www.esmo.org

European Society for Medical Oncology

ESMO Hamilton Fairley Award lecture From empirical to rational treatment of human cancers cells and their stroma

JY Blay Lyon, France FSG, EORTC

Major successes in clinical oncology came from an in- depth understanding of the biology of the tumor

Target the histotype?

The histotype, the driver mutation, the drug

- Leukemia
- Sarcoma
- Melanoma
- NSCLC
- BCC, Medulloblastoma
- Breast Carcinoma
- Gastric adenocarcinoma
- Renal cell carcinoma

CML,CMML, HES GIST, DFSP, PVNS, IMT, WPLPS KIT or BRAF mutations HER1 or Alk or DDR2 mutations Hh pathway alterations HER2, BRCA1 HER2 amplification VHL loss..

. . .

Target the primary mutation?

The histotype, the driver mutation, the drug

- KIT
- PDGFR
- Alk
- HER1
- HER2
- Hh
- VHL/HIF1A/VEGF
- mTOR (TSC/PI3K/Akt)
- BRAF

GIST, Melanoma, ALL, Mast. **CMML, HES, DFSP NSCLC, IMT, Neuroblastoma? NSCLC, HN?** Breast Ca, Gastric Ca **BCC**, Medullo, chondroS RCC, NET **RCC, NET, Breast Ca** MMM, other BRAF mut?

Target the primary mutation?

The disease, the driver mutation, the drug

Imatinib	KIT, PDGFR,CSF1R,+	GIST, MMM, ALL, Mast. CMML, HES, DFSP, others?
Crizotinib	Alk, Met,+	NSCLC, IMT, GC, others?
Trastuzumab	HER2	BC,GC, others?
Erlotinib	HER1	NSCLC, others?
Sunitinib	KIT,PDGFR,VEGFR,RET,+	RCC, NET, others?
Vemurafenib	BRAF	MMM, others?
Everolimus	mTOR	RCC,NET,Br.Ca, others?

Major successes in clinical oncology came from an in-depth understanding of the biology of the tumor

Vol 463 18 February 2010 doi:10.1038/nature08822

nature

ARTICLES

The landscape of somatic copy-number alteration across human cancers

Rameen Beroukhim^{1,3,4,5}*, Craig H. Mermel^{1,3}*, Dale Porter⁸, Guo Wei¹, Soumya Raychaudhuri^{1,4}, Jerry Donovan⁸, Jordi Barretina^{1,3}, Jesse S. Boehm¹, Jennifer Dobson^{1,3}, Mitsuyoshi Urashima⁹, Kevin T. Mc Henry⁸, Reid M. Pinchback¹, Azra H. Ligon⁴, Yoon-Jae Cho⁶, Leila Haery^{1,3}, Heidi Greulich^{1,3,4,5}, Michael Reich¹, Wendy Winckler¹, Michael S. Lawrence¹, Barbara A. Wei^{1,1}, Kumiko E. Tanaka^{1,3}, Derek Y. Chiang^{1,3,1,3}, Adam J. Bass^{1,3,4}, Alice Loo⁸, Carter Hoffman^{1,3}, John Prensner^{1,3}, Ted Liefeld¹, Qing Gao¹, Derek Yecies³, Sabina Signoretti^{3,4}, Elizabeth Maher¹⁰, Frederic J. Kaye¹¹, Hidefumi Sasaki¹², Joel E. Tepper¹³, Jonathan A. Fletcher⁴, Josep Tabernero¹⁴, José Baselga¹⁴, Ming-Sound Tsao¹⁵, Francesca Demichelis¹⁶, Mark A. Rubin¹⁶, Pasi A. Janne^{3,4}, Mark J. Daly^{1,17}, Carmelo Nucera⁷, Ross L. Levine¹⁸, Benjamin L. Ebert^{1,4,5}, Stacey Gabriel¹, Anił K. Rustgi¹⁹, Cristina R. Antonescu¹⁸, Marc Ladanyi¹⁸, Anthony Letai³, Levi A. Garraway^{1,3}, Massimo Loda^{3,4}, David G. Beer²⁰, Lawrence D. True²¹, Aikou Okamoto²², Scott L. Pomeroy⁶, Samuel Singer¹⁸, Todd R. Golub^{1,3,23}, Eric S. Lander^{1,2,5}, Gad Getz¹, William R. Sellers⁸ & Matthew Meyerson^{1,3,5}

A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the *BCL2* family of apoptosis regulators and the NF- κ B pathway. We show that cancer cells containing amplifications surrounding the *MCL1* and *BCL2L1* anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.

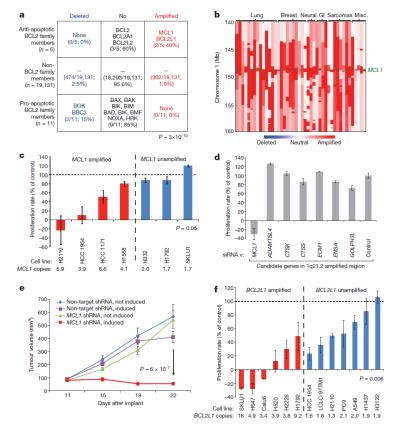
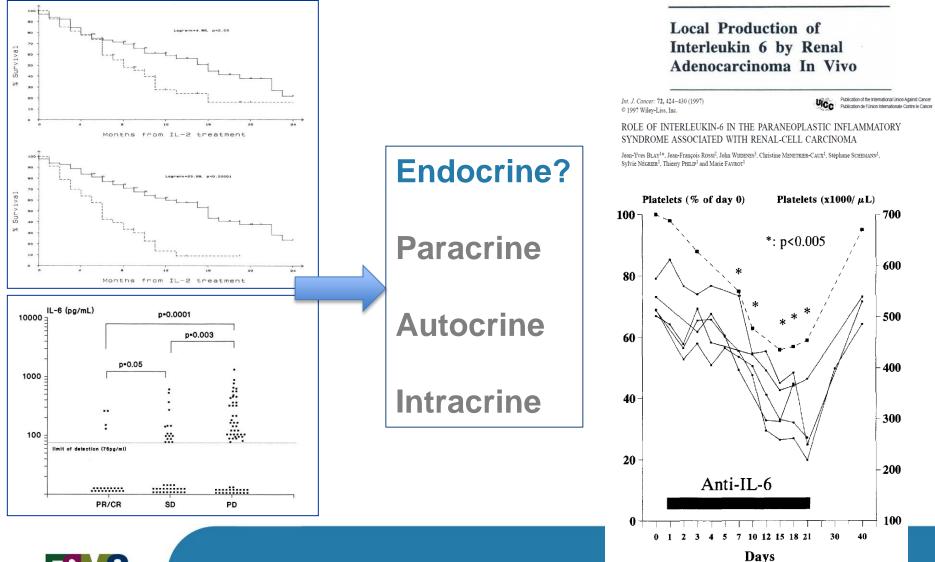


