Optimizing therapeutic combinations of pimasertib, a selective MEK1/2 inhibitor, with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors in pimasertib-resistant human lung and colorectal cancer cells

Martinelli E., Troiani T., Morgillo F., D’Aiuto E., Ciuffrida L., Costantino S., Vecchione L., de Vriendt V., Tejpar S., Ciardiello F.
Disclosure slide

• I have no conflict of interest to declare
The Ras-Raf-MEK-MAPK signaling

Proliferation
Growth
Survival
Angiogenesis

adapted from Fremin C et al. J of Hematology and Oncology, 2010;3:8
Background (1)

- MEK activation is found mostly in BRAF mutant cancer cells and in a subgroup of KRAS mutant cancer cells (Davies BR, et al. Mol Cancer Ther 2007; Solit DB et al, Nature 2006)

- Activating mutations of PI3CA and hyperactivity of the PTEN/PI3K/AKT pathway are associated to reduced activity or to resistance to MEK inhibitors in human cancer cells. (Mirzoeva OK et al, Cancer Res 2009; Wee S et al, Cancer Res 2009)

- Specific gene expression profiles have been suggested to predict sensitivity or resistance to MEK inhibitors (selumetinib, AZD6244) (Dry J et al. Cancer Res 2010)

- Pimasertib (a biaryl amine derivative) has a high selectivity for MEK1/2, with anti-proliferative effects in NSCLC cell lines and efficacy in xenograft models (Morgillo et al, Br J Cancer 2011; Price S et al, Expert Opin Ther Patents 2008)
Intrinsic resistance to selumetinib, a selective inhibitor of MEK1/2, by cAMP-dependent protein kinase A activation in human lung and colorectal cancer cells
<table>
<thead>
<tr>
<th>Human cancer cell lines</th>
<th>KRAS</th>
<th>NRAS</th>
<th>BRAF</th>
<th>PI3KCA</th>
<th>EGFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1299</td>
<td>WT</td>
<td>Mut (Q61K)</td>
<td>WT</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>Calu-3</td>
<td>WT</td>
<td>WT</td>
<td>WT</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>A549</td>
<td>Mut (G12S)</td>
<td>WT</td>
<td>WT</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>H460</td>
<td>Mut (Q61H)</td>
<td>WT</td>
<td>WT</td>
<td>Mut (E545K)</td>
<td>WT</td>
</tr>
<tr>
<td>H358</td>
<td>Mut(G12C)</td>
<td>WT</td>
<td>WT</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>H1975</td>
<td>WT</td>
<td>WT</td>
<td>WT</td>
<td>Mut (G118D)</td>
<td>Mut (T790M) Mut (L858R)</td>
</tr>
<tr>
<td>COLO205</td>
<td>WT</td>
<td>WT</td>
<td>Mut (V600E)</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>HT29</td>
<td>WT</td>
<td>WT</td>
<td>Mut (V600E)</td>
<td>Mut (P449T)</td>
<td>WT</td>
</tr>
<tr>
<td>Lovo</td>
<td>Mut (G13D)</td>
<td>WT</td>
<td>WT</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>HCT116</td>
<td>Mut (G13D)</td>
<td>WT</td>
<td>WT</td>
<td>Mut (H1047R)</td>
<td>WT</td>
</tr>
<tr>
<td>HCT15</td>
<td>Mut (G13D)</td>
<td>WT</td>
<td>WT</td>
<td>Mut (E545K) Mut (D549N)</td>
<td>WT</td>
</tr>
</tbody>
</table>

WT: wild type; Mut: mutated
Proliferation assay

A

CRC cell lines

- COLO-205
- HT29
- LOVO
- HCT116
- HCT115

<table>
<thead>
<tr>
<th>% of proliferation</th>
<th>Pimasertib (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td>5.5</td>
<td>8.0</td>
</tr>
<tr>
<td>10.5</td>
<td>10.5</td>
</tr>
</tbody>
</table>

IC$_{50}$ AS703026

B

NSCLC cell lines

- H1299
- CALU-3
- A549
- H460
- H358
- H1975

<table>
<thead>
<tr>
<th>% of proliferation</th>
<th>Pimasertib (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td>5.5</td>
<td>8.0</td>
</tr>
<tr>
<td>10.5</td>
<td>10.5</td>
</tr>
</tbody>
</table>

