Abstract 2862

Phase III Study of Crizotinib vs Pemetrexed or Docetaxel Chemotherapy in Patients with Advanced *ALK*-Positive NSCLC (PROFILE 1007)

Alice T. Shaw, Dong-Wan Kim, Kazuhiko Nakagawa, Takashi Seto, Lucio Crinó, Myung-Ju Ahn, Tommaso de Pas, Benjamin Besse, Benjamin J. Solomon, Fiona Blackhall, Yi-Long Wu, Michael Thomas, Kenneth J. O'Byrne, Denis Moro-Sibilot, D. Ross Camidge, Vera Hirsh, Tony Mok, Vanessa Tassell, Anna Polli, Pasi A. Jänne on behalf of all PROFILE 1007 investigators

Presented at the 37th ESMO Congress, Vienna, Austria, 2012

Disclosures

- Advisory relationship with Pfizer, Ariad, Chugai, Novartis, and Daiichi-Sankyo
- Research funding from AstraZeneca and Novartis

ALK Rearrangements in NSCLC

- ALK (anaplastic lymphoma kinase) is a tyrosine kinase target in several different cancers, including NSCLC
- In NSCLC, ALK is activated by chromosomal rearrangement, leading to constitutive kinase activation and oncogene addiction

Inversion

Translocation

Crizotinib: First-in-Class ALK Inhibitor

- Crizotinib is an orally available, small-molecule tyrosine kinase inhibitor (TKI) targeting ALK, ROS1, and MET
- Crizotinib has marked clinical activity in advanced ALK+ NSCLC (ORR ~60%, median PFS 8–10 months)^{1,2}

¹Camidge DR, Bang Y-J, Kwak EW, et al. *Lancet Oncol* 2012; Epub ahead of print ²Kim D-W, Ahn M-J, Shi Y, et al. Poster presented at ASCO 2012 (Abstract 7533)

Study Rationale

- In ALK+ NSCLC, crizotinib is associated with significant clinical responses; however, the activity of standard chemotherapy is uncertain
- In unselected NSCLC, single-agent chemotherapy in the second-line setting has limited efficacy^{1,2}
- We hypothesized that in a prospective randomized trial, crizotinib would have superior efficacy compared with standard second-line chemotherapy in advanced ALK+ NSCLC

Study Design

Endpoints Key entry criteria • Primary Crizotinib 250 mg BID • ALK+ by central - PFS (RECIST 1.1, PO, 21-day cycle **FISH testing**^a independent R (n=159)radiology Α • Stage IIIB/IV NSCLC Ν review) • 1 prior D Secondary chemotherapy 0 - ORR, DCR, DR (platinum-based) Μ - OS • ECOG PS 0-2 Pemetrexed 500 mg/m² Ζ – Safety Eb or Measurable disease Docetaxel 75 mg/m² Patient reported Treated brain IV, day 1, 21-day cycle outcomes N=318 (n=159)metastases allowed (EORTC QLQ-C30, LC13) **CROSSOVER TO CRIZOTINIB**

ON PROFILE 1005

^a*ALK* status determined using standard *ALK* break-apart FISH assay ^bStratification factors: ECOG PS (0/1 vs 2), brain metastases (present/absent), and prior EGFR TKI (yes/no)

PROFILE 1007: NCT00932893

Statistical Design

- Primary endpoint: PFS per independent radiology review
 - Sample size: 217 events (PD or death) needed to detect HR of 0.64 (or increase in median PFS from 4.5 to 7 months) at one-sided 2.5% significance level with 90% power
- Secondary endpoint: OS
 - Pre-specified interim OS analysis at time of final PFS analysis
 - 80% power to detect 44% increase in OS when 241 deaths occur

Participating Countries 105 sites in 21 countries

North America USA Canada

> South America Brazil

Europe France, Germany, Greece, Ireland, Hungary, Italy, Netherlands, Poland, Russia, Spain, Sweden, UK

> Asia-Pacific Japan, Korea, China, Hong Kong, Taiwan, Australia

Study Conduct

- Accrual period: February 5, 2010 February 23, 2012
- 347 patients randomized: 173 to crizotinib, 174 to chemotherapy^a
 - pemetrexed: 99/174 (57%)
 - docetaxel: 72/174 (41%)
- Data cut-off: March 30, 2012
- Study treatment duration, median cycles started (range)
 - crizotinib: 11 (1–37)
 - chemotherapy: 4 (1–30)
- Duration of follow-up, median (95% CI)
 - crizotinib: 12.2 months (11.0–13.4)
 - chemotherapy: 12.1 months (10.6–13.6)