Figure 3 | Dependency of cancer cell lines on the amplified *BCL2* family members, *MCL1* and *BCL2L1*. a, Enrichment of pro- and anti-apoptotic

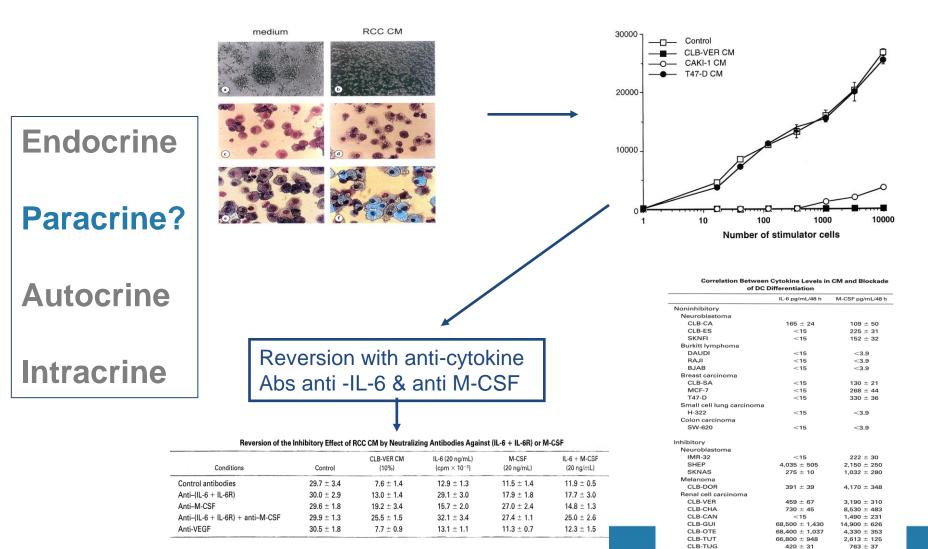
Translational research in oncology research

From empiric to cosmetic to integrated translational research


The tumor cell

The surrounding cells

The patient



Intracrine, paracrine, endocrine roles of IL-6

ESMU

Intracrine, paracrine, endocrine roles of IL-6

CAKI-1

CAKI-2

HT-29

Colon carcinoma

 $2,010 \pm 370$

 3.560 ± 426

439 + 59

9,780 ± 512

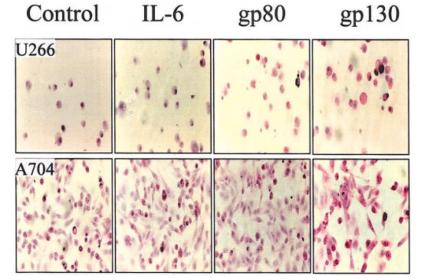
6,500 ± 731

<3.9

All IL-6+tumors

Intracrine, paracrine, endocrine roles of IL-6

Int. J. Cancer: **111,** 653–661 (2004) © 2004 Wiley-Liss, Inc.



Publication of the International Union Against Cancer

IL-6 AS AN INTRACRINE GROWTH FACTOR FOR RENAL CARCINOMA CELL LINES

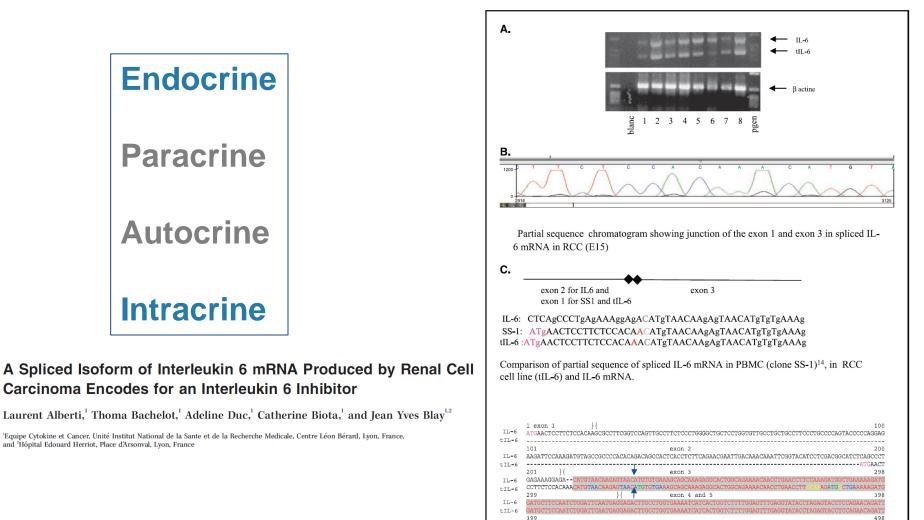
Laurent Alberti¹, Marie Cécile THOMACHOT¹, Thomas BACHELOT¹, Christine MENETRIER-CAUX¹, Isabelle PUISIEUX¹ and Jean Yves BLAY^{1,2*}

¹Equipe Cytokine et Cancer, Unité INSERM 590, Lyon, France ²Hôpital Édouard Herriot. Lyon. France

TABLE VII - ANTIPROLIFERATIVE EFFECT OF IL-6 ANTISENSE OLIGONUCLEOTIDES AND/OR IL13

3H TdR uptake ($\times 10^3$ cpm) (% of control) Culture conditions									
Cell lines	Medium	IL-6 antisense ON (20 µM)		IL-13 (100 n	$g \cdot mL^{-1}$)	IL-6 antisense ON (20 μ M) 13 (100 ng \cdot mL ⁻¹)			
A704	59.7 ± 7.1	23.6 ± 1.7	(40%)	39.0 ± 7.5	(65%)	15.7 ± 1.0	(26%)		
ACHN	62.1 ± 2.4	27.6 ± 2.4	(44%)	32.1 ± 3.5	(52%)	16.2 ± 3.9	(26%)		
CAKI1	23.0 ± 0.5	8.7 ± 0.0	(37 %)	13.9 ± 1.8	(61%)	6.3 ± 0.1	(27 %)		
CAKI2	13.9 ± 3.3	6.4 ± 1.2	(46 %)	16.3 ± 1.3	(117%)	7.3 ± 1.1	(53 %)		

