>
<td>24</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>

PPP: Includes only patients who received ≥ 5 doses of Racotumomab (77% of patient population)

Log rank test, p= 0.02
Stimuvax: Randomized Phase II Overall Survival

Survival distribution function

Survival time (months)

n=88

n=83

Stimuvax

Censored Stimuvax

Control

Censored control

<table>
<thead>
<tr>
<th></th>
<th>BSC</th>
<th>Stimuvax + BSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median follow-up, months</td>
<td>56</td>
<td>51</td>
</tr>
<tr>
<td>Median survival, months [95% CI]</td>
<td>13.0 [11.2–16.2]</td>
<td>17.2 [12.9–24.2]</td>
</tr>
<tr>
<td>Hazard ratio [95% CI]; p-value</td>
<td>0.75 [0.53–1.04]; p=0.09</td>
<td></td>
</tr>
<tr>
<td>1-year survival rate, %</td>
<td>55</td>
<td>63</td>
</tr>
<tr>
<td>2-year survival rate, %</td>
<td>27</td>
<td>41</td>
</tr>
<tr>
<td>3-year survival rate, %</td>
<td>17</td>
<td>31</td>
</tr>
</tbody>
</table>

Targeting c-MET with Mab against Hepatocyto growth factor

Key entry criteria:
- Stage IIIb/IV NSCLC
- Treatment-naïve
- Adenocarcinoma histology
- Asian, non-smoker or light former smoker

Treatment
- Gefitinib: 250 mg daily
- Ficlatuzumab: 20 mg/kg every 2 wks in 28-day cycles

Study endpoints
- Primary: ORR
- Secondary: PFS, OS

Stratification:
- ECOG PS
- Smoking history
- Gender

Crossover permitted: ficlatuzumab plus gefitinib (progressive disease after initial response, partial response or stable disease >3 months)

Early discontinuations, non-responders, or pts who do not want to participate in crossover

<table>
<thead>
<tr>
<th>Event/Censored</th>
<th>Median PFS (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG</td>
<td>70/24</td>
</tr>
<tr>
<td>G</td>
<td>79/15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event/Censored</th>
<th>Median OS (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG</td>
<td>30/64</td>
</tr>
<tr>
<td>G</td>
<td>35/59</td>
</tr>
</tbody>
</table>

FG=ficlatuzumab plus gefitinib; G=gefitinib; ITT=intent-to-treat; NA=not applicable; OS=overall survival; PFS=progression-free survival.
Biomarker selected subgroup

c-Met low

PFS
- HR (95% CI) = 0.63 (0.33, 1.21)
- P = 0.1574

<table>
<thead>
<tr>
<th>Group</th>
<th>Event/Censored</th>
<th>Median PFS (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG</td>
<td>17/5</td>
<td>7.3 (2.7, 11.1)</td>
</tr>
<tr>
<td>G</td>
<td>21/2</td>
<td>2.8 (1.9, 4.7)</td>
</tr>
</tbody>
</table>

OS
- HR (95% CI) = 0.79 (0.33, 1.92)
- P = 0.6082

<table>
<thead>
<tr>
<th>Group</th>
<th>Event/Censored</th>
<th>Median OS (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG</td>
<td>9/13</td>
<td>17.8 (13.3, NA)</td>
</tr>
<tr>
<td>G</td>
<td>11/12</td>
<td>16 (10.1, NA)</td>
</tr>
</tbody>
</table>

ORR, % (95% CI)
- FG: 41 (21, 64)
- G: 22 (8, 44)

Mok et al ESMO 2012 Abst 1198
What is news EGFR TKI

<table>
<thead>
<tr>
<th>Abst #</th>
<th>Study design</th>
<th>Result</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1226</td>
<td>Dacomitinib in EGFR mutants</td>
<td>PFS 18.2 months</td>
<td>Highest PFS so far (sample size 46)</td>
</tr>
<tr>
<td>Kris</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1227</td>
<td>Afatinib/Cetuximab in TKI resistance</td>
<td>RR 40%</td>
<td></td>
</tr>
<tr>
<td>Janjigian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T790M +ive 38%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T790M –ive 47%</td>
<td></td>
</tr>
<tr>
<td>1252</td>
<td>Afatinib in uncommon mutations</td>
<td>L858R + T790M (1PR, 11.0 mo; 3SD, 9.6+ mo, 8.5 mo and 6.7 mo); Others: lower response rate</td>
<td>It works but not as good as sensitive mutations</td>
</tr>
<tr>
<td>Yang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1225</td>
<td>Second line erlotinib + pemetrexed vs erlotinib vs pemetrexed</td>
<td>E + P vs E vs P Med PFS 7.4 vs 3.8 vs 4.4 months</td>
<td>Not sure if incidence of mutations are the same in all 3 arms</td>
</tr>
<tr>
<td>Lee</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New disappointment

<table>
<thead>
<tr>
<th>Abst #</th>
<th>Study design</th>
<th>Agent</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>916</td>
<td>MISSION: Sorafenib vs placebo</td>
<td>Sorafenib</td>
<td>We need biomarker for anti-angiogenesis</td>
</tr>
<tr>
<td>2347</td>
<td>FORTIS-M: Talactoferrin vs BSC</td>
<td>Talactoferrin</td>
<td>Targeted immunotherapy is the future</td>
</tr>
</tbody>
</table>