Treatment could be continued beyond PD if ongoing clinical benefit

^a3 patients randomized did not receive chemotherapy

Baseline Characteristics

		Crizotinib (n=173)	Chemotherapy (n=174)
Age, years	Median (range)	51 (22-81)	49 (24–85)
Sex, n (%)	Male	75 (43)	78 (45)
	Female	98 (57)	96 (55)
Race, n (%)	Caucasian	90 (52)	91 (52)
	Asian	79 (46)	78 (45)
	Other	4 (2)	5 (3)
Smoking, ^a n (%)	Never smoker	108 (62)	111 (64)
	Ex-smoker	59 (34)	54 (31)
	Current smoker	5 (3)	9 (5)
Histology, ^b n (%)	Adenocarcinoma	164 (95)	164 (94)
	Non-adenocarcinoma	5 (3)	7 (4)
ECOG PS, ^a n (%)	0	72 (42)	65 (37)
	1	84 (49)	95 (55)
	2	16 (9)	14 (8)
Brain metastases, n (%)	Present	60 (35)	60 (35)
	Absent	113 (65)	114 (66)

^aData missing for crizotinib (n=1); ^bdata missing for 7 patients (crizotinib, n=4; chemotherapy, n=3)

Primary Endpoint: PFS by Independent Radiologic Review (ITT Population)

PFS of Crizotinib vs Pemetrexed or Docetaxel

^aAs-treated population: excludes 1 patient in crizotinib arm who did not receive study treatment and 3 patients in chemotherapy arm who did not receive study treatment; ^bvs crizotinib

PFS Subgroup Analysis

Subgroup	n ^a		HR (95% CI)
All patients	347		0.49 (0.37–0.64)
Age ≥65 years	50	• • •	0.54 (0.27–1.08)
Age <65 years	297		0.49 (0.37–0.65)
Male	153		0.52 (0.34–0.77)
Female	194	— •—	0.48 (0.34–0.68)
Non-Asian	190		0.45 (0.30–0.66)
Asian	157	— •—	0.53 (0.36–0.76)
Non-smoker	219		0.45 (0.32–0.63)
Smoker or ex-smoker	127		0.53 (0.34–0.83)
Adenocarcinoma	328		0.50 (0.38–0.66)
Non-adenocarcinoma	12	H-0	0.12 (0.01–1.02)
ECOG PS 0/1	313	⊢ •−-•	0.48 (0.36–0.63)
ECOG PS 2	34	· · · · · · · · · · · · · · · · · · ·	0.31 (0.12–0.86)
Brain metastases present	120	· • • •	0.67 (0.44–1.03)
Brain metastases absent	227		0.43 (0.30–0.60)
Prior EGFR TKI	41	· · · · · · · · · · · · · · · · · · ·	0.48 (0.22–1.03)
No prior EGFR TKI	306		0.49 (0.37–0.66)
^a Data missing for smoking state and tumor histology (n=7)	us (n=1)	0 1	2
		HR	
		Favors crizotinib	Favors chemotherapy

ORR^a by Independent Radiologic Review

ORR ratio: 3.4 (95% CI: 2.5 to 4.7); P<0.0001

^aRECIST v1.1; ^bITT population; ^cas-treated population

Interim Analysis of OS

^bHR adjusted for crossover using rank-preserving structural failure time method: 0.83 (0.36 to 1.35)

Common AEs of Any Cause in ≥15% of Patients ≥5% difference between groups^a

_	Crizotinib (n=172), n (%)		Chemotherapy (n=171), n (%)	
	Any grade	Grade 3/4	Any grade	Grade 3/4
Vision disorder ^b	103 (60)	0 (0)	16 (9)	0 (0)
Diarrhea	103 (60)	0 (0)	33 (19)	1 (1)
Nausea ^c	94 (55)	2 (1)	64 (37)	1 (1)
Vomiting ^c	80 (47)	2 (1)	30 (18)	0 (0)
Constipation	73 (42)	4 (2)	39 (23)	0 (0)
Elevated transaminases ^b	66 (38)	27 (16)	25 (15)	4 (2)
Edema ^b	54 (31)	0 (0)	27 (16)	0 (0)
Upper respiratory infection ^b	44 (26)	0 (0)	22 (13)	1 (1)
Dysgeusia	44 (26)	0 (0)	16 (9)	0 (0)
Dizziness ^b	37 (22)	1 (1)	14 (8)	0 (0)
Fatigue	46 (27)	4 (2)	57 (33)	7 (4)
Alopecia	14 (8)	0 (0)	35 (21)	0 (0)
Dyspnea ^{b,d}	23 (13)	7 (4)	32 (19)	1 (1)
Rash	15 (9)	0 (0)	29 (17)	0 (0)

^aNot adjusted for differential treatment duration; ^bclustered term; ^cantiemetic use significantly higher in chemo arm vs crizotinib arm (67% vs 20%); patients in chemo arm also received more dexamethasone (94% vs 25%); ^dgrade 5 dyspnea (n=1; <1%) reported in each treatment arm

Grade 3/4 AEs of Any Cause in ≥3% of Patients

	n (%)	
	Crizotinib (n=172)	Chemotherapy (n=171)
Elevated transaminases ^a	27 (16)	4 (2)
Pulmonary embolism ^a	9 (5)	3 (2)
Dyspnea ^a	7 (4)	5 (3)
Pneumonia	6 (4)	3 (2)
Hypokalemia	6 (4)	0 (0)
ECG QTc prolonged	6 (4)	0 (0) ^b
Neutropenia ^a	23 (13)	33 (19)
Febrile neutropenia	1 (1)	16 (9)
Anemia ^a	4 (2)	9 (5)
WBC decreased	2 (1)	8 (5)
Fatigue	4 (2)	7 (4)

