Targeted treatment of NETs

James C. Yao, MD Associate Professor and Deputy Chair, Gastrointestinal Medical Oncology University of Texas M. D. Anderson Cancer Center

Disclosures

Consultancy

Ipsen, Lexicon, Novartis, Pfizer

Research support

Novartis Oncology

I will discuss the following investigational use in my presentation:

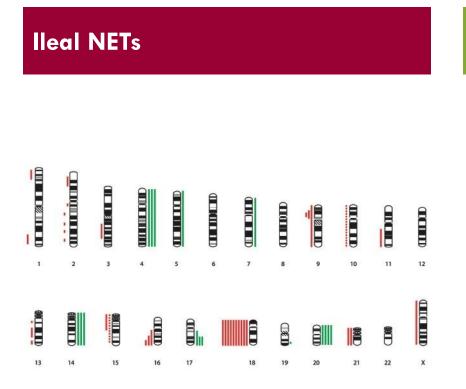
- Octreotide, Lanreotide
- Everolimus
- Bevacizumab

Survival: stage and primary site

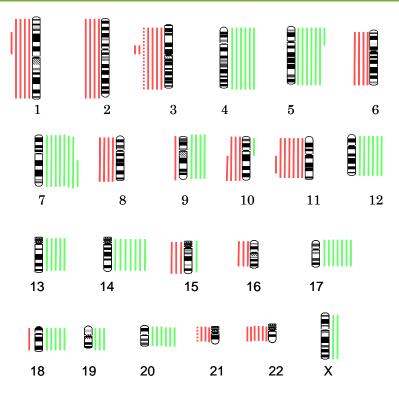
G1/G2 NETs diagnosed from 1988 to 2004

	L	ocalized		R	legional			Distant	
Primary site	Median	5-yr	10-yr	Median	5-yr	10-yr	Median	5-yr	10-yr
Thymus	92	93%	52%	68	65%	49%	40	32%	0%
Lung	NR	84%	70%	151	72%	56%	17	27%	15%
Pancreas	NR	<mark>79</mark> %	58%	111	62%	<mark>46</mark> %	27	27%	11%
Liver	47	43%		14	27%		12	26%	0%
Gastric	163	73%	56%	76	65%	43%	13	25%	9%
Duodenum	112	68%	48%	69	55%	44%	57	46%	27%
Jejunum/lleum	115	65%	<mark>49%</mark>	107	71%	46%	65	54%	30%
Cecum	135	68%	55%	107	71%	44%	55	48%	23%
Colon	NR	85%	74%	52	46%	33%	7	14%	6%
Rectum	NR	90%	80%	90	62%	47%	26	24%	3%
Appendix	NR	88%	72%	NR	78%	67%	31	25%	11%

Median survival in months

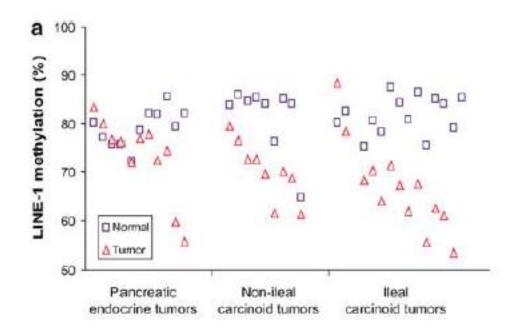

Yao JC, et al. (2008). J Clin Oncol 26(18): 3063-3072.

The molecular genetics of NETs



Adopted from: Misteli (2011) Sci Am

NETs: Site specific genetic changes

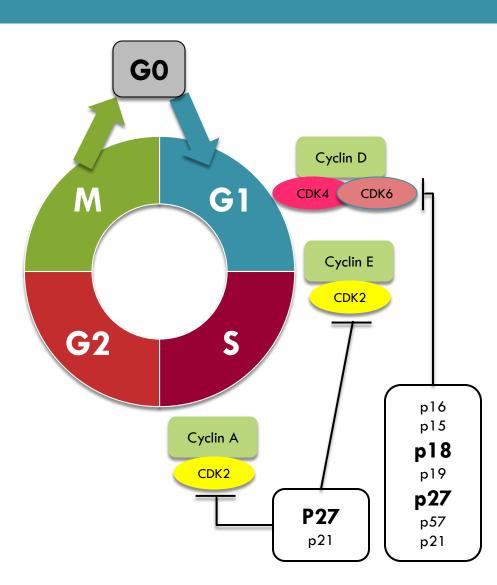

Pancreatic NETs

Nagano Y et al, Endocr Relat Cancer 2007 Kim H et al, Genes Chromosome Cancer 2008