IC$_{50}$ Pimasertib

Sensitivity
Five core genes involved in MEK resistance in our system
Synergistic activity of pimasertib in combination with selective PI3K/AKT/mTOR inhibitors or with multi-targeted inhibitors in NSCLC cells growth in vitro
Synergistic activity of pimasertib in combination with selective PI3K/AKT/mTOR inhibitors or with multi-targeted inhibitors in CRC cells growth *in vitro*
Effects of combined treatment on cell proliferation and on intracellular signaling pathways in pimasertib resistant cancer cell lines
Effects of combined treatment on cell cycle distribution in pimasertib resistant cancer cell lines

A

H1975

<table>
<thead>
<tr>
<th></th>
<th>control</th>
<th>Pimasertib</th>
<th>Everolimus</th>
<th>PI3Ki</th>
<th>Sorafenib</th>
<th>Pimasertib+Everolimus</th>
<th>Pimasertib+PI3Ki</th>
<th>Pimasertib+Sorafenib</th>
</tr>
</thead>
<tbody>
<tr>
<td>sub G1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cyclin D1</th>
<th>p27</th>
<th>tubulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pimasertib (1μM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everolimus (1μM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI3Ki (1μM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorafenib (1μM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regorafenib (1μM)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Induction of apoptosis in HCT15 and H1975 cancer cell lines

A HCT15

- Control
- Pimasertib
- Everolimus
- PI3Ki
- Sorafenib
- Regorafenib
- Pimasertib + Everolimus
- Pimasertib + PI3Ki
- Pimasertib + Sorafenib
- Pimasertib + Regorafenib

B H1975

- Control
- Pimasertib
- Everolimus
- PI3Ki
- Sorafenib
- Regorafenib
- Pimasertib + Everolimus
- Pimasertib + PI3Ki
- Pimasertib + Sorafenib
- Pimasertib + Regorafenib

C

- Control
- Pimasertib
- Everolimus
- PI3Ki
- Sorafenib
- Regorafenib
- Pimasertib + Everolimus
- Pimasertib + PI3Ki
- Pimasertib + Sorafenib
- Pimasertib + Regorafenib

- caspase 3
- parp
- tubulin
Pimasertib in combination with BEZ235, a dual PI3K/mTOR inhibitor on HCT15 and H1975 tumor xenografts

Figure 7

A

HCT15

- Control
- Pimasertib
- BEZ235
- Combo

B

Pimasertib vs Combo p < 0.0001

- Control
- Pimasertib
- BEZ235
- Combo

C

H1975

- Control
- Pimasertib
- BEZ235
- Combo

D

Pimasertib vs Combo p < 0.0001

- Control
- Pimasertib
- BEZ235
- Combo

*** Pimasertib vs Combo p < 0.0001
Pimasertib in combination with sorafenib inhibitor on HCT15 and H1975 tumor xenografts

Figure 8

A

B

Pimasertib vs Combo p < 0.0001

C

D

Pimasertib vs Combo p < 0.0001
Basal gene expression profiles identified several up-regulated genes in pimasertib-resistant cancer cells involved in both RAS/RAF/MEK/MAPK and PTEN/PI3K/AKT/mTOR pathways.

Combination with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors is able overcome pimasertib intrinsic resistance in CRC HCT15 and NSCLC H1975 cells both in vitro and in vivo.

These data provide the rational of evaluating the therapeutic activity of these combinations in cancer patients in order to better use selective MEK inhibitors, that have shown modest single agent antitumor activity in early clinical trials.
Acknowledgements

❖ Medical Oncology, Second University of Naples
Fortunato Ciardiello
Teresa Troiani
Floriana Morgillo
Anna Capasso
Donata Vitagliano
Anna Nappi
Vincenzo Sforza
Giulia Martini
Stefania Napolitano
Carminia Maria Della Corte

❖ Department of Digestive Oncology, University Hospital Gasthuisberg, Lueven, Belgium
Sabine Tejpar
Loredana Vecchione
Veerle De Vriendt

❖ Merck Serono
Janet Ogden

❖ Clinical Immunology, Second University of Naples
Raffaele De Palma
Elena D’Aiuto
Francesco Merollla

❖ Farmacology Department, Second University of Naples
Liberato Berrino
Sara Costantino
Loreta Pia Ciuffrida

– This research has been supported by a grant from Merck Serono;
– The fact that Merck Serono has reviewed the publication, and that the reviews and opinions described in the publications do not necessarily reflect those of Merck Serono