Endocrine

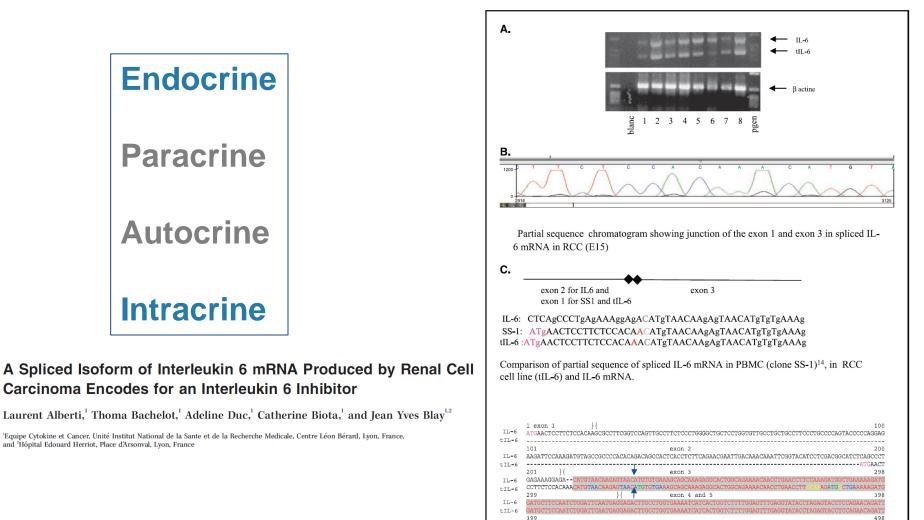

Paracrine

Autocrine

Intracrine

Intracrine, paracrine, endocrine roles of IL-6

IL-6 tIL-6


IL-6 tIL-6 tIL-6

Alignment sequence of spliced IL-6 mRNA in RCC cell line (tIL-6) and IL-6 mRNA.

598

Intracrine, paracrine, endocrine roles of IL-6

IL-6 tIL-6

IL-6 tIL-6 tIL-6

Alignment sequence of spliced IL-6 mRNA in RCC cell line (tIL-6) and IL-6 mRNA.

598

Intracrine, paracrine, endocrine roles of IL-6 and VEGF

VOLUME 22 · NUMBER 12 · JUNE 15 2004

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Interleukin-6, Interleukin-10, and Vascular Endothelial Growth Factor in Metastatic Renal Cell Carcinoma: Prognostic Value of Interleukin-6—From the Groupe Français d'Immunothérapie

Sylvie Negrier, David Perol, Christine Menetrier-Caux, Bernard Escudier, Michel Pallardy, Alain Ravaud, Jean-Yves Douillard, Christine Chevreau, Christine Lasset, and Jean-Yves Blay

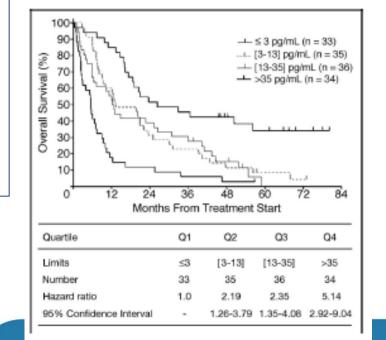


Fig 1. Results of the quartile analysis of interleukin-6 serum levels (pg/mL), with Kaplan-Meier overall survival analysis and univariate Cox proportional hazard regression model (n = 138).

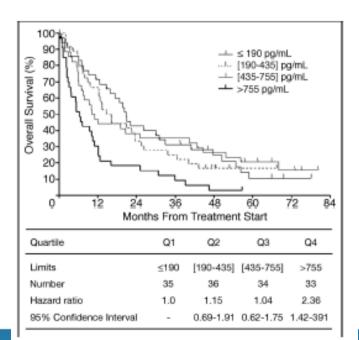


Fig 2 Results of the quartile analysis of vascular endothelial growth factor serum levels (pg/mL), with Kaplan-Meier overall survival analysis and univariate Cox proportional hazard regression model (n = 138).

Endocrine

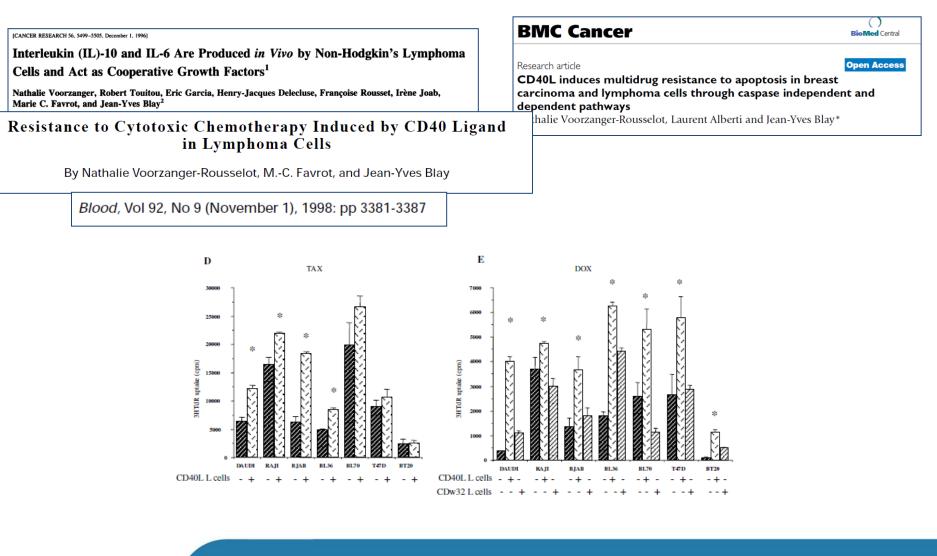
Paracrine

Autocrine

Intracrine

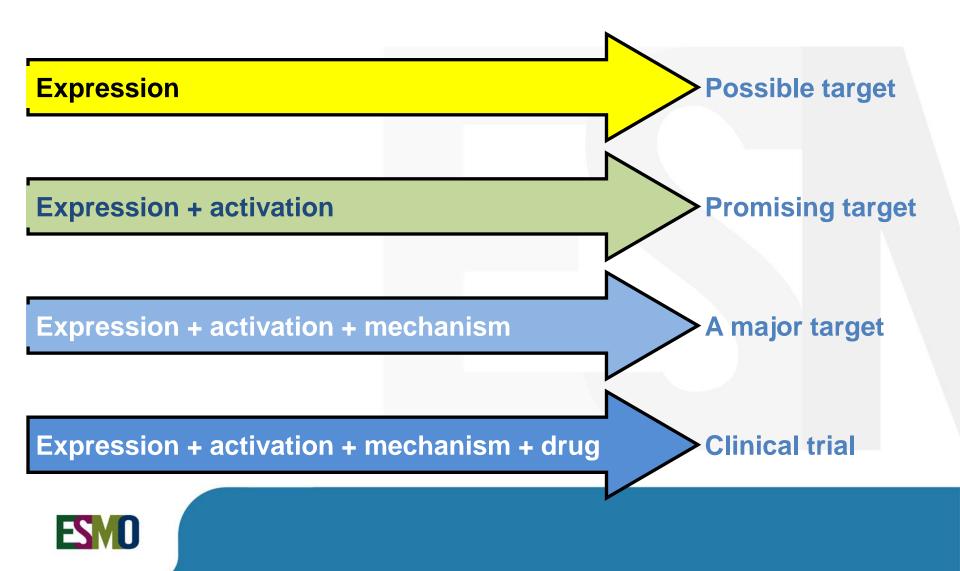
Translational research in oncology research