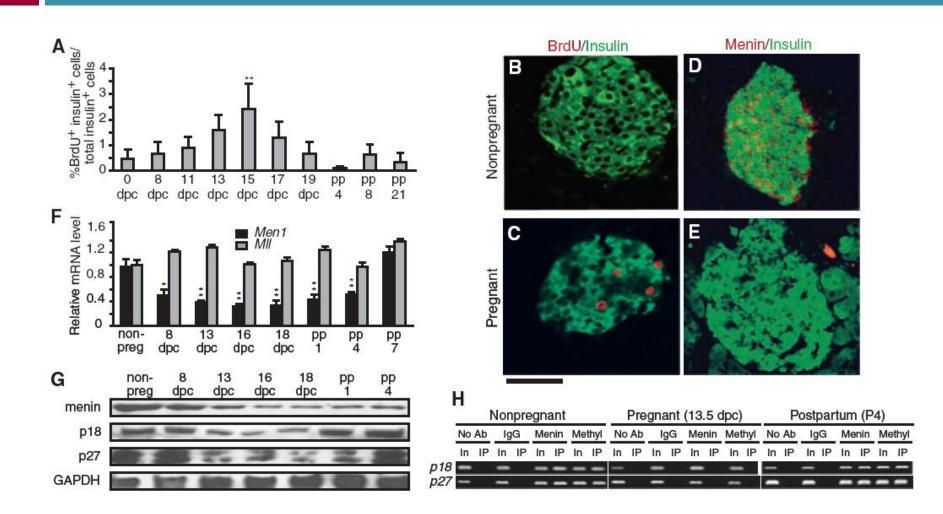
Ileal NETs – Loss of Chr 18 and hypomethylation

- Frequent loss of chromosome 18
- Global hypomethylation
- Difficult to obtain
 normal NET cells for
 RNA and methylation
 profiling

Nagano Y et al, Endocr Relat Cancer 2007 Kim H et al, Genes Chromosome Cancer 2008 Choi IS et al, Mondern Pathology 2007

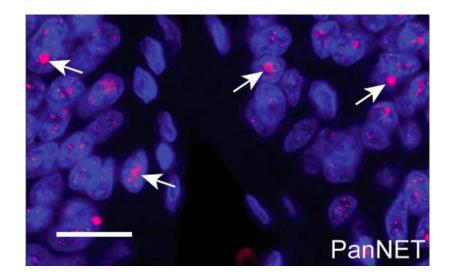

Key Pathways in Pancreatic NETs

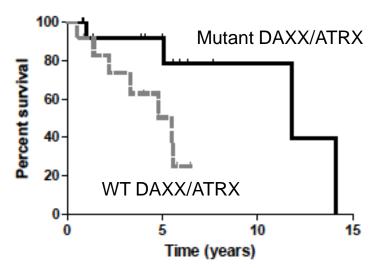
- Involved in FOUR genetic cancer syndrome
 MEN1, TSC2, NF1, vHL
- Whole genome sequencing identified THREE key pathways
 - MEN1
 - DAXX/ATRX Alternative lengthening of telomeres
 - PI3K/AKT/mTOR pathway


Pancreatic NETs – MEN1 and p27

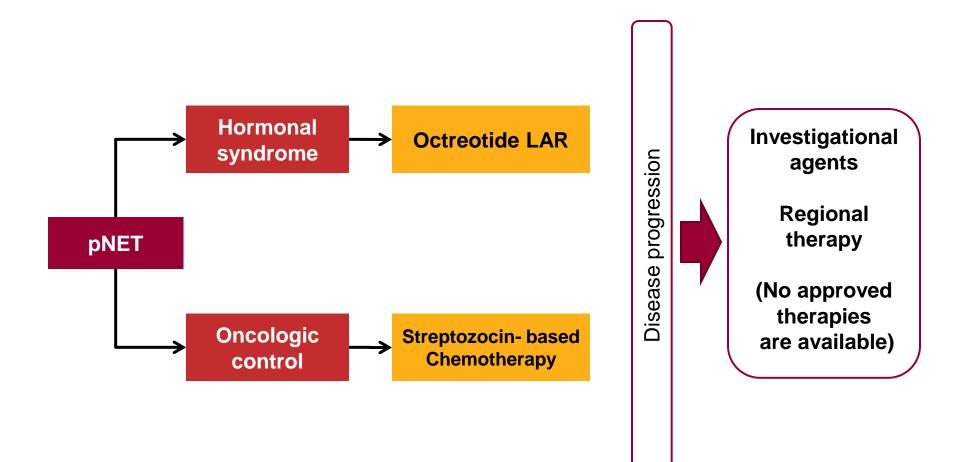
- Knock out mice recapitulates phenotype¹
- Part of histone
 methyltransferase
 complex
- Maintains expression of p27 and p18 (CDK inhibitors)²
- Germline p27 mutation has phenotype similar to MEN1

