Neoadjuvant therapy for HER2-overexpressing and triple negative breast cancers

Fatima Cardoso, MD
ESO Breast Cancer Program Coordinator
EORTC Secretary General
Director Breast Cancer Unit
Champalimaud Cancer Center
Lisbon, Portugal
OS RATES IN RELATION TO pCR RATES

MD Anderson experience (Kuerer et al, JCO 1999)

- 272 LABC pts treated by anthracycline-based NAC
- pCR= 12%

Relationship between OS and differential pCR irates in breast and axilla
pCR% depends on cellular type and on molecular type

N=22
10 pCR (45%)
61 genes signature

N=20
9 pCR (45%)
no signature identified

N=28
2 pCR

Sorlie et al. PNAS 2001
Rouzier et al. Clin Cancer Res 2005
I-SPY: Neoadjuvant Chemotherapy for Breast Cancer and Biomarker Analysis

I-SPY: study to identify biomarkers of response to neoadjuvant CT

<table>
<thead>
<tr>
<th>ER</th>
<th>PgR</th>
<th>HER2</th>
<th>Ki67 Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>< .0001</td>
<td>< .0001</td>
<td>.02</td>
<td>< .0001</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Low</td>
</tr>
<tr>
<td>(n = 115)</td>
<td>(n = 95)</td>
<td>(n = 28)</td>
<td>(n = 50)</td>
</tr>
<tr>
<td>16%</td>
<td>12%</td>
<td>39%</td>
<td>10%</td>
</tr>
<tr>
<td>44%</td>
<td>43%</td>
<td>18%</td>
<td>16%</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Int</td>
</tr>
<tr>
<td>(n = 88)</td>
<td>(n = 107)</td>
<td>(n = 137)</td>
<td>(n = 62)</td>
</tr>
<tr>
<td>12%</td>
<td>43%</td>
<td>18%</td>
<td>16%</td>
</tr>
<tr>
<td>43%</td>
<td>10%</td>
<td>43%</td>
<td>43%</td>
</tr>
</tbody>
</table>

- Tumor basal (ER⁻/PgR⁻/HER2⁻), luminal B (ER⁺/PgR⁺/HER2⁺), and HER2 (ER⁻/PgR⁻/HER2⁺) associated with higher pCR rates

- Luminal A (ER⁺/PgR⁺/HER2⁻) showed low pCR (9%)

- ER⁻/HER2⁺ tumors showed higher pCR (88%) compared to ER⁺/HER2⁺ tumors (25%)

Neoadjuvant therapy for HER-2+ breast cancer

• The role of neoadjuvant trastuzumab
• Anti-HER-2 agent in neoadjuvant or adjuvant setting?
 • Other anti-HER-2 agents
 • Dual blockade
 • Which chemotherapy?
 • Biomarkers
Meta-analysis: Neoadjuvant anthracyclines/taxanes with or without trastuzumab

All cooperative neoadjuvant trials in Germany between 1998 and 2006 using anthra/taxanes (N=4913) plus GeparQuattro and TECHNO trials (N=1721) using trastuzumab for HER2+ tumors

Goals:

• Overall pCR rate
• Effects according to treatment:
 - Trastuzumab
 - Dose-Density
 - Duration
 - Concurrent versus sequential

Total 6634 pts

Von Minckwitz et al, SABCS 2008, Abstract 79
Meta-analysis: pCR rate based on treatment

In patients with HER2+ tumors:

<table>
<thead>
<tr>
<th></th>
<th>Trastuzumab (N=671)</th>
<th>No Trastuzumab (N=736)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCR rate</td>
<td>41%</td>
<td>23%</td>
<td><.001</td>
</tr>
</tbody>
</table>

Other characteristics associated with high rate of pCR (multivariate analysis):

- Younger age (P<.001)
- Ductal (P<.001)
- Histological grade 3 (p<.001)
- Positive HER2 (P<.001)
- Negative HR (P<.001)
- Tumor size (P<.001)
- Conventional dosage (vs. dd) (P<.001)

No significant difference between concurrent vs. sequential therapy (P=.329)

Von Minckwitz, SABCS 2008, Abstract 79
MD Anderson Neoadjuvant Trastuzumab randomised study: pathological complete response rate

