Clinical Activity and Safety of Anti-Programmed Death-1 (PD-1) (BMS-936558/MDX-1106/ONO-4538) in Patients (pts) With Advanced Melanoma (MEL)

J. Sosman,1 M. Sznol,2 D.F. McDermott,3 R. Carvajal,4 D.P. Lawrence,5 S.L. Topalian,6 M. Atkins,7 J. Powderly,8 W. Sharfman,6 D. Smith,9 J.M. Wigginton,10 G. Kollia,10 A. Gupta,10 D. McDonald,10 F.S. Hodi11

1Vanderbilt University Medical Center, Nashville, TN; 2Yale Cancer Center, New Haven, CT; 3Beth Israel Deaconess Medical Center, Boston, MA; 4Memorial Sloan-Kettering Cancer Center, New York, NY; 5Massachusetts General Hospital Cancer Center, Boston, MA; 6Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; 7Georgetown Lombardi Comprehensive Cancer Center, Washington, DC; 8Carolina Bio-Oncology Institute, Huntersville, NC; 9University of Michigan, Ann Arbor, MI; 10Bristol-Myers Squibb, Princeton, NJ; 11Dana-Farber Cancer Institute, Boston, MA;
Disclosures

- Dr. Jeffrey A. Sosman has the following disclosures:
 - Consults and participates on advisory boards for Roche-Genentech, Millennium Pharmaceuticals, and GlaxoSmithKline
 - Receives research funding from Bristol-Myers Squibb, Millennium Pharmaceuticals, Roche-Genentech, and GlaxoSmithKline
Role of PD-1 Pathway in Cancer

- PD-1 expression on tumor-infiltrating lymphocytes (TILs)
 - Associated with decreased cytokine production and effector function\(^1\)
- PD-1 expression and melanoma\(^2\)
 - Patients with stage IV disease had significantly higher levels of PD-1 on peripheral CD8+/CD4+ T-cells than did healthy controls
 - PD-1 expression on CD8+ TILs increases as disease progresses
- PD-L1 expression and melanoma
 - PD-L1 tumor expression may correlate with adaptation to immune attack and response to therapeutic PD-1 blockade\(^3,4\)

Role of PD-1 in Suppressing Antitumor Immunity

Differences between blocking CTLA4/B7 and blocking PD-1/PD-L1

Activation (cytokines, lysis, proliferation, migration)
BMS-936558 (MDX-1106/ONO-4538)

- Fully human IgG4 anti-human PD-1 blocking Ab1
- No known Fc function (ADCC, CDC)
- High affinity for PD-1 ($K_D \sim 3$ nM), blocks binding of both PD-L1 (B7-H1) and PD-L2 (B7-DC)
- Manageable safety profile and preliminary evidence of clinical activity in patients with treatment-refractory solid tumors1

1Brahmer J, et al. \textit{J Clin Oncol} 2010; 28:3167-75
Study Design: Phase I Multi-dose Regimen

8-wk treatment cycle

Day 1 15 29 43 57 SCANS

* Dose administered IV Q2wk

Rapid PD or clin. deterioration → Off Study

Unacceptable toxicity → Follow-up every 8 wks x 6 (48 wks)

CR/PR/SD or PD but clinically stable → Treat to confirmed CR, worsening PD, unacceptable toxicity, or 12 cycles (96 wks)

Eligibility: Advanced MEL, RCC, NSCLC, CRC, or CRPC with PD after 1-5 systemic therapies
Study Objectives and Conduct

- **Primary**
 - Assessment of safety and tolerability of BMS-936558
- **Secondary/Exploratory objectives** include preliminary efficacy and pharmacokinetics
- **Accrual completed** (Dec. 2011); patient assessment ongoing
- **Current analysis** for patients as of July 3, 2012
 - 304 patients (107 with MEL) were evaluable for safety
 - 294 patients (106 with MEL) were evaluable for clinical activity
Baseline Characteristics For MEL Cohort