1. Crabtree JS et al, PNAS 2001 2. Karnik SK et al, PNAS 2005

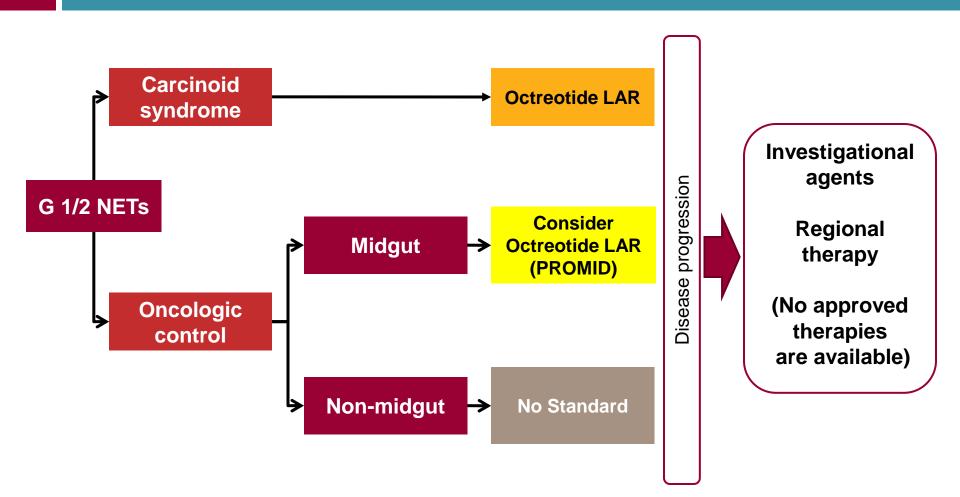

MENIN control of endocrine mass

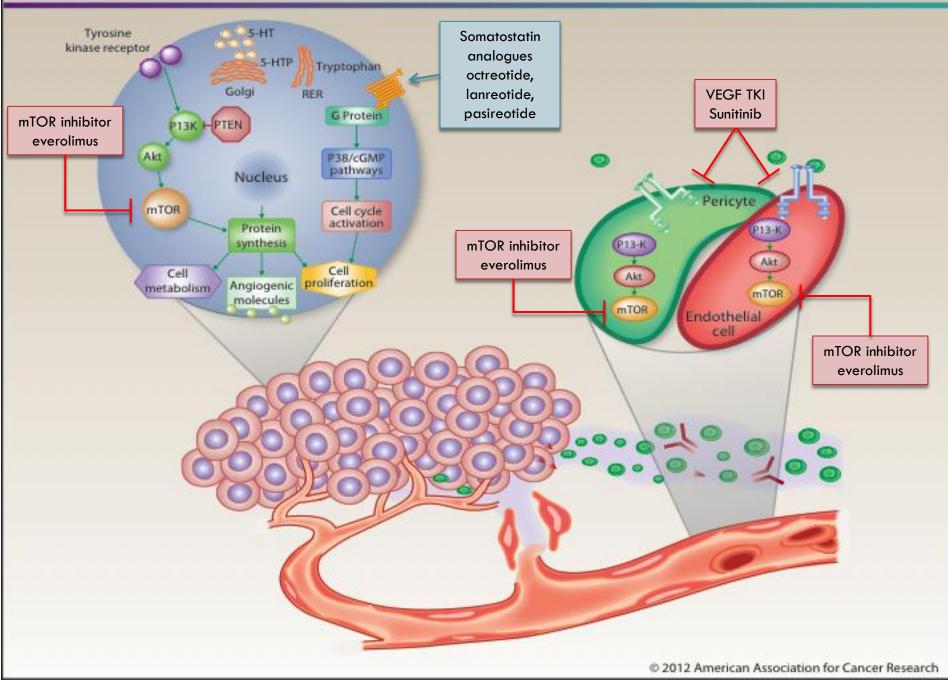


Karnik et al, Science 2007


Pancreatic NETs – DAXX/ATRX

- DAXX, ATRX mutually exclusive mutations¹
 - Good prognosis
 - Alternative lengthening of telomeres (ALT)²
- ALT → lower metastatic potential³
- □ ALT → long survival in GBM^{4, 5}
- 1. Jiao Y et al. Science 2011
- 2. Heaphy C et al. Science 2011
- 3. Chang S et al. Genes Development 2003
- 4. Sampl S et al, Translational Oncology 2012
- 5. McDonal KL et al, J Neuropathol Exp Neurol. 2010

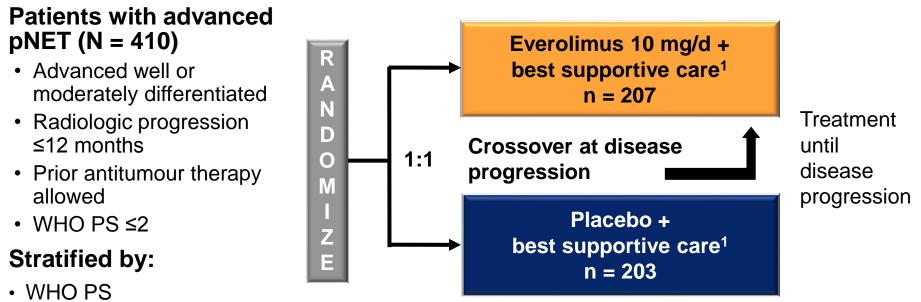




Limited Options for Advanced pNETs (prior to May 2011)