Final results

<table>
<thead>
<tr>
<th>Pathological complete response (final results) (%)</th>
<th>P+FEC alone</th>
<th>P+FEC + T</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% CI (9–51%)</td>
<td>26.3%</td>
<td>65.2%</td>
</tr>
<tr>
<td>95% CI (43–84%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=19</td>
<td></td>
<td>n=23</td>
</tr>
<tr>
<td>p=0.016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P, paclitaxel; FEC, 5-fluorouracil, epirubicin, cyclophosphamide; T, trastuzumab
NOAH: Phase III, Open-Label Trial of Neoadjuvant Trastuzumab

HER2-positive LABC (IHC 3+ or FISH+)
- n = 115
 - Trastuzumab + chemotherapy
 - Surgery followed by radiotherapy
 - Trastuzumab continued to week 52
 - 19 patients crossed over to trastuzumab

HER2-negative LABC (IHC 0/1+)
- n = 99
 - Chemotherapy

CT: AP x 3 followed by P x 4, followed by CMF x 3

HR+ pts received adjuvant tamoxifen

NOAH Trial: Trastuzumab Improves pCR Rates in HER2-Positive LABC

NOAH: Event-Free Survival (EFS) and OS in HER2-Positive Population (ITT)

EFS

<table>
<thead>
<tr>
<th>Patients</th>
<th>Events</th>
<th>Unadjusted HR</th>
<th>p value</th>
<th>Adjusted HR</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>With trastuzumab</td>
<td>117</td>
<td>118</td>
<td>0.59</td>
<td>0.58</td>
<td>0.0126</td>
</tr>
</tbody>
</table>

| With trastuzumab | 36 | 51 | 0.013 |

<table>
<thead>
<tr>
<th>Number at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>With trastuzumab</td>
</tr>
<tr>
<td>Without trastuzumab</td>
</tr>
</tbody>
</table>

OS

<table>
<thead>
<tr>
<th>Patients</th>
<th>Events</th>
<th>HR</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>With trastuzumab</td>
<td>117</td>
<td>113</td>
<td>113</td>
</tr>
</tbody>
</table>

| Without trastuzumab | 118 | 113 | 110 | 104 | 93 | 81 | 57 | 34 |

GeparQuattro study design

- **EC**: Epirubicin 90 mg/m², Cyclophosphamide 600 mg/m², Radiotherapy
- **R**: n=445 ErbB2+
- **D**: Docetaxel (D) 100 mg/m² (Arm 1), 75 mg/m² (Arms 2 and 3)
- **DX**: n=144
- **D→X**: n=136
- **Op**: Capecitabine (X) 1800 mg/m², If ErbBr2+ trastuzumab 6 mg/kg q3wk 1 year, If endocrine responsive Tam/AIs

AI, aromatase inhibitor; C, cyclophosphamide; E, epirubicin; D, docetaxel; Op, surgery; R, randomisation; Tam, tamoxifen; X, capecitabine
When trastuzumab was added in patients with HER-2+ disease (n=445), the pCR rate rose significantly to 31.8% (p<0.001).

pCR, pathological complete response. Defined as grades 4 and 5 on a modified regression scale (grade 5, no microscopic evidence of residual viable tumour cells (invasive or non-invasive) in breast and nodes; grade 4, no residual tumour in breast tissue, but involved nodes)

Neoadjuvant therapy for HER-2+ breast cancer

• Anti-HER-2 agent in neoadjuvant or adjuvant setting?

NO DIRECT COMPARISON ADJUVANT VS. NEOADJUVANT

INDIRECT EVIDENCE (Higher pCR rates!!)
Neoadjuvant therapy for HER-2+ breast cancer

• The role of neoadjuvant trastuzumab

• Anti-HER-2 agent in neoadjuvant or adjuvant setting?
 • Other anti-HER-2 agents
 • Dual blockade
 • Which chemotherapy?
 • Biomarkers
GeparQUINTO
HER2-Positive Study Design

Core Biopsy

- **E:** Epirubicin 90 mg/m²
- **C:** Cyclophosphamide 600 mg/m²
- **Doc:** Docetaxel 100 mg/m²* + G-CSF

Trastuzumab (T)

- T: Trastuzumab 6 (8) mg/kg
- L: Lapatinib 1250-1000 mg/day orally

Lapatinib (L)

- Doc: Docetaxel 100 mg/m²* + G-CSF

Surgery

- T for 6 months
- T for 12 months

(Day 21-Day 35 after last infusion)