From empiric to cosmetic to integrated translational research

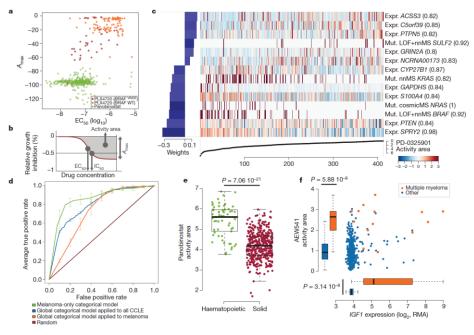

The tumor cell

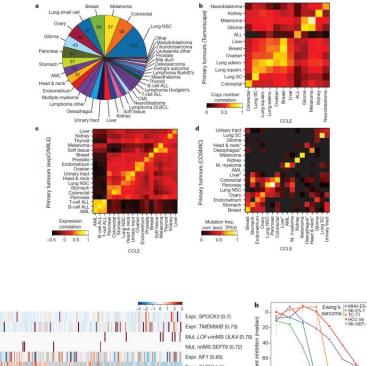
The surrounding cells

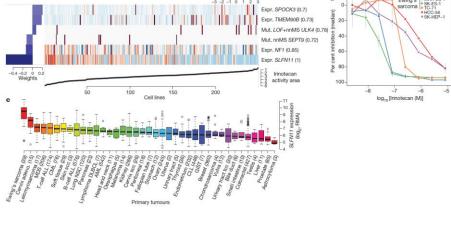
The patient



Cytokine as growth factors in NHL and breast Ca

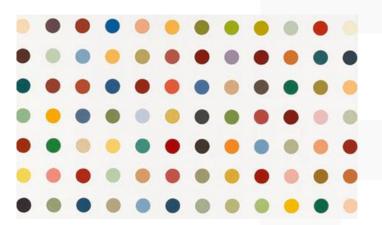



What is a good target?



The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity

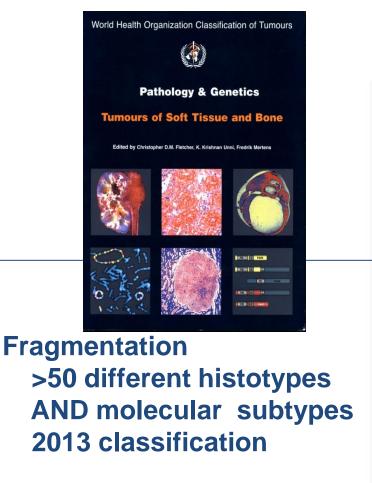
Jordi Barretina^{1,2,3}†*, Giordano Caponigro⁴*, Nicolas Stransky¹*, Kavitha Venkatesan⁴*, Adam A. Margolin¹†*, Sungjoon Kim⁵, Christopher J. Wilson⁴, Joseph Lehár⁴, Gregory V. Kryukov¹, Dmitriy Sonkin⁴, Anupama Reddy⁴, Manway Liu⁴, Lauren Murray¹, Michael F. Berger¹†, John E. Monahan⁴, Paula Morais¹, Jodi Meltzer⁴, Adam Korejwa¹, Judit Jané–Valbuena^{1,2}, Felipa A. Mapa⁴, Joseph Thibault⁵, Eva Bric-Furlong⁴, Pichai Raman⁴, Aaron Shipway⁵, Ingo H. Engels⁵, Jill Cheng⁶, Guoying K. Yu⁶, Jianjun Yu⁶, Peter Aspesi Jr⁴, Melanie de Silva⁴, Kalpana Jagtap⁴, Michael D. Jones⁴, Li Wang⁴, Charles Hatton³, Emanuele Palescandolo³, Supriya Gupta¹, Scott Mahan¹, Carrie Sougnez¹, Robert C. Onofrio¹, Ted Liefeld¹, Laura MacConaill³, Wendy Winckler¹, Michael Reich¹, Nanxin Li⁵, Jill P. Mesirov¹, Stacey B. Gabriel¹, Gad Getz¹, Kristin Ardlie¹, Vivien Chan⁶, Vic E. Myer⁴, Barbara L. Weber⁴, Jeff Porter⁴, Markus Warmuth⁴, Peter Finan⁴, Jennifer L. Harris⁵, Matthew Meyerson^{1,2,3}, Todd R. Golub^{1,3,7,8}, Michael P. Morrissey⁴*, William R. Sellers⁴*, Robert Schlegel⁴* & Levi A. Garraway^{1,2,3*}



