Clinical Activity and Safety of Anti-Programmed Death-1 (PD-1) (BMS-936558/MDX-1106/ONO-4538) in Patients (pts) With Advanced Melanoma (MEL)

J. Sosman,¹ M. Sznol,² D.F. McDermott,³ R. Carvajal,⁴ D.P. Lawrence,⁵ S.L. Topalian,⁶ M. Atkins,⁷ J. Powderly,⁸ W. Sharfman,⁶ D. Smith,⁹ J.M. Wigginton,¹⁰ G. Kollia,¹⁰ A. Gupta,¹⁰ D. McDonald,¹⁰ F.S. Hodi¹¹

 ¹Vanderbilt University Medical Center, Nashville, TN; ²Yale Cancer Center, New Haven, CT; ³Beth Israel Deaconess Medical Center, Boston, MA; ⁴Memorial Sloan-Kettering Cancer Center, New York, NY;
 ⁵Massachusetts General Hospital Cancer Center, Boston, MA; ⁶Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; ⁷Georgetown Lombardi Comprehensive Cancer Center, Washington, DC; ⁸Carolina Bio-Oncology Institute, Huntersville, NC; ⁹University of Michigan, Ann Arbor, MI
 ¹⁰Bristol-Myers Squibb, Princeton, NJ; ¹¹Dana-Farber Cancer Institute, Boston, MA;

Disclosures

• Dr. Jeffrey A. Sosman has the following disclosures:

- Consults and participates on advisory boards for for Roche- Genentech, Millennium Pharmaceuticals, and GlaxoSmithKline
- Receives research funding from Bristol-Myers Squibb, Millennium Pharmaceuticals, Roche-Genentech, and GlaxoSmithKline

Role of PD-1 Pathway in Cancer

PD-1 expression on tumor-infiltrating lymphocytes (TILs)

 Associated with decreased cytokine production and effector function¹

• PD-1 expression and melanoma²

- Patients with stage IV disease had significantly higher levels of PD-1 on peripheral CD8+/CD4+ T-cells than did healthy controls
- PD-1 expression on CD8+ TILs increases as disease progresses

• PD-L1 expression and melanoma

 PD-L1 tumor expression may correlate with adaptation to immune attack and response to therapeutic PD-1 blockade^{3,4}

¹Ahmadzadeh M, et al. *Blood.* 2009;114:1537-44. ²Hino R, et al. *Cancer.* 2010;116:1757-66. ³Brahmer JR, et al. *J Clin Oncol.* 2010;28:3167-75. ⁴Taube JM, et al. *Science Transl Med.* 2012;4:127ra37

Role of PD-1 in Suppressing Antitumor Immunity

Differences between blocking CTLA4/B7 and blocking PD-1/PD-L1

BMS-936558 (MDX-1106/ONO-4538)

- Fully human IgG4 anti-human PD-1 blocking Ab¹
- No known Fc function (ADCC, CDC)
- High affinity for PD-1 (K_D ~3 nM), blocks binding of both PD-L1 (B7-H1) and PD-L2 (B7-DC)
- Manageable safety profile and preliminary evidence of clinical activity in patients with treatment-refractory solid tumors¹

¹Brahmer J, et al. *J Clin Oncol* 2010; 28:3167-75

Study Design: Phase I Multi-dose Regimen

with PD after 1-5 systemic therapies

Study Objectives and Conduct

Primary

- Assessment of safety and tolerability of BMS-936558
- Secondary/Exploratory objectives include preliminary efficacy and pharmacokinetics
- Accrual completed (Dec. 2011); patient assessment ongoing
- Current analysis for patients as of July 3, 2012
 - 304 patients (107 with MEL) were evaluable for safety
 - 294 patients (106 with MEL) were evaluable for clinical activity

Baseline Characteristics For MEL Cohort

Characteristic	n=107
Median age, years (range)	61 (29 – 85)
Male, n (%)	72 (67)
ECOG PS, n (%)	
0	66 (62)
1	37 (35)
2	3 (3)

 Approximately 25% received 3 or more prior therapies

BMS-936558–Related Adverse Events

Drug-Related Adverse Event	All Grades		Grades 3–4	
	Tot Pop*,**,†	MEL	Tot Pop	MEL [‡]
	No. (%) of Patients, All Doses			
Any adverse event	220 (72)	88 (82)	45 (15)	22 (21)
Fatigue	78 (26)	33 (31)	5 (2)	2 (2)
Rash	41(14)	24 (22)		—
Diarrhea	36 (12)	19 (18)	3 (1)	2 (2)
Pruritus	31 (10)	15 (14)	1 (0.3)	<u> </u>
Nausea	24 (8)	9 (8)	1 (0.3)	1 (1)
Appetite 🕇	24 (8)	7 (7)		<u> </u>
Hemoglobin 🕹	18 (6)	6 (6)	1 (0.3)	1 (1)
Pyrexia	16 (5)	5 (5)		

*AEs occurring in \geq 5% of the total population

** Pneumonitis occurred in <5 % of the total population

⁺ Drug-related renal failure/nephritis was occurred in 1% of the total population, with no Grade 3–4 drug-related events based on an analysis on July 3, 2012