Limited Options for Advanced Nonpancreatic NETs

Pancreatic NETs


Advances in the age of molecularly targeted therapy and controlled phase III clinical studies

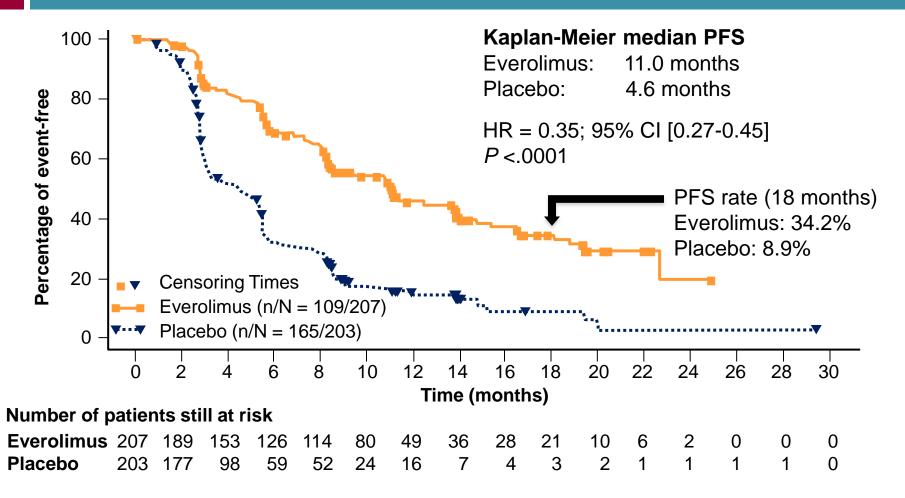
Scientific rationale for mTOR inhibition

- mTOR activating genetic cancer syndromes associated with development of pancreatic NET
 - Tuberous Sclerosis,¹ Neurofibromatosis^{1,2}
- Somatic mutations in mTOR pathway identified in pancreatic NET³
 - TSC2, PTEN, PIK3CA, NF1, IRS1
- Low protein expression of TSC2, PTEN associated with short PFS, OS in pancreatic NET⁴
- 1. Yao JC, et al. in DeVita VT: Cancer: Principles & practice of oncology (ed 8th)., 2008, 1702-21.
- 2. Johannessen CM, et al. Proc Natl Acad Sci U S A 102:8573-8, 2005
- 3. Jiao Y, et al. Science 2011;331:1199-203.
- 4. Missiaglia E, et al. J Clin Oncol 2010;28:245-55.

RADIANT-3: Study Design

Phase III, Double-Blind, Placebo-Controlled Trial

Multiphasic CT or MRI performed every 12 weeks


Primary Endpoint: Progression-free survival By investigator review **Secondary Endpoints:** OS, ORR, biomarkers, safety, pharmacokinetics (PK)

¹Concurrent somatostatin analogues allowed

Prior chemotherapy

Yao J, et al. N Engl J Med. 2011;364:514-523.

RADIANT-3: PFS by Investigator Review

P value is obtained from stratified one-sided log-rank test Hazard ratio is obtained from stratified unadjusted Cox model

Glycemic Control in Patients with Insulinoma Treated with Everolimus

To the Editor: Management of refractory hypoglycemia due to malignant insulinoma is challenging. ...

Matthew H. Kulke, M.D.

Dana–Farber Cancer Institute Boston, MA 02115

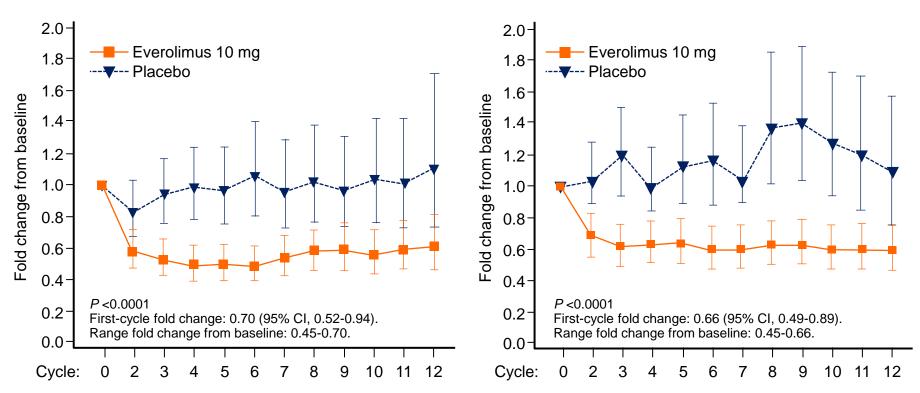
Emily K. Bergsland, M.D.

University of California, San Francisco San Francisco, CA 94115

James C. Yao, M.D.