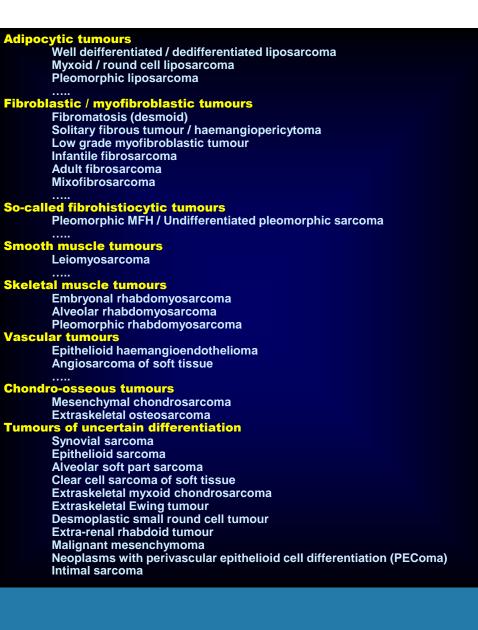
Lineage Gene expression

Biomarkers shared across lineages

Towards a major fragmentation of nosological entities

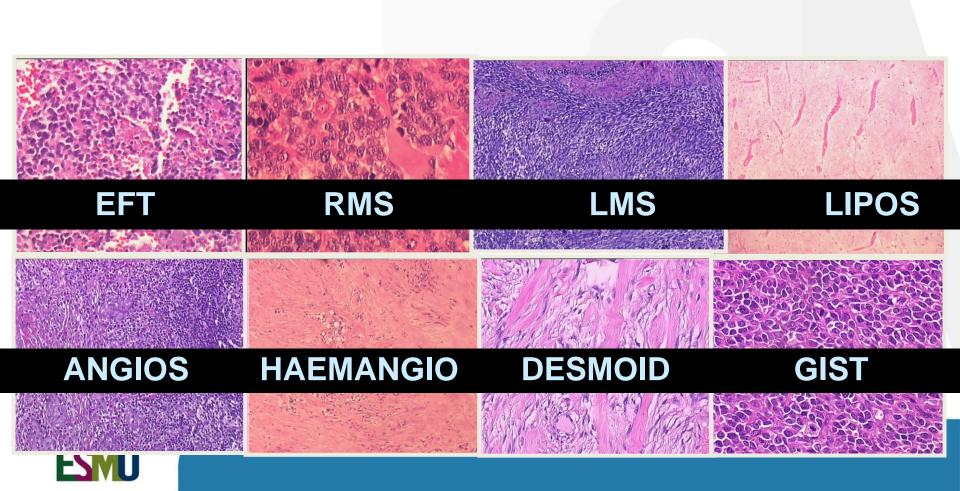


ESV0


- « Acivicin »
- « Arginosuccinic acid »

-	-																									
-		-							-		-							-		-						•
0	•	0	0	0	0	0	0	0	0	•	0	•	0	0	0	•	0	0	•	0	•	0	0	0	0	0
0	0	0	0	۲	۲	0	0	•	0	0	0	0	۲	•	•	0	0	0	0	۲	0	۲	۲	0	0	۰
۲	0	۲	•	0	0	0	•	۲	۲	۲	۲	0	0	0	0	0	•	۲	۲	۲	0	0	0	0	0	٠
0	0	0	۲	۰	-	-	•	-	-		-	-	-	-	-	-	~	-		-	-	-	_	-	-	0
•	0	۲	0	0	0	0	۲	۲	0	۲	۲	0	0	0	0	0	0	0	0	•	0	0	0	0	0	۲
0	0	0	•	0	0	•	0	0	0	0	•	0	0	0	0	0	0	0	0	0	•	0	0	•	0	•
0	0	۲	0	۲	۲	0	0	0	0	0	0	0	۲	•	0	0	0	\bigcirc	0	0	0	۲	۰	•	0	۰
۲	•	0	0	0	0	0	0	۰	۲	۲	۲	•	0	0	0	•	0	۲	۲	۲	0	0	0	0	0	٠
0	0	0	۲	۲	0	۲	•	0	0	0	\bigcirc	۲	•	0	۰	•	0	0	0	0	۲	۲	0	•	•	0
0	0	0	•	0	0	0	•	0	0	۲	0	•	0	0	0	۰	0	0	•	0	•		0	0	•	•
•	0	•	0	•	0	•	•	•	0	0	•	0	0	0	•	•	•	•	0	•	•	۲	•		•	•
•	0	0	0	0	•	0	•	0	•	0	0	•	•	•	0	0	0	0	0	•	0	•	•	٢	0	0
•	0	0	•	0	•	0	•	•	•	0	•	•	6		0	•	•	•	0	0	0	0	•	0	•	•
0	•	0	0	•	0	•	•	0	0	•	0	0	0	0	•	0	0	0	•	0	0	•	0	0	0	0
0	•	0	•	0	0	0	•	0	0	۰		•	0	0	•	۰	0	0	•		•	0	0	0	۰	•
•	0	•	•	•	0	•	•	•	0	0	•	•	•	0	•	•	•	0	0	•	•	•	•		•	•
0	0	0	0	0	•	0	•		•	0		0	0	•	0	0	0	0	0	0	0	٢	•	0	0	0
0	0	•	0			0	•	•	0	0	•	0	0		0	•	•	0	0	•	•	0	0	0	0	•
0	•	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	•	0	0	•	0	0	0	0

Even for rare tumors...



ESM

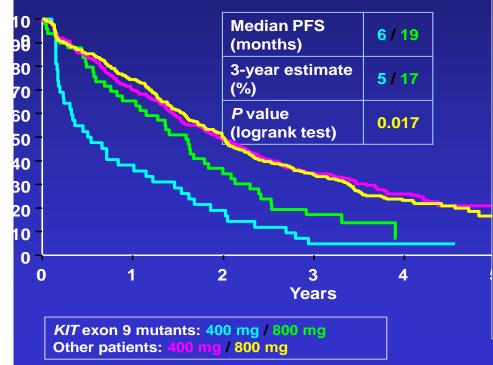
Soft Tissue Sarcomas

Connective tissue tumours

 Sarcoma with translocations Ewing, DFSP, Synovial sarcomas, 	~15%
 Sarcoma with kinase mutations 	~15%
GIST, few Angiosarcomas	
 Sarcoma with tumor suppressor gene inactivation MPNST NF1, Rhabdoid tumors- INI1, PEComas TSC 	~10%
 Sarcomas with chromosome 12q14-15 amplification WD/DDLPS, intimal sarcomas, LG OS 	~15%
 Sarcomas with complex genetic alterations Pleomorphic sarcomas, LMS, 	~50%
Low grade or locally agressive	
• Desmaid tumora	Constation

- Desmoid tumors
- Giant cell tumor of the bone ? (RANK involved)

beta catenin or APC mutation 2 (RANK involved)

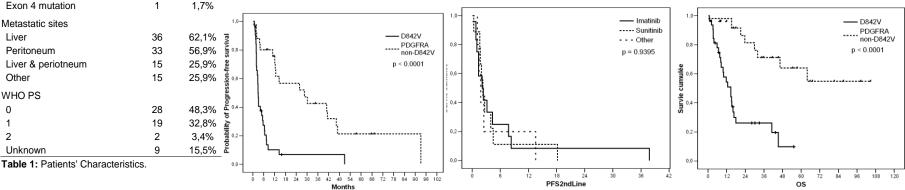

• Giant cell tumor of the soft part (PVNS) translocation

Fragmentation even in rare diseases

GIST are at least 10 diseases ESMO 2012

KIT exon 9 mutants (10% of patients)

	Dose A	djuvant
KIT Exon 11	lm 400	+
KIT exon 9	lm 800	+
PDGFRA		
Non D842V	lm 400	+
D842V:	0	0
KIT/PDGFR WT	lm 400	+/?
NF1	?/Im 400	+/?
SDHB	?/lm 400	+/?
Raf	?	?
Pediatric	?	?