[‡]Common grade 3–4 AEs also included lymphopenia (3 pts) and abdominal pain and lipase increased (2 each). An additional 27 grade 3–4 drug-related AEs were observed and a single patient could exhibit one or more of these AEs

Summary of Key Safety Results

- For the entire study group, the maximum tolerated dose was not reached at doses up to 10 mg/kg
- Grade 3-4 drug-related AEs occurred in 21% (n=22) of all treated melanoma patients; the most common were lymphopenia (n=3), fatigue (2), diarrhea (2), abdominal pain (2), and lipase increased (2)
- There was no apparent relationship between drug dose and AE frequency in all treated patients and in melanoma patients
- Grade 2 pneumonitis was reported in 1 melanoma patient;
 3 drug-related deaths (2 NSCLC, 1 CRC) occurred in patients with pneumonitis

Clinical Activity of BMS-936558 in Melanoma Patients

Population	Dose (mg/kg)	Pts n	ORR n (%)	Median Duration of Response (95%CI)	Individual Pt Responses	PFSR at 24 wk (%)
All MEL	0.1-10	106	33 (31)	_	— Range: 1.8+ to 25.7	
	0.1	17	6 (35)	NE	3.7+, 4.2+, 5.6, 5.6, 5.6+, 11.2+	41
MEL	0.3	18	5 (28)	NE	1.8+, 4.2, 7.4+, 7.6+, 9.2+	33
	1	34	11 (32)	24 months (22.9 – NE)	1.9+, 5.5+, 7.5, 7.5, 11.1+, 13.4+, 18.4+, 22.9, 23.2+, 24, 24.9+	48
	3	17	7 (41)	NE	9.2+, 9.3, 11.1, 12.9, 18.8+, 22+, 22.4+	55
	10	20	4 (20)	25.7 months (17.0 – 25.7)	17, 18+, 24.6+, 25.7	30

NE, not currently estimable

- ORR was assessed using modified RECIST v1.0
- 4 additional MEL patients had an unconventional pattern of response and were not classified as responders by the conventional RECIST
- Of 33 patients with OR (all dose levels)
 - 29 initiated treatment ≥1 year prior to July 3, 2012 and 16 had response lasting ≥1 year
 - 4 initiated treatment <1 year prior to July 3, 2012 and 4 had responses ranging from 1.8 to 5.5 months

Changes in Target Lesions Over Time in Melanoma Patients (3mg/kg)

* 96 weeks represents the protocol-specified maximum duration of active therapy

Complete Regression of Metastatic Melanoma (BMS-936558, 3 mg/kg) Associated With Vitiligo

<u>History</u>: 62-year-old male had previously developed PD following IL-2, temozolomide, and multiple surgeries.

Correlation of PD-L1 expression in pretreatment tumor biopsies with clinical outcomes

42 pts include 18 MEL, 10 NSCLC, 7 CRC, 5 RCC, and 2 CRPC.

Melanoma

Association Between Pretreatment Tumor PD-L1 Expression and Clinical Response					
Response Status	PD-L1 Positive no. (%)	PD-L1 Negative no. (%)	Total no. (%)		
CR/PR	9 (36)	0	9 (21)		

Topalian S, et al. NEJM 2012;366:2443-2454.	
---	--

16* (64)

25

Nonresponder

All Patients

33 (79)

42

17 (100)

17

Summary

- BMS-936558 can be administered safely in an outpatient setting to patients with advanced melanoma, with durable clinical benefit
- Objective responses were observed within each dose cohort (0.1 – 10 mg/kg)
- Responses are durable and are ongoing in a majority of patients
- Blockade of the PD-1 pathway may represent a new immune therapy for patients with melanoma
- Preliminary data correlating PD-L1 expression in pretreatment tumor biopsies with clinical outcomes will be further explored
- Registration trials of BMS-936558 in patients with melanoma are planned

Acknowledgments

- The patients and their families
- The study sites enrolling patients to the trial
- Support for this work from Bristol-Myers Squibb and Ono Pharmaceutical Company, Ltd.
- All authors contributed to and approved the presentation; assistance with medical writing, editing and preparation of the slides was provided by StemScientific, funded by Bristol-Myers Squibb

Principal Investigators Participating on the Study

- Dr. S.J. Antonia, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Dr. J.R. Brahmer, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
- Dr. R.D. Carvajal, Memorial Sloan-Kettering Cancer Center, New York, NY
- Dr. F.S. Hodi, Dana-Farber Cancer Institute, Boston, MA
- Dr. H. Kluger, Yale Cancer Center, New Haven, CT
- Dr. D.P. Lawrence, Massachusetts General Hospital Cancer Center, Boston, MA
- Dr. P. Leming, The Christ Hospital, Cincinnati, OH
- Dr. D. McDermott, Beth Israel Deaconess Medical Center, Boston, MA
- Dr. D. Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ
- Dr. J.D. Powderly, Carolina BioOncology Institute, Huntersville, NC
- Dr. D.C. Smith, University of Michigan, Ann Arbor, MI
- Dr. J. Sosman, Vanderbilt University Medical Center, Nashville, TN
- Dr. D.R. Spigel, Sarah Cannon Research Institute / Tennessee Oncology, PLLC, Nashville, TN
- Dr. M. Sznol, Yale Cancer Center, New Haven, CT