*G-CSF = granulocyte colony-stimulating factor; R = randomized

Pathologic Complete Response

Doc = docetaxel; EC = epirubicin + cyclophosphamide; L = lapatinib; pCR = pathologic complete response; T= trastuzumab

Pathologic Complete Response
Trastuzumab/Chemo vs Lapatinib/ Chemo

Inability to give planned doses of lapatinib ~35% in both studies

Courtesy E. Winer
Neoadjuvant therapy for HER-2+ breast cancer

• The role of neoadjuvant trastuzumab
• Anti-HER-2 agent in neoadjuvant or adjuvant setting?
 • Other anti-HER-2 agents
 • Dual blockade
 • Which chemotherapy?
 • Biomarkers
NeoALTTO Study Design

- Invasive operable HER2+ BC
- T >2 cm (inflammatory BC excluded)
- LVEF ≥50%

N = 450

Stratification
• T≤5 cm vs T>5 cm
• ER or PgR+ vs ER & PgR-
• N0-1 vs N≥2
• Conservative surgery or not

52 weeks of anti-HER2 therapy

IBC exclusion criteria

NeoALTTO: Overall Clinical Response
at 6 weeks (w/o chemo) and at surgery

At Week 6 (w/o chemo)

- L (lapatinib) N = 154
- T (trastuzumab) N = 149
- L+T N = 152

- L = 52.6%
- T = 30.2%
- L+T = 67.1%

P < .001

At surgery

- L (lapatinib) N = 154
- T (trastuzumab) N = 149
- L+T N = 152

- L = 74%
- T = 70.5%
- L+T = 80.3%

P = .49
P = .049

L = lapatinib; T = trastuzumab
NeoALTTO: pCR by HR Status

HR positive

- N = 80
- L: 16.2%
- T: 22.7%
- L+T: 41.6%
- P = .24

HR negative

- N = 75
- L: 33.8%
- T: 36.5%
- L+T: 61.3%
- P = .005

P = .03

P = .75

HR = hormone receptor; L = lapatinib; pCR = pathologic complete response; T = trastuzumab

NSABP B-41: Lapatinib in Neoadjuvant Treatment of HER2+ Breast Cancer

- **Primary endpoint:** pCR
- **Secondary endpoints:** pCR in N0, toxicity, cCR, RFS, OS

Lapatinib in Neoadjuvant Treatment of HER2+ Breast Cancer (NSABP B-41): pCR

<table>
<thead>
<tr>
<th>Regimen</th>
<th>n</th>
<th>pCR*, %</th>
<th>P Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC → WP + T</td>
<td>176</td>
<td>49.4</td>
<td></td>
</tr>
<tr>
<td>AC → WP + L</td>
<td>171</td>
<td>47.4</td>
<td>.78</td>
</tr>
<tr>
<td>AC → WP + T + L</td>
<td>171</td>
<td>60.2</td>
<td>.056</td>
</tr>
</tbody>
</table>

*Absence of invasive tumor in resected breast specimen and histologically negative axillary nodes.
†Relative to AC → WP + T regimen.

- Similar results for dual blockade
- No significant difference between T and L

CherLob study plan

Guarneri, V et al. ASCO 2011 Abst 507
Breast & axillary pCR rate by HR

- Similar results for dual blockade
- Different results for T vs. L depending on HR status

T, trastuzumab; L, lapatinib; T+L, trastuzumab plus lapatinib

Guarneri, V et al. ASCO 2011 Abst 507
Neoadjuvant lapatinib and trastuzumab prior to and during chemotherapy: study design

Eligible patients had biopsy-proven ErbB2+ Stage II or III invasive breast cancer and were healthy.

- Lapatinib 1250 mg qd (arm1), 750 mg qd (1000 mg after FEC) (arm 3)
- Trastuzumab 2 mg/kg qwk (4 mg/kg loading dose)

2 weeks

12 weeks

12 weeks

C, cyclophosphamide; E, epirubicin; F, 5-fluorouracil; q, every; qd, once daily
Neoadjuvant lapatinib and trastuzumab prior to and during chemotherapy: pCR

- Similar results for dual blockade & T vs. L, with the “more commonly used” sequence A followed by Taxanes

CI, confidence interval; pCR, pathological complete response: defined as absence of all invasive cancer in breast and lymph nodes
Holmes et al. J Clin Oncol 2011;29(Suppl.):506
Patients with operable or locally advanced/inflammatory* HER2-positive breast cancer

Chemo-naïve and primary tumors >2 cm (N = 417)