PDGFRA GIST in advanced phase

Characteristic	Ν	%	_
Total	58	100	
Gender			
Male	34	58,6%	
Female	24	41,4%	
Primary tumor location			
Stomach	40	69,0%	
Small bowel	7	12,1%	
Peritoneum/Mesentery	2	3,4%	
Rectum/Anus	1	1,7%	
Other	4	6,9%	
Unknown	4	6,9%	
KIT/CD117 expression			
Positive	38	65,5%	
Negative	7	12,1%	
Unknown	13	22,4%	
Type of mutation			
Exon 18 D842V substitution	32	55,2%	
Other exon 18 mutation	17	29,3%	
Exon 12 mutation	8	13,8%	
Exon 4 mutation	1	1,7%	
Metastatic sites			1
Liver	36	62,1%	val
Peritoneum	33	56,9%	o survi
Liver & periotneum	15	25,9%	ree s
Other	15	25,9%	oion-1
WHO PS			Probability of Progression-free survival
0	28	48,3%	6 Pro
1	19	32,8%	lity o
2	2	3,4%	babi
Unknown	9	15,5%	Pro
Table 1. Patiente' Characteristic	·c		0

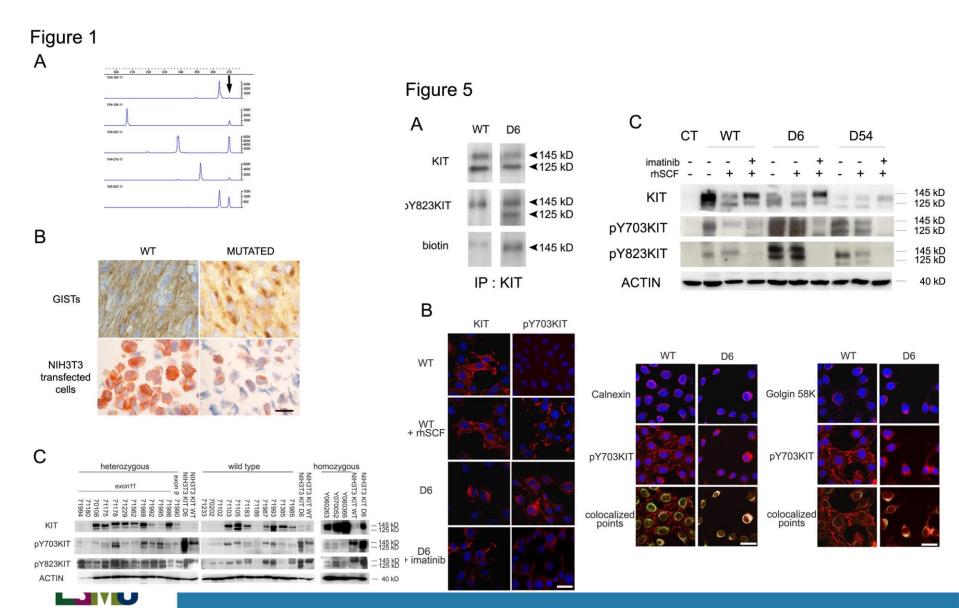

Response	D842V*		Non-D842V D842V* Exon 18		E	con 12	Exc	on 4	Overall*		
	Ν	%	Ν	%	N	%	N	%	N	%	
CR	0	0%	1	6%	1	13%	0	-	2	4%	
PR	0	0%	4	24%	3	38%	1	-	8	14%	
SD	10	32%	10	59%	3	38%	0	-	23	40%	
PD	21	68%	2	12%	1	13%	0	-	24	42%	

Table 2: response rate to imatinib per group of PDGFRA mutation and overall. (*): one patient with a D842V-mutant GIST died of gastrointestinal hemorrage before his first assessment and was therefore not evaluable for response.

P. Cassier, E Fumagalli, P Rutkowski, P Schoffski, M Van Glabbeke, M Debiec Rychter, JF Emile, F Duffaud, J Martin, B Landi, A Adenis, F Bertucci, E Bompas, S Leyvraz, I Judson, J Verweij, P Hohenberger, P Casali, JY Blay (unpublished data)

Intracellular localization of mutated & activated KIT receptors

Tabone-Eglinger et al 2008

Timely proof of require international collaborations

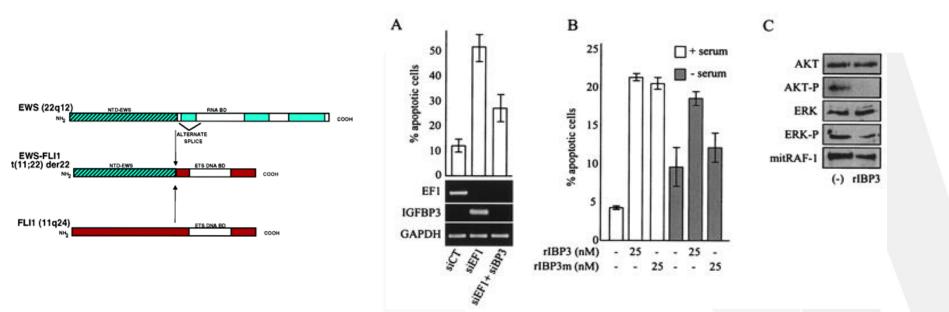
MCSFR inhibitors in PVNS with t(1,2)

Figure: Response to imatinib in PVNS

- Case report in 2008
 - (Ann Oncol 2008)

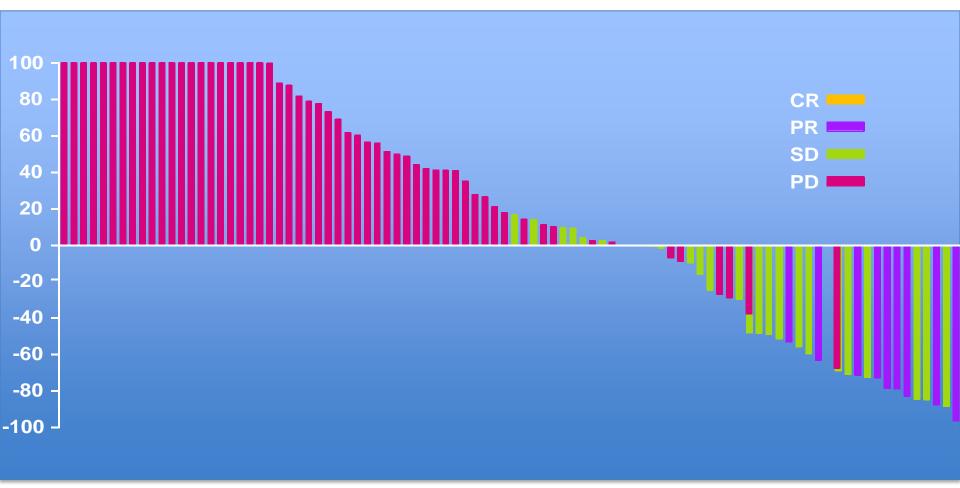
- Retrospective study 2011
 - (Cancer 2011)

