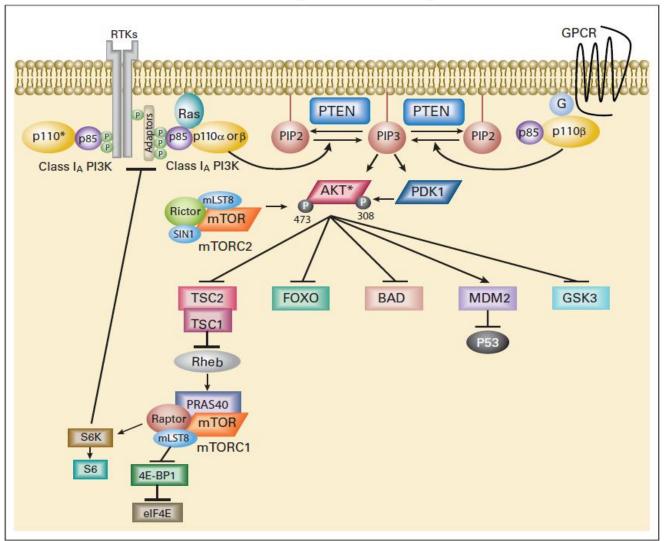
Emerging diagnostic and therapeutic targets in gynecological cancers

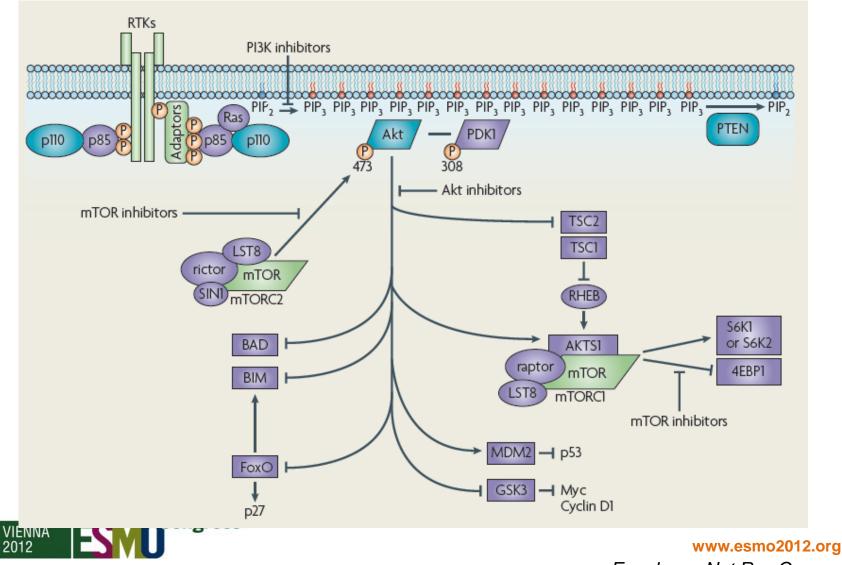
PI3K/AKT pathways in ovarian and endometrial cancers

Cristiana Sessa IOSI, Bellinzona HSR, Milan

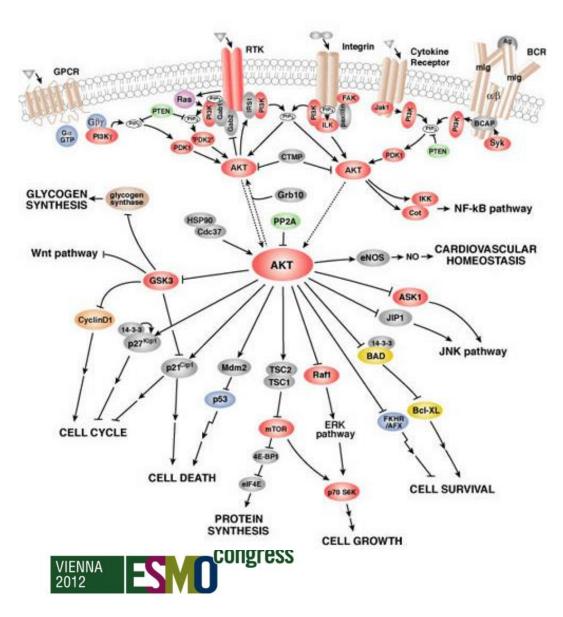


Disclosure information of Cristiana Sessa Relationships Relevant to this session

Advisory Board: OSI Corporate-sponsored research: OSI No other relevant relationship


The PI3K signaling cascade

Courtney et al, J Clin Onc, 2010



Components of PI3K-AKT pathway as therapeutic targets

Engelman, Nat Rev Cancer, 2009

Relevance of PI3K / AKT signalling axis in cancer

Multiple regulators altered

RTK activations: EGFR, MET, KIT, HER₂

Activating mutations: p110_a, AKT

Inactivating mut / deletions: PTEN, LKB₁

<u>Amplifications</u>: $p110_a$, p85, AKT_1 , AKT_2 , PDK_1 , p70S6K

PI3K / AKT pathway inhibitors in clinical development

Dual PI3K nd mTOR inhibitors

BEZ 235	Novartis	Phase II (endom)
PF 0469, PF 0521	Pfizer	Phase II (endom)
XL 765	Exelixis	Phase II
GDC 0980	Genentech	Phase II
	<u>PI3K inhibite</u>	<u>ors</u>
BKM 120	Novartis	Phase II (endom)
XL 147	Exelixis	Phase II (endom)
GDC 0941	Genentech	Phase II
CAL 101	Calistoga	Phase II
	<u>AKT inhibito</u>	<u>ors</u>
GSK 214 1795	GSK	Phase I
GDC 0068	Genentech	Phase IB
MK 2206	Merck	Phase IB
	<u>mTOR inhibit</u>	tors
OSI 027	Astella	Phase I
AZD 2014	Astrazeneca	Phase I
CC223	Celgene	Phase II
ESMO		v