TH (n = 107)

THP (n = 107)

HP (n = 107)

TP (n = 96)

docetaxel + trastuzumab

docetaxel + trastuzumab + pertuzumab

trastuzumab + pertuzumab
docetaxel + pertuzumab

BC, breast cancer; FEC, 5-fluorouracil, epirubicin, and cyclophosphamide; H, trastuzumab; P, pertuzumab; T, docetaxel

*Locally advanced = T2-3, N2-3, M0 or T4a-c, any N, M0; operable = T2-3, N0-1, M0; inflammatory = T4d, any N, M0

NeoSphere: pCR Rates (ITT Population)

Ci, confidence interval; H, trastuzumab; P, pertuzumab; pCR, pathologic complete response; T, docetaxel

NeoSphere: pCR and HR Status

CI = confidence interval; H = trastuzumab; HR = hormone receptor; P = pertuzumab; pCR = pathologic complete response; T = docetaxel

TRYPHAENA Ph 2 STUDY

Primary endpoint: cardiac safety
2ary endpoints: Toxicity, pCR, RR, BCS rate, DFS, OS

Concomitant w/ anthracycline

HER2-positive EBC centrally confirmed (n = 225)

Cycles 1–3
A

B

C

FEC
Pertuzumab + trastuzumab
Docetaxel

Docetaxel

Docetaxel

FEC

Pertuzumab + trastuzumab

Pertuzumab + trastuzumab

Carboplatin

Surgery

Trastuzumab to complete 1 year

No anthracycline

• All 3 arms were experimental

• Study dosing q3w:
 − Pertuzumab: 840 mg loading dose, 420 mg maintenance
 − Trastuzumab: 8 mg/kg loading dose, 6 mg/kg maintenance
 − FEC: 500 mg/m², 100 mg/m², 600 mg/m²
 − Docetaxel: 75 mg/m² (escalating to 100 mg/m² if tolerated, in Arms A and B only)
 − Carboplatin: AUC 6
Cardiac events in the treatment period

<table>
<thead>
<tr>
<th></th>
<th>FEC+H+P x3 → T+H+P x3 n = 72</th>
<th>FEC x3 → T+H+P x3 n = 75</th>
<th>TCH+P x6 n = 76</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic LVSD (grade ≥3), n (%)</td>
<td>-</td>
<td>2 (2.7)</td>
<td>1 (1.3)</td>
</tr>
<tr>
<td>LVSD (all grades), n (%)</td>
<td>5 (6.9)</td>
<td>3 (4.0)</td>
<td>5 (6.6)</td>
</tr>
<tr>
<td>LVEF decline ≥10% points from baseline to <50%, n (%)</td>
<td>5 (6.9)</td>
<td>5 (6.7)</td>
<td>5 (6.6)</td>
</tr>
</tbody>
</table>

Primary endpoint: cardiac safety

NO SIGNIFICANT DIFFERENCES (safe to combine with A)

FEC, 5-fluorouracil, epirubicin, cyclophosphamide; H, trastuzumab; LVEF, left ventricular ejection fraction; LVSD, left ventricular systolic dysfunction; P, pertuzumab; T, docetaxel; TCH, docetaxel/carboplatin/trastuzumab
Pathological complete response

FEC, 5-fluorouracil, epirubicin, cyclophosphamide; H, trastuzumab; P, pertuzumab; T, docetaxel; TCH, docetaxel/carboplatin/trastuzumab

Lower pCR
BUT also
Shorter duration of TP

ypT0/is

FEC+H+P x3
→ T+H+P x3
(n = 73)

ypT0 ypN0

FEC x3
→ T+H+P x3
(n = 75)

TCH+P x6
(n = 77)

61.6 [49.5‒72.8]
50.7

57.3 [45.4‒68.7]
45.3

66.2 [54.6‒76.6]
51.9

[30x7]Copyrights for this presentation are held by the author/presenter. Contact them at Andreas.Schneeweiss@med.uni-heidelberg.de for permission to reprint and/or distribute.
Pathological complete response by hormone receptor status