18/09/06 08/11/06 28/02/07 20 10 -10 -20 -30 -40 -50 -60 -70 -80 % tumor growth -90 -100 Figure 1. The best tumor shrinkage is illustrated according to Response Evaluation Criteria in Solid Tumors (RECIST) 1st interim analysis 2nd interim analysis 3 3rd interim analysis 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9


- Prospective study 2012
 - (Proc ASCO 2012)

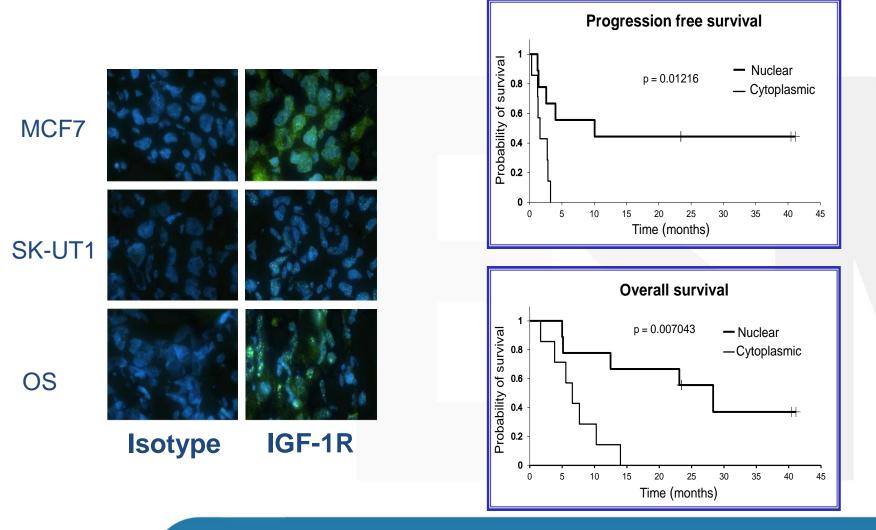
Genomic characterisation and cellular models are required

Ewing cells depend on the IGF1 pathway



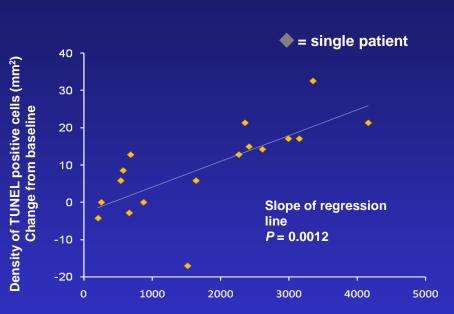
IGF1 inhibitors as potential targeted therapy in ES?

Delattre 2003, Prieur 2004


Ewing sarcoma and IGF1R Ab

Patel 2012

Nuclear staining for IGF1R: a biomarker for response in sarcoma?



Asmane I, Blay JY, AACR 201

ESMO 2012

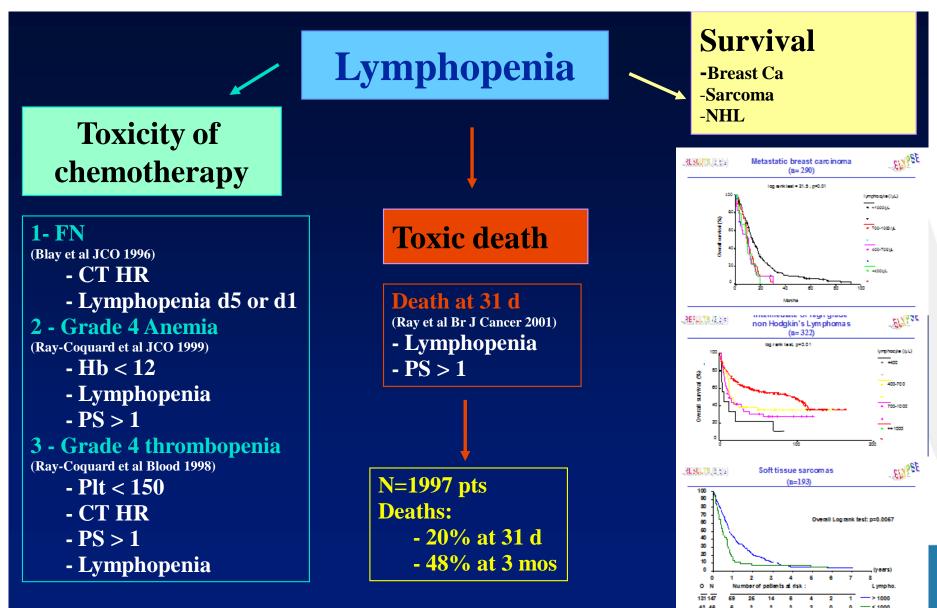
Nutlin 3a (RG7112) in Liposarcoma with MDM2 amplification

- MDM2 inhibition in human tumors activates p53, arrests cell proliferation, and induces apoptosis
- This proof of mechanism study in patients with LPS demonstrates:
 - Pharmacological p53 activation by an inhibitor of the p53-mdm2 interaction
 - Post-treatment Increases in p53, p21, and mdm2 levels
 - Exposure-related increases in MIC-1 levels
 - Post-treatment decreases proliferation as measured by change in Ki-67
 - Exposure-related induction of apoptotic signals
 - While not designed as an efficacy study, early signs of clinical activity included:
 - 1 PR after a single cycle
 - 13 SD
- This study also supports the feasibility of multiple biopsies in patients with liposarcomas eligible for surgery

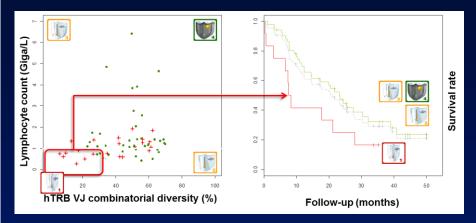
MIC-1 C1D8 Mean change from baseline

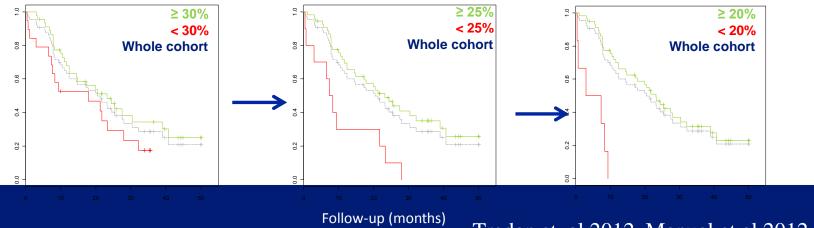
Translational research in oncology research