University of Texas M.D. Anderson Cancer Center Houston, TX 77030 jyao@mdanderson.org

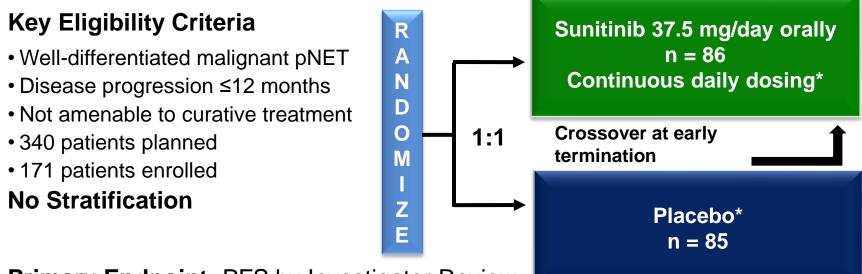
n engl j med 360;2 nejm.org january 8, 2009


Everolimus Induces Rapid Plasma Glucose Normalization in Insulinoma Patients by Effects on Tumor As Well As Normal Tissues

HELLE-BRIT FIEBRICH,^a ESTER J.M. SIEMERINK,^a ADRIENNE H. BROUWERS,^b THERA P. LINKS,^c WOUTER S. REMKES,^d GEKE A.P. HOSPERS,^a ELISABETH G. E. DE VRIES^a

Fold Change from Baseline in Biomarkers in Response to Treatment

Gastrin*

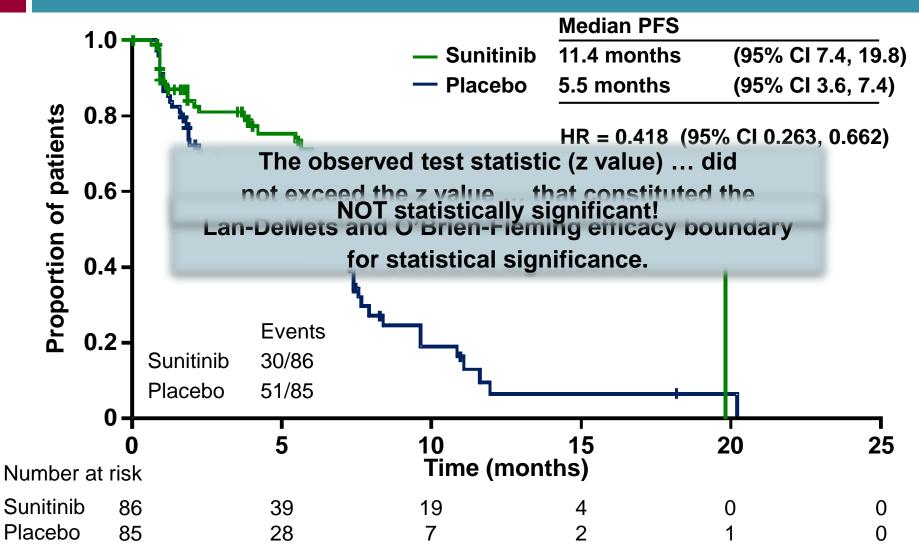


*Least-square estimates of mean fold change and 95% CI obtained using a mixed model, including terms for baseline value, treatment, time, and interaction between time and treatment. Only patients with elevated levels at baseline (>1 × ULN) were included. [†]Upper limit for truncated confidence interval is out of presented range.

de Vries E, Anthony L, Sideris L, et al. ASCO 2011; Chicago, IL. Abstract 10624.

Sunitinib vs Placebo in Advanced pNET

IDMC terminated at early unplanned analysis


Primary Endpoint: PFS by Investigator Review

Secondary Endpoints: OS, overall response rate (ORR), time to recurrence, duration of response, safety, and patient-reported outcomes

* With best supportive care Somatostatin analogues were permitted

Raymond E, et al. N Engl J Med. 2011;364:501-513. Blumenthal GM, et al. The oncologist. 2012;17(8):1108-13. Final analysis planned at 260 events One interim analysis planned at 130 events

Sunitinib Phase III: PFS by Investigator Review

Raymond E, et al. N Engl J Med. 2011;364(6):501-513. Blumenthal GM, et al. The oncologist. 2012;17(8):1108-13.

Sunitinib Phase III In Context With Other Studies

Median PFS (months)	VEGF TKI	Placebo
Sunitinib (sunitinib phase III) ¹	11.4 (7.4-19.8)	
Placebo (sunitinib phase III) ¹		5.5 (3.6 – 7.4)
Sunitinib (phase II) ²	7.7 (6.5 – 12.5)	
Pazopanib (phase II) ³	14.2 (6.9 – 21.5)	
Sorafenib (phase II) ⁴	11.9 (not reported)	
Placebo (everolimus phase III) ⁵		4.6 (3.1 – 5.4)

- 1. Raymond E, et al. N Engl J Med. 2011;364(6):501-513
- 2. Kulke MH, et al. J Clin Oncol. 2008;26(20):3403-3410.
- 3. Phan A, et al J Clin Oncol. 2010;28(15 s): Abstract 4001.
- 4. Hobday TJ, et al. J Clin Oncol. 25(18 s): Abstract 4504.
- 5. Yao JC, et al. N Engl J Med. 2011;364(6):514-523.