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n=107</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, years (range)</td>
<td>61 (29 – 85)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>72 (67)</td>
</tr>
<tr>
<td>ECOG PS, n (%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>66 (62)</td>
</tr>
<tr>
<td>1</td>
<td>37 (35)</td>
</tr>
<tr>
<td>2</td>
<td>3 (3)</td>
</tr>
</tbody>
</table>

- Approximately 25% received 3 or more prior therapies
BMS-936558–Related Adverse Events

<table>
<thead>
<tr>
<th>Drug-Related Adverse Event</th>
<th>All Grades</th>
<th>Grades 3–4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot Pop* ***;†</td>
<td>MEL</td>
</tr>
<tr>
<td>No. (%) of Patients, All Doses</td>
<td>All Grades</td>
<td>MEL</td>
</tr>
<tr>
<td>Any adverse event</td>
<td>220 (72)</td>
<td>88 (82)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>78 (26)</td>
<td>33 (31)</td>
</tr>
<tr>
<td>Rash</td>
<td>41 (14)</td>
<td>24 (22)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>36 (12)</td>
<td>19 (18)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>31 (10)</td>
<td>15 (14)</td>
</tr>
<tr>
<td>Nausea</td>
<td>24 (8)</td>
<td>9 (8)</td>
</tr>
<tr>
<td>Appetite ↓</td>
<td>24 (8)</td>
<td>7 (7)</td>
</tr>
<tr>
<td>Hemoglobin ↓</td>
<td>18 (6)</td>
<td>6 (6)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>16 (5)</td>
<td>5 (5)</td>
</tr>
</tbody>
</table>

*AEs occurring in ≥5% of the total population
**Pneumonitis occurred in <5 % of the total population
† Drug-related renal failure/nephritis was occurred in 1% of the total population, with no Grade 3–4 drug-related events based on an analysis on July 3, 2012
‡Common grade 3–4 AEs also included lymphopenia (3 pts) and abdominal pain and lipase increased (2 each). An additional 27 grade 3–4 drug-related AEs were observed and a single patient could exhibit one or more of these AEs
Summary of Key Safety Results

- For the entire study group, the maximum tolerated dose was not reached at doses up to 10 mg/kg.
- Grade 3-4 drug-related AEs occurred in 21% (n=22) of all treated melanoma patients; the most common were lymphopenia (n=3), fatigue (2), diarrhea (2), abdominal pain (2), and lipase increased (2).
- There was no apparent relationship between drug dose and AE frequency in all treated patients and in melanoma patients.
- Grade 2 pneumonitis was reported in 1 melanoma patient; 3 drug-related deaths (2 NSCLC, 1 CRC) occurred in patients with pneumonitis.
Clinical Activity of BMS-936558 in Melanoma Patients

<table>
<thead>
<tr>
<th>Population</th>
<th>Dose (mg/kg)</th>
<th>Pts n</th>
<th>ORR n (%)</th>
<th>Median Duration of Response (95%CI)</th>
<th>Individual Pt Responses</th>
<th>PFSR at 24 wk (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All MEL</td>
<td>0.1-10</td>
<td>106</td>
<td>33 (31)</td>
<td>—</td>
<td>Range: 1.8+ to 25.7</td>
<td>42</td>
</tr>
<tr>
<td>MEL</td>
<td>0.1</td>
<td>17</td>
<td>6 (35)</td>
<td>NE</td>
<td>3.7+, 4.2+, 5.6, 5.6, 5.6+, 11.2+</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>18</td>
<td>5 (28)</td>
<td>NE</td>
<td>1.8+, 4.2, 7.4+, 7.6+, 9.2+</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>34</td>
<td>11 (32)</td>
<td>24 months (22.9 – NE)</td>
<td>1.9+, 5.5+, 7.5, 7.5, 11.1+, 13.4+, 18.4+, 22.9, 23.2+, 24, 24.9+</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>17</td>
<td>7 (41)</td>
<td>NE</td>
<td>9.2+, 9.3, 11.1, 12.9, 18.8+, 22+, 22.4+</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>4 (20)</td>
<td>25.7 months (17.0 – 25.7)</td>
<td>17, 18+, 24.6+, 25.7</td>
<td>30</td>
</tr>
</tbody>
</table>