From empiric to cosmetic to integrated translational research

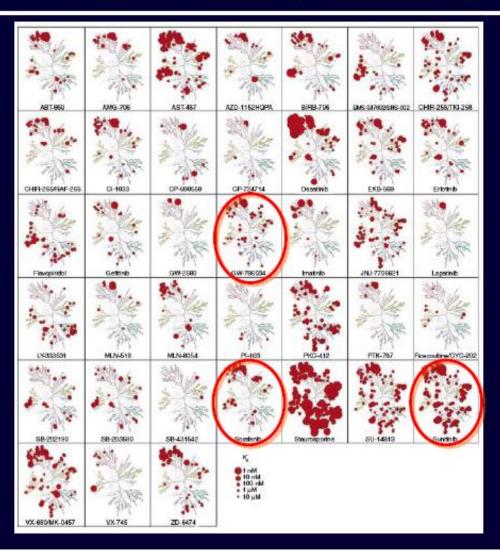

The tumor cell

The surrounding cells


The patient


Lymphopenia and cancer

Lympho-Divpenia predicts overall survival


OS according to baseline diversity

Tredan et al 2012, Manuel et al 2012

Kinase inhibitory selectivity

Karaman MW, et al. Nature Biotech 2008

Kinase inhibitory selectivity

Karaman MW, et al. Nature Biotech 2008

From empirical to rational treatment of human cancers cells and their stroma

•Genomic characterisation : opportunities and challenges

•Functional assays / in vivo models

•Fragmentation of nosological entities: lineage matters!

•The fragmented small groups of tumors are challenging for clinical research

•Novel dimensions of complexity:

- International legal requirements
- Health economics

Thank you

Salem Chouaib	Isabelle Ray-Coquard Axel Le Cesne	French Sarcoma Grp	EORTC
Pierre Biron	Thomas Bachelot	BN Bui	F. Meunier
Maud Brunat	Pierre Meeus	JM Coindre	D. Lacombe
Michel Marty	Gualter Vaz	S. Bonvalot	R. Stupp
Thomas Tursz		N Penel	M. Piccart
Thierry Philip	MP Sunyach D Ranchere	F Duffaud	
Marie Favrot	P Thiesse	F Gouin	J Verweij
			A van Oosterom
Michel Clavel	Christine Caux	Conticanet &	
	Christophe Caux	EuroboNet partners	
	Laurent Alberti	Marta Esteban	
	Simon Baconnier		Many others
	 Alain Puisieux, Sylvie	EuroSarc partners	
	Negrier, Patrick		
	Mehlen, M. Rousseau	Netsarc partners	
	Many others in the CLB & CRCL & UCC,	Many others	
	,		

The World Sarcoma Networks: G. Demetri, P. Casali, A Gronchi, AP Dei Tos, P. Hohenberger, I Judson, V. van der Graaf, R. Maki, M. von Mehren, S.Patel, R. Benjamin, T. Nishida, D. Thomas, J. Martin, J Garcia... and many others

Thank you

Salem Chouaib Pierre Biron Maud Brunat Michel Marty Thomas Tursz Thierry Philip Marie Favrot Michel Clavel	Isabelle Ray-Coquard Axel Le Cesne Thomas Bachelot Pierre Meeus Gualter Vaz	French Sarcoma Grp BN Bui JM Coindre S. Bonvalot	EORTC F. Meunier D. Lacombe R. Stupp M. Piccart J Verweij A van Oosterom 	
			Many others	
	Alain Puisieux, Sylvie	EuroSarc partners		
	Negrier, Patrick Mehlen, M. Rousseau	Netsarc partners		
	Many others in the CLB & CRCL & UCC,	Many others		
The World Sar	coma Networks: G. Der	metri, P. Casali, A Gro	nchi, AP Dei Tos,	

P. Hohenberger, I Judson, V. van der Graaf, R. Maki, M. von Mehren, S.Patel, R. Benjamin, D. Thomas, J. Martin, J Garcia... and many others

Understanding the biology is as important as molecular characterisation

The examples of cytokines and growth factors

Challenges of targeted therapeutics

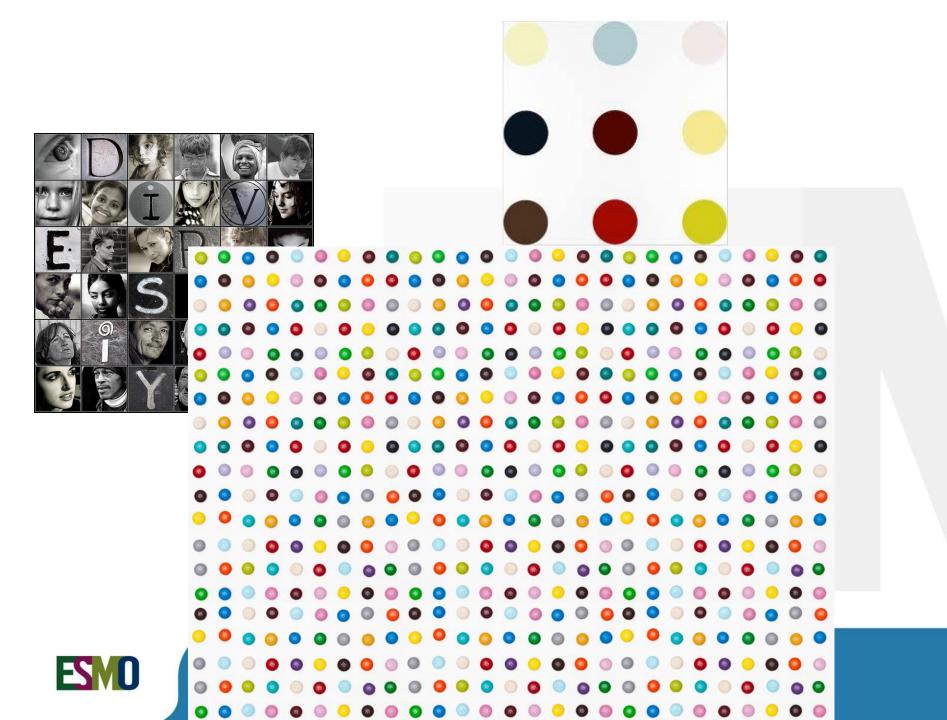
Ineluctable emergence of resistance?

Endless fragmentation of nosological entities.

Cells of the stroma are guilty by association and need to be treated accordingly

A contrasted role of the immune system

Promoting tolerance


Quantitativeluy and qualitatively altered.

Rare tumors of 2012 are models for the future rare tumors.

The fragmented small groups of tumors are challenging for clinical research