Everolimus and Sunitinib in pNET

	PFS improvement	Type 1 error	Control hormone	OS benefit
Everolimus	6.4 months HR = 0.35	< 2.5%	•	HR = 0.89 Not significant*
Sunitinib	5.9 months HR = 0.42	Not controlled	×	HR = 0.74 Not significant*

*Data not mature. Study not designed for OS

Yao J, et al. N Engl J Med. 2011;364:514-523. de Vries E, Anthony L, Sideris L, et al. ASCO 2011; Chicago, IL. Abstract 10624. Raymond E, et al. N Engl J Med. 2011;364(6):501-513. Blumenthal GM, et al. The oncologist. 2012;17(8):1108-13.

Why don't we do OS studies in pNET?

- □ Incidence rate: 3/1,000,000 per year
- Distant metastasis: 64%
- Number of new cases US: 921
 - Assuming current US population of 307 million
- Number with distant metastases: 589
- □ Estimated sample size of OS study with ~90% power
 - **o** 6 months Δ : 24 to 30 1,400 patients
 - **5** months Δ : 24 to 29 2,000 patients
 - **4** months Δ : 24 to 28 2,800 patients

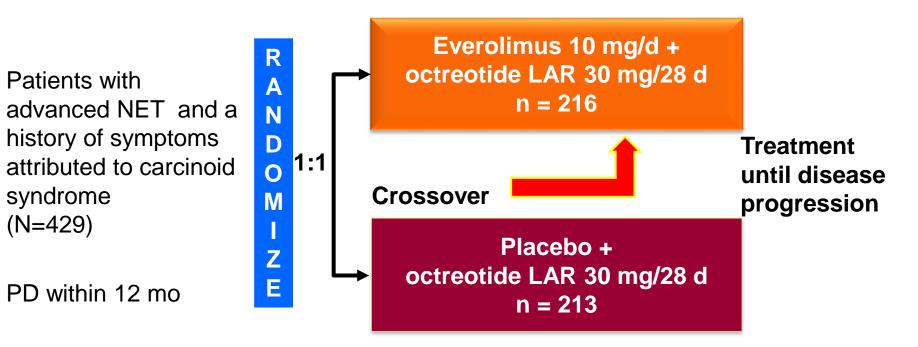
Have we improved outcome?

	Ν	Overall survival
RADIANT-3 (phase 3) ¹		
Everolimus	207	> 36 months (not reached)
Placebo	203	36.6 months
Sunitinib phase 3 ²		
Sunitinib	86	30.5 months
Placebo	85	24.4 months
Streptozocin-based chemo ³		
Streptozocin fluorouracil	33	16.8 months*
Streptozocin doxorubicin	36	26.4 months**

*Reported as 1.4 years. **Reported as 2.2 years.

1. Yao JC, et al. N Engl J Med. 2011 Feb 10;364(6):514-23.

2. Raymond E, et al. N Engl J Med. 2011 Feb 10;364(6):501-13.


3. Moertel CG, et al. N Engl J Med. 1992 Feb 20;326(8):519-23.

Carcinoids

RADIANT-2 Study Design

Phase III, Double-Blind, Placebo-Controlled Trial

Multiphasic CT or MRI performed every 12 wk

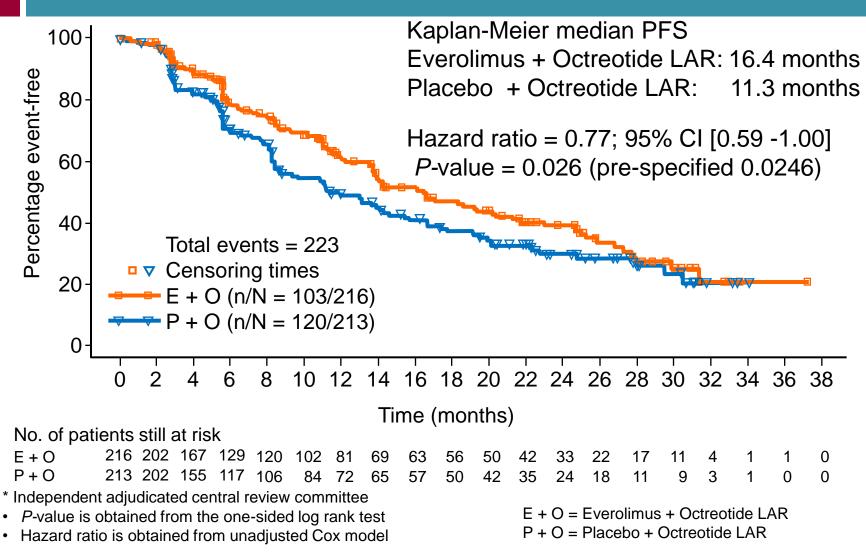
Primary end point:PFS (RECIST)

Secondary end points:

• Tumor response, OS, biomarkers, safety, PK

Enrollment January 2007–March 2008.