VIENNA 2012

PI3K pathway alterations and ovarian cancer

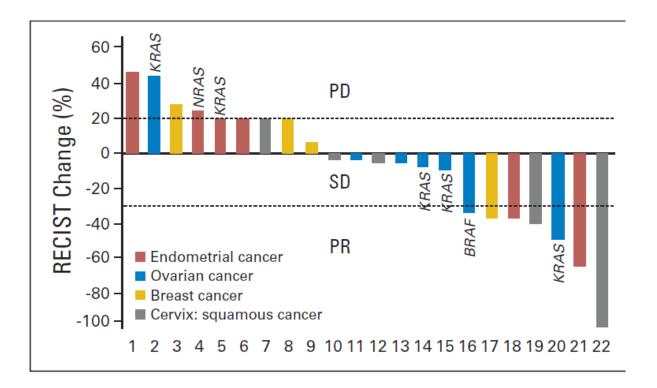
% of cancers with

Gene	Amplification	Mutations	Overexpression
PIK3CA	9-11%	8-12%	32%
PIK3R1	ND	ND	ND
AKT1	12-27%	2%	12%
KRAS	5%	2-24%	30-52%
BRAF		36%*	
PTEN	27% deletion	3-8%	

*exclusively in low grade serous

PIK3CA mutations and response to PI3K/AKT/mTOR inhibitors in patients with breast and gynecological malignancies

No of cases with mutations


	Ovary	Breast	Endometrium	Cervix
PIK3CA mut (%)	7 (28%)	6 (24%)	7 (28%)	5 (20%)
KRAS mut (%)	5*	1	3**	1
B RAF (%)	2	0	0	0
N RAS	1		2**	

- * 3 cases with both PI3K / KRAS mut
- ** 2 cases with both PI3K / KRAS or N RAS mut

Janku et al, JCO, 2012

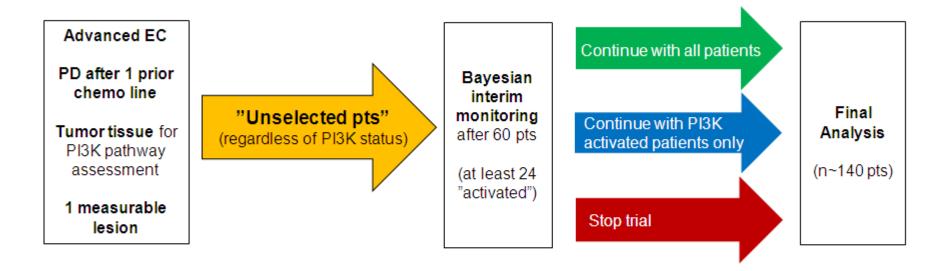
PIK3CA mutations and response to PI3K/AKT/mTOR inhibitors in patients with breast and gynecological malignancies

Waterfall plot of PIK3CA mut patients treated with PI3K / AKT / mTOR inhibitors

Janku et al, JCO, 2012

Development of combinations with PI3K Inhibitors in ovarian cancer

- Dysregulation of PI3K / AKT signalling contributes to resistance to anticancer therapies
- In ovarian cancer xenograft the combination of PI3K inhibitor and carboplatin seems to be more effective than either agent alone
- The high redundancy and cross interaction requires targeting the pathway at different levels
- Molecular characterization could be useful
 - in representative preclinical models for the development of effective combinations
 - in clinical trials for the retrospective identification of mutations indicative of sensitivity to the agents studied



mTOR inhibitors in endometrial cancer

	ROUTE	DOSE	1st LINE ACTIVITY	2nd LINE ACTIVITY
Temsirolimus NCIC IND 160	IV	25 mg Q wk (100mg/mo)	~25% RR (60% SD)	7% RR (2/27)
Everolimus	PO	10 mg QD (56mg/mo*)	ND	0% RR CBR 40%
Ridaforolimus Columbo et al.	IV	12.5 QDx5 Q2 wk (130mg/mo)	ND	9% RR (4/45) CBR 30%
Ridaforolimus NCIC IND 192	PO	40 QDx5 Q wk (160mg/mo*)	RR endpoint	205 RP2 PFS endpoint

PI3Ki in Endometrial Cancer Example: Single agent Phase 2 in 2nd-line EC

Objectives

- Primary: ORR by RECIST in patients with "PI3K pathway activation" AND in "all patients"
- Secondary: additional efficacy (ORR in "non-activated" pts, DCR, PFS), safety, biomarker

Signaling pathway abnormalities in endometrial cancer

	Endometrioid	Nonendometrioid
PTEN loss	35-50%	10%
PIK3CA mut	40%	15%
AKT1 mut	2%	
FGFR ₂	12%	
PIK3R ₁ mut	20%	
PIK3R ₂ mut	5%	
KRAS mut	17%	17%

Cheung et al, Cancer Discov., 2011

Signaling pathway abnormalities in endometrial cancer

Conclusions

- PI3K and KRAS pathways are drivers in the pathogenesis of EC
- Frequent mutations of PIK3R1 (p85a) and PIK3R2 (p85β) cause destabilization of PTEN and increase of AKT phosphorylation
- Cells with concomitant KRAS and PI3K pathway mutations have
 - >GI50% of rapamycin than with PI3K pathway mutation alone
 - relative sensitivity to MEK inhibition
- Rational targeted therapeutic combinations are needed to overcome feedback loops in the PI3K pathway

Cheung et al, Cancer Discov., 2011