NE, not currently estimable

- ORR was assessed using modified RECIST v1.0
- 4 additional MEL patients had an unconventional pattern of response and were not classified as responders by the conventional RECIST
- Of 33 patients with OR (all dose levels)
 - 29 initiated treatment ≥1 year prior to July 3, 2012 and 16 had response lasting ≥1 year
 - 4 initiated treatment <1 year prior to July 3, 2012 and 4 had responses ranging from 1.8 to 5.5 months
Changes in Target Lesions Over Time in Melanoma Patients (3mg/kg)

* 96 weeks represents the protocol-specified maximum duration of active therapy
Complete Regression of Metastatic Melanoma (BMS-936558, 3 mg/kg) Associated With Vitiligo

History: 62-year-old male had previously developed PD following IL-2, temozolomide, and multiple surgeries.
Correlation of PD-L1 expression in pretreatment tumor biopsies with clinical outcomes

42 pts include 18 MEL, 10 NSCLC, 7 CRC, 5 RCC, and 2 CRPC.

| Association Between Pretreatment Tumor PD-L1 Expression and Clinical Response |
|-----------------------------|--------------------------|-----------------------------|-----------------------------|
| **Response Status** | **PD-L1 Positive no. (%)** | **PD-L1 Negative no. (%)** | **Total no. (%)** |
| CR/PR | 9 (36) | 0 | 9 (21) |
| Nonresponder | 16* (64) | 17 (100) | 33 (79) |
| All Patients | 25 | 17 | 42 |

*2 pts still under evaluation

* analysis not pre-planned and based on subset of subjects

Summary

- BMS-936558 can be administered safely in an outpatient setting to patients with advanced melanoma, with durable clinical benefit.
- Objective responses were observed within each dose cohort (0.1 – 10 mg/kg).
- Responses are durable and are ongoing in a majority of patients.
- Blockade of the PD-1 pathway may represent a new immune therapy for patients with melanoma.
- Preliminary data correlating PD-L1 expression in pretreatment tumor biopsies with clinical outcomes will be further explored.
- Registration trials of BMS-936558 in patients with melanoma are planned.
Acknowledgments

- The patients and their families
- The study sites enrolling patients to the trial
- Support for this work from Bristol-Myers Squibb and Ono Pharmaceutical Company, Ltd.
- All authors contributed to and approved the presentation; assistance with medical writing, editing and preparation of the slides was provided by StemScientific, funded by Bristol-Myers Squibb
Principal Investigators Participating on the Study

Dr. S.J. Antonia, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
Dr. J.R. Brahmer, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
Dr. R.D. Carvajal, Memorial Sloan-Kettering Cancer Center, New York, NY
Dr. F.S. Hodi, Dana-Farber Cancer Institute, Boston, MA
Dr. H. Kluger, Yale Cancer Center, New Haven, CT
Dr. D.P. Lawrence, Massachusetts General Hospital Cancer Center, Boston, MA
Dr. P. Leming, The Christ Hospital, Cincinnati, OH
Dr. D. McDermott, Beth Israel Deaconess Medical Center, Boston, MA
Dr. D. Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ
Dr. J.D. Powderly, Carolina BioOncology Institute, Huntersville, NC
Dr. D.C. Smith, University of Michigan, Ann Arbor, MI
Dr. J. Sosman, Vanderbilt University Medical Center, Nashville, TN
Dr. D.R. Spigel, Sarah Cannon Research Institute / Tennessee Oncology, PLLC, Nashville, TN
Dr. M. Sznol, Yale Cancer Center, New Haven, CT