<table>
<thead>
<tr>
<th>Treatment</th>
<th>ER and PR negative</th>
<th>ER and/or PR positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEC+H+P x3 → T+H+P x3</td>
<td>79.4 [62.1–91.3]</td>
<td>83.8 [68.0–93.8]</td>
</tr>
<tr>
<td>(n = 73)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEC x3 → T+H+P x3</td>
<td>65.0 [48.3–79.4]</td>
<td>50.0 [33.8–66.2]</td>
</tr>
<tr>
<td>(n = 75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCH+P x6</td>
<td>46.2 [30.1–62.8]</td>
<td>48.6 [31.4–66.0]</td>
</tr>
<tr>
<td>(n = 77)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ER, estrogen receptor; FEC, 5-fluorouracil, epirubicin, cyclophosphamide; H, trastuzumab; P, pertuzumab; PR, progesterone receptor; T, docetaxel; TCH, docetaxel/carboplatin/trastuzumab
Neoadjuvant therapy for HER-2+ breast cancer

• The role of neoadjuvant trastuzumab
• Anti-HER-2 agent in neoadjuvant or adjuvant setting?
 • Other anti-HER-2 agents
 • Dual blockade
 • **Which chemotherapy?**
 • Biomarkers (example: p95)
If indicated, the majority of the Panel considered that the neoadjuvant chemotherapy regimen should include both a taxane and an anthracycline and (for HER2-positive disease) an anti-HER2 drug. Thus, the choice of a regimen for adjuvant or neoadjuvant chemotherapy might be made using similar criteria.

Neoadjuvant trials in HER2-positive B.C. Comparison of pCR-rates

<table>
<thead>
<tr>
<th></th>
<th>Neo-Sphere</th>
<th>Neo-Altto</th>
<th>NOAH</th>
<th>GeparQuinto</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>417</td>
<td>455</td>
<td>235</td>
<td>640</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Neo-Sphere</th>
<th>Neo-Altto</th>
<th>NOAH</th>
<th>GeparQuinto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono-H</td>
<td>Doc+H</td>
<td>Pw+H</td>
<td>APH-PH-CMFH</td>
<td>ECH-DocH</td>
</tr>
<tr>
<td>Duration</td>
<td>12</td>
<td>12+6</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>ypT₀/is ypN₀</td>
<td>21.5</td>
<td>27.6</td>
<td>38.0</td>
<td>45.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Neo-Sphere</th>
<th>Neo-Altto</th>
<th>NOAH</th>
<th>GeparQuinto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combo-H</td>
<td>Doc+HP</td>
<td>Pw+HL</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>ypT₀/is ypN₀</td>
<td>39.3</td>
<td>46.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ **Duration or use of anthracyclines add efficacy!**

Courtesy G. von Minckwitz, ASCO 2011
TBCRC 006: Neoadjuvant Lapatinib & Trastuzumab **Without CT**: Study Schema

- **Lapatinib (1000 mg/day)**
- **Trastuzumab (4 mg/kg load, 2 mg/kg q-weekly)**

Weeks

0	2	8	12
Lap (L) + Tras (T) + Endocrine Rx if ER+

- **pCR rates: 18/61 (30%)**
 - ER pos: 8/39 (21%)
 - ER neg: 10/22 (46%)
Neoadjuvant therapy for TNBC

• Which chemotherapy? Different than non-TNBC?
 • Platinum compounds
Heterogeneity of TNBC: Data from the UNC337, NKI1295, MDACC133 databases

Basal-like (39-54%)

Claudin-Low (25-39%)

HER2 enriched (7-14%)

Luminal B (4-7%)

Luminal A (4-5%)

Basal-like
- Up to 19% are ER+

Claudin-low
- Up to 33% are ER+

Pratt et al, Breast Cancer Res, 2010

Courtesy H. Rugo, ASCO 2011
Pathologic Response to Anthracycline/Taxane by Subtype

Overall pCR rate = 22% (82/369)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Residual disease</th>
<th>Pathologic complete response (pCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal-like</td>
<td>47 (58%)</td>
<td>34 (42%)</td>
</tr>
<tr>
<td>Claudin-low</td>
<td>29 (67%)</td>
<td>14 (33%)</td>
</tr>
<tr>
<td>HER2-enriched</td>
<td>31 (63%)</td>
<td>18 (37%)</td>
</tr>
<tr>
<td>LumA</td>
<td>110 (98%)</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>LumB</td>
<td>56 (85%)</td>
<td>10 (15%)</td>
</tr>
<tr>
<td>Normal-like</td>
<td>13 (76%)</td>
<td>4 (24%)</td>
</tr>
</tbody>
</table>