^aClustered term; ^bno on-treatment assessments

Grade 5 AEs of Any Cause and Permanent Discontinuations Due to AEs

	n (%)	
	Crizotinib (n=172)	Chemotherapy (n=171)
Total deaths	25 (15) ^a	7 (4)
Cause		
Disease progression	14 (8)	3 (2)
Study-treatment-related	3 (2)	1 (1)
Arrhythmia	1 (1)	0 (0)
ILD or pneumonitis	2 (1)	0 (0)
Sepsis	0 (0)	1 (1)
Other ^b	8 (5)	3 (2)
Unknown cause	1 (1)	0 (0)
Permanent discontinuations	30 (17)	23 (13)
Study-treatment-related	11 (6)	17 (10)

ARDS, acute respiratory distress syndrome; ILD, interstitial lung disease

^aOne death attributed to two causes (ARDS and sepsis)

^bCrizotinib: ARDS, cognitive disorder, dyspnea, pneumonia, pulmonary embolism, respiratory failure, sepsis, and sudden death; chemotherapy: dyspnea, pericardial effusion, and tumor hemorrhage

Patient Reported Outcomes Symptoms and Quality of Life^a

- SYMPTOMS: Greater improvement from baseline in cough, dyspnea, fatigue, alopecia, insomnia, and pain with crizotinib (statistically significant: all P<0.0001)^b
- QUALITY OF LIFE: Greater improvement from baseline in global quality of life in patients treated with crizotinib (statistically significant: P<0.0001)^b

^aEORTC QLQ-C30 and QLQ-LC13; ^bbased on a repeated measures mixed-effects model with an intercept, treatment by time interaction, and subscale baseline score; not adjusted for multiplicity of testing

Patient Reported Outcomes Time to Deterioration in Lung Cancer Symptoms^a

^aComposite of chest pain, cough, and dyspnea

Summary and Conclusion (1)

- PROFILE 1007 is the first randomized phase III trial in advanced ALK+ NSCLC comparing crizotinib with standard chemotherapy
- Crizotinib significantly prolongs PFS and improves ORR compared with single-agent chemotherapy in advanced previously treated ALK+ NSCLC
- No statistically significant difference in OS was observed between crizotinib and chemotherapy, but interim analysis was immature and may have been confounded by crossover

Summary and Conclusion (2)

- Crizotinib has a distinct side effect profile when compared with single-agent chemotherapy and is generally tolerable and manageable
- Compared with chemotherapy, crizotinib is associated with significantly greater improvement from baseline in both lung cancer symptoms and quality of life
- These results establish crizotinib as the standard of care for patients with advanced previously treated ALK+ NSCLC

Acknowledgments

- We would like to thank all of the participating patients and their families, as well as the global network of PROFILE 1007 research nurses, study coordinators, and operations staff
- Thank you to all of the PROFILE 1007 investigators:

Australia: M Boyer; Brazil: C Barrios, C da Silva, C Ferreira, C Mathias, M Zereu; Canada: G Nicholas, R Wierzbicki; China: C Bai, B Han, S Lu, S Qin, Y Shi, L Zhang, C Zhou; France: F Barlesi, J Cadranel, R Gervais, M Poudenx; Germany: W Eberhardt, N Frickhofen, F Griesinger, R Huber, H-E Laack, M Reck, J Stoehlmacher-Williams, J Wolf; Greece: K Zarogoulidis; Hong Kong: J Ho, W-Y Ng; Hungary: G Losonczy, J Strausz; Ireland: P Donnellan; Italy: D Amoroso, E Baldini, P Bidoli, F Di Costanzo, L Gianni, C Gridelli, F Grossi, G Scagliotti, S Siena; Japan: M Harada, T Hida, K Kiura, M Nishio, H Nokihara, Y Ohe, M Satouchi, N Yamamoto; Korea, Republic of: J-Y Han; Netherlands: H Groen; Poland: J Jassem, A Kazarnowicz, A Szczesna; Russian Federation: G Manikhas, S Orlov; Spain: E Carcereny Costa, F Cardenal Alemany, E Felip Font, R Garcia Campelo, Y Garcia Garcia, B Hernandez Marin, L Paz-Ares Rodriguez, A Taus Garcia; Sweden: S Friesland; Taiwan: P-C Yang; United Kingdom: E Boleti, S Popat, J Spicer; United States: L Bazhenova, A Chiappori, D Gandara, E Garon, S Gettinger, B Halmos, S Hamburg, L Horn, G Otterson, R Patel, N Pennell, H Raftopoulos, G Riely, R Salgia, A Sandler, M Socinski, T Stinchcombe, H Wakelee, H West

• This study was supported by funding from Pfizer Inc. Editorial support was provided by Wendy Sacks at ACUMED[®] (New York, NY, USA) with funding from Pfizer Inc.