Pavel M, et al. Lancet 2011


Baseline Characteristics

	Everolimus + octreotide LAR (n=216)	Placebo + octreotide LAR (n=213)
Median age, yr (range)	60 (22–83)	60 (27–81)
Male	45%	58%
Female	55%	42%
WHO PS		
0	55%	66%
1 / 2*	39% / 6%	29% / 5%
Primary site		
Small intestine	51%	53%
Lung*	15%	5%
Colon	7%	7%
Pancreas	5%	7%
Liver	3%	5%

*Statistically significant for imbalance, *P*<0.05. 1 missing PS in placebo arm.

Pavel M, et al. Lancet 2011

RADIANT-2: PFS by Central Review*

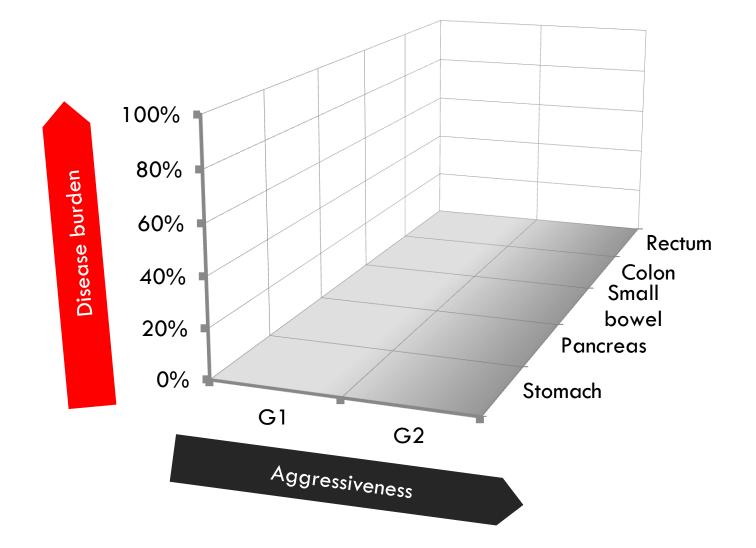
Pavel M, et al. Lancet 2011

Biomarkers at Baseline

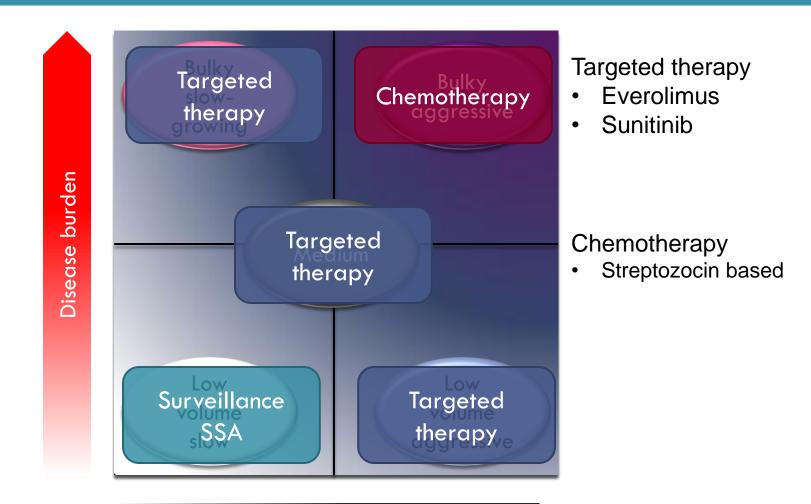
	CgA, ı	ng/mL	5-HIAA, μmol/day		
	E+O	P+O	E+O	P+O	
n	212	208	187	191	
Mean	1480	1002	367	386	
Standard deviation	4712	3574	489	603	
Median	300 250 200 150 50 0	137	200 164 150 100 50 0	158	

Yao, J. C. et al. ASCO GI 2012

Multivariate Analysis


Variable	Groups	n	HR (95% CI), months	P *	
Tura antina a unt	E+O	216		0.003	
Treatment	P+O	213	0.62 (0.51-0.87)		
	0	257		0.006	
WHO PS	≥1	170	0.69 (0.52-0.90)		
	Elevated	282		<0.001	
Baseline CgA	Nonelevated	138	0.47 (0.34-0.65)		
	Yes	59		0.000	
Bone involvement	No	367	1.52 (1.06-2.18)	0.020	
Lung as primary	Yes	44		0.044	
site	No	385	1.55 (1.01-2.36)	0.044	

Nonelevated, $\leq 2 \times$ ULN; elevated, $> 2 \times$ ULN.


*Two-sided from Cox proportional hazards model, with variables selected using stepwise regression.