Courtesy C. Perou
German neoadjuvant meta-analysis: Association of pCR with treatment characteristics stratified by HR & HER2 status*

Number of cycles (per 2 additional cycles)

- HER2 - / HR +: 1.30 (1.02 to 1.65)
- HER2 + / HR +: 1.42 (1.04 to 1.94)
- HER2 + / HR -: 1.00 (0.71 to 1.41)
- HER2 - / HR -: 1.09 (0.88 to 1.35)

Antracycline (high vs low dose)

- HER2 - / HR +: 1.92 (1.14 to 3.21)
- HER2 + / HR +: 0.94 (0.31 to 2.85)
- HER2 + / HR -: 0.72 (0.20 to 2.58)
- HER2 - / HR -: 1.49 (0.98 to 2.27)

Taxane (high vs low dose)

- HER2 - / HR +: 1.52 (0.84 to 2.76)
- HER2 + / HR +: 2.23 (0.75 to 6.61)
- HER2 + / HR -: 1.87 (0.51 to 6.92)
- HER2 - / HR -: 1.73 (1.02 to 2.94)

*P = 0.28

**P = 0.55

Platinum Sensitivity in BRCA1+/TNBC

<table>
<thead>
<tr>
<th>Trial</th>
<th>Population</th>
<th>Regimen</th>
<th>N</th>
<th>pCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byrski</td>
<td>BRCA1+</td>
<td>Nonplatinum</td>
<td>90</td>
<td>14 (16%)</td>
</tr>
<tr>
<td></td>
<td>BRCA1+</td>
<td>CDDP 75mg/m² x4</td>
<td>12</td>
<td>10 (83%)</td>
</tr>
<tr>
<td>Silver</td>
<td>Sporadic TNBC</td>
<td>CDDP 75mg/m² x4</td>
<td>26</td>
<td>4 (15%)</td>
</tr>
<tr>
<td></td>
<td>BRCA1+</td>
<td>“ “</td>
<td>2</td>
<td>2 (100%)</td>
</tr>
<tr>
<td>Ryan</td>
<td>Sporadic TNBC</td>
<td>CDDP 75mg/m2 x4 + bevacizumab 15 mg/kg q3wk x3</td>
<td>51</td>
<td>8 (16%)</td>
</tr>
</tbody>
</table>

- Neoadjuvant trials:
 - Retrospective trial suggests exquisite sensitivity in BRCA1+
 - Prospective trial in TNBC less clear

- Metastatic TNBC:
 - BALI-1 control arm cisplatin only – 10% RR

Neoadjuvant & Adjuvant Platinum CT regimens for TNBC

- Very small number of patients
- Response to Platinum is mostly in BRCA+ TNBC

Currently, there is no preferred standard form of chemotherapy for triple-negative breast cancer, and treatment should be selected as it is for other cancer subtypes.
Overall survival as a function of response to neoadjuvant PCT

Liedtke C et al, J Clin Oncol, 2008, 26:1275
I-SPY 2 TRIAL
Learn, Drop, Graduate, and Replace Agents Over Time

Randomize

HER 2 (+)
Paclitaxel + Trastuzumab
Paclitaxel + Trastuzumab* + New Agent A
Paclitaxel + Trastuzumab* + New Agent B
Paclitaxel + Trastuzumab* + New Agent C
Paclitaxel + New Agent F
Paclitaxel + New Agent GH
Paclitaxel + New Agent E

HER 2 (-)

Patient is on Study

AC → Surgery
Learn and adapt from each patient as we go along

Key
MRI
Residual Disease (Pathology)

AC → Surgery

*Investigational agent may be used in place

Courtesy H. Rugo, ASCO 2011
BACK-UP
RECENT GUIDANCE DOCUMENT FROM FDA

• Preoperative trials with pathologic complete response can, in selected circumstances, can be used for accelerated approval

• Trials evaluating clinically significant endpoints (DFS, OS) must be planning/pending

• Expectation is that triple negative breast cancer will be first area explored

• Guidance was well received by academic, advocate, and pharma communities

• Potentially major implications for drug development
pCR IS NOT YET AN ENDPOINT
FOR DRUG APPROVAL OR PRACTICE CHANGE

- Path CR is consistently associated with excellent outcome
- Improvements in path CR have not always associated with better DFS/OS
- Failure to achieve path CR is associated with variable outcome
- Will more effective anti-HER-2 therapy in neoadjuvant setting lead to long term benefit?

Courtesy E. Winer