ESMO 2012 Poster Discussion Session early breast cancer

Angelo Di Leo

"Sandro Pitigliani" Dept. of Medical Oncology Hospital of Prato Istituto Toscano Tumori, Prato, Italy

As member of advisory boards and as speaker during satellite symposia, I have received honoraria from Agendia and Genomic Health

Contents

• We will review and discuss the results of four studies investigating new/already known tools to characterize prognosis in early breast cancer and to determine sensitivity to systemic therapies

Prediction of response to HT

- a set of 3-4 proteins
 - (by Hennessy B et al abs 249 PD)

Discussion of abstract 249 PD (by Hennessy B et al)

Proteomic predictors of outcome in early breast cancer patients treated with adjuvant tamoxifen. Methods

- Training set: 197 pts. (38% N+)
 - Reverse phase protein array (140 antibodies to kinases and steroid signaling proteins)
 - Algorythm to predict patient outcomes with a subset of antibodies
- Test set: 313 pts. (26% N+)
 - _ AQUA test (immuno-fluorescence-based) to quantify expression of four proteins (Cyclin B1, PAI 1, PgR, BCL2)→ correlation with outcome
- Additional set: 77 pts. (92% N+)
 - Gene expression profile data available to compare the proteomic model with known genomic predictors (Mammaprint[®], 76-gene and GGI, H/I, pseudo-21 gene RS)

Proteomic predictors of outcome in early breast cancer patients treated with adjuvant tamoxifen. Main results

Training set (N=123 pts)

four-protein model

three-protein model

Test set (N=232 pts)

four-protein model

three-protein model

Comparison between the proteomic model and known pathology/genomic predictors

in a multivariate analysis

Conclusions

- The proteomic model might have a future application in the "standard of care" setting because:
 - based on proteins, i.e. the immediate effectors of cellular behavior
 - performed on a limited number of proteins and on archival samples

Pending issues

Patients evaluated in the present study were not treated in the context of a clinical trial
Follow-up schedules

heterogeneity in ______ Treatment (chemo, duration of TAM, shift to AI)

- lack of randomization TAM ± chemotherapy

Confirmation of the present results on a clinical trial series is recommended

Can the model be improved?

→ use more proteins?

AQUA can also provide information on
→ protein localization within the sub-cellular compartments

?

Discussion of abstracts 251 PD (by Cusumano P et al) and 252 PD (by Albanell J et al)

Abs 251PD and 252PD: Study characteristics and study design

Study design: changes in adjuvant treatment recommendations have been recorded after that the results of the genomic test (Mammaprint[®] or Oncotype Dx[®]) were available to a multi-disciplinary team whose original recommendations were based on "standard" clinical-pathological factors

	<u>Cusumano</u>	<u>Albanell</u>
- Genomic test	Mammaprint ®	Oncotype D x [®]
- No. pts.	194	527
- Participating countries	B/I/S/N	F/G/S
- % change	22/26/27/33	31.9

Shared conclusions: *use of chemotherapy, † agreement between centers*

Abs. 251PD and 252PD: Points of discussion (1)

% of change in adjuvant treatment recommendation depends on local attitude.

Example:

35 y.o., 2+N, G1, ER+ 90%, PgR+ 70%, Ki-67 5%, HER-2 neg.

It is expected that the treatment decision after the genomic test will change in Center 2 but not in Center 1

Abs. 251PD and 252PD: Points of discussion (2)

 the most important parameter to measure the clinical value of these tests is the demonstration that change in treatment is associated with improved outcome and/or with less treatment toxicity (difficult to demonstrate in a prospectively designed study)

 where these tests could be critical ? Patients with ambiguous pathological features: pT1c pNo, G2, ER+ 50%, PgR+ 10%, Ki-67 20%, HER-2 negative

Discussion of abstract 250 PD

(by Ciruelos E et al)

Methods and results

- 173 early breast cancer patients (N+) diagnosed between 1997-2007
- mi-RNA on FFPE samples by TaqMan[®] (RT-qPCR)
- correlation between mi-RNA levels and clinical outcomes

Points of discussion

• Justification for the study sample size

• Heterogeneity in adjuvant treatments?

• Comparison in mi-RNA results between FFPE and FF samples from the same tumor done in 91/173 samples. Criteria for selection?

 Each of the eight selected mi-RNAs emerged from a univariate analysis — No specific biological rationale for their use in the prognostic model → No biologically driven analysis. Play of chance ?? (additional studies ongoing)

Conclusions

• We have to congratulate the authors for their efforts and for the results of their studies

- In my opinion, none of the presented results is practice-changing; However:
 - tests based on the evaluation of multiple proteins could be more informative than genomic tests to evaluate the level of sensitivity to endocrine-therapy
 - genomic test results may convince physicians to prescribe less adjuvant chemotherapy
 - future studies on mi-RNAs, particularly on their biology in breast cancer, are warranted