Yao, J. C. et al. ASCO GI 2012

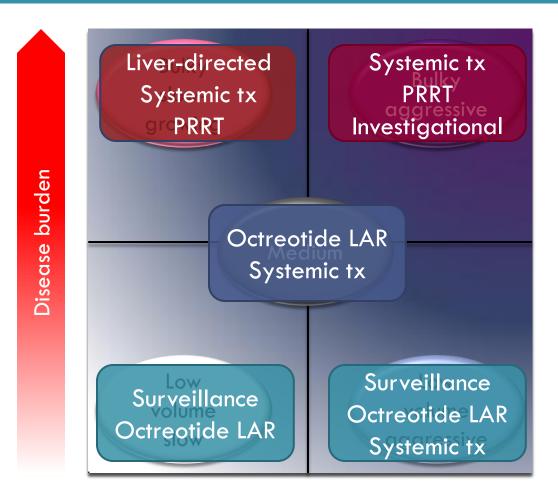
Management of G1/2 NETs in 2012

Initial management of pNET

Aggressiveness

Pairing patients with initial therapy

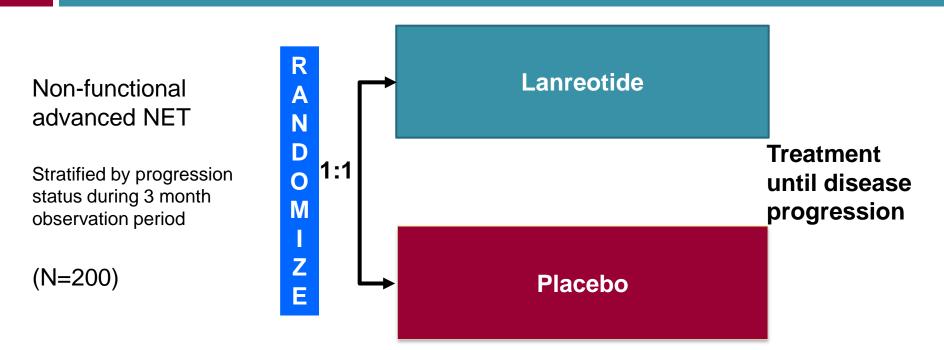
Factors favoring Everolimus


- Disease factors
 - Functional or nonfunctional
 - Bleeding or varices
- Co-morbidities
 - Heart disease
 - Uncontrolled HTN

Factors favoring Sunitinib

Disease factors

- Co-morbidities
 - Severe lung disease
 - Uncontrolled DM

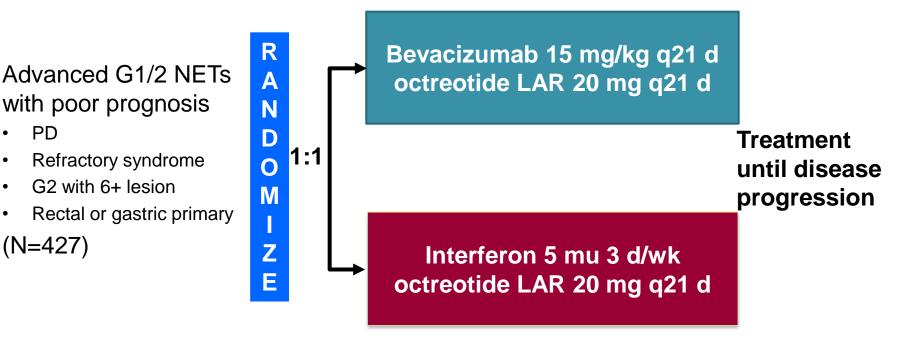

Initial management of non-pancreatic NETs (Carcinoids)

Aggressiveness

Clarinet: Lanreotide vs Placebo

Phase III, Double-Blind, Placebo-Controlled Trial – accrual completed

Patients treated and followed for 2-years


Primary end point:PFS (RECIST)

Secondary end points:

• Tumor response, OS, biomarkers, safety

SWOG 0518: Bevacizumab vs interferon

Phase III open labeled - accrual completed

Multiphasic CT or MRI performed every 9 wk

Primary end point:PFS (RECIST)

Secondary end points:

• Tumor response, OS, biomarkers, safety

RADIANT-4

Phase III study of everolimus versus placebo in nonfunctional NET

A randomized, double-blind, multicenter, phase III study of everolimus plus best supportive care versus placebo plus best supportive care in the treatment of patients with advanced NET of gastrointestinal or lung origin

Everolimus 10 mg/day Patients with advanced NET and no R n = 186history of secretory symptoms (N = 279)Α Ν Advanced low- or intermediate-grade NET Treatment until D 2:1 Radiologic progression disease 0 Absence of carcinoid syndrome progression Μ (flushing, diarrhea, or both) Presence of measurable disease Ζ (RECIST v1.0) Placebo Ε Previous antitumor therapy allowed n = 93WHO PS ≤1

Primary endpoint: PFS (real-time central radiology review)

Targeted treatment of NETs

James C. Yao, MD Associate Professor and Deputy Chair, Gastrointestinal Medical Oncology University of Texas M. D. Anderson Cancer Center