Clinical Activity and Safety of Anti-Programmed Death-1 (PD-1) (BMS-936558/MDX-1106/ONO-4538) in Patients (pts) With Previously Treated, Metastatic Renal Cell Carcinoma (mRCC)

D.F. McDermott,1 C.G. Drake,2 M. Sznol,3 T.K. Choueiri,4 J.D. Powderly,5 D.C. Smith,6 J. Brahmer,2 R. Carvajal,7 H. Hammers,2 F.S. Hodi,8 H. Kluger,3 J. Sosman,9 J.M. Wigginton,10 G. Kollia,10 A. Gupta,10 D. McDonald,10 M.B. Atkins11

1Beth Israel Deaconess Medical Center, Boston, MA; 2Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, MD; 3Yale Cancer Center, New Haven, CT; 4Dana-Farber Cancer Institute/Brigham and Women’s Hospital, Boston, MA; 5Carolina BioOncology Institute, Huntersville, NC; 6University of Michigan, Ann Arbor, MI; 7Memorial Sloan-Kettering Cancer Center, New York, NY; 8Dana-Farber Cancer Institute, Boston, MA; 9Vanderbilt University Medical Center, Nashville, TN; 10Bristol-Myers Squibb, Princeton, NJ; 11Georgetown Lombardi Comprehensive Cancer Center, Washington DC
Disclosures

- **Advisory Board Participation**
 - Bristol-Myers Squibb
 - Prometheus Labs
 - Genentech
 - Pfizer

- **Research Funding**
 - Prometheus Labs
Six Years of Impressive Progress

<table>
<thead>
<tr>
<th>Setting</th>
<th>Phase III</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st-Line Therapy</td>
<td>Good or Intermediate Risk*</td>
<td>Sunitinib</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pazopanib</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bevacizumab + IFNα</td>
</tr>
<tr>
<td>Poor Risk*</td>
<td>Temsirolimus</td>
<td>Sunitinib</td>
</tr>
<tr>
<td>2nd-Line Therapy</td>
<td>Prior Cytokine</td>
<td>Sorafenib</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sunitinib or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bevacizumab</td>
</tr>
<tr>
<td>Prior VEGFR Inhibitor</td>
<td>Everolimus Axitinib</td>
<td>Clinical Trials</td>
</tr>
<tr>
<td>Prior mTOR Inhibitor</td>
<td></td>
<td>Clinical Trials</td>
</tr>
</tbody>
</table>

Does Immunotherapy have any role?
There are positive and negative signal pathways that regulate T cells. The Programmed Death (PD)-1/PD-L1 ligand pathway is an immune checkpoint that suppresses activated T cells and promotes tolerance.

PD-1/PD-L1: Pathway: Tumor cells – T cells

T cell priming

- PD-L1 can be expressed on tumor cells either endogenously or induced by association with T cells (adaptive immune resistance)\(^1,2\)
- In RCC, PD-L1 expression has been shown to be associated with adverse clinical/pathologic features, including\(^3\):
 - More aggressive disease
 - Shorter survival

Anti-PD-1: Blocking T cell Suppression

Activation (cytokines, proliferation, migration)

Suppression
- Anergy
- Exhaustion
- T cell death

BMS-936558 (MDX-1106/ONO-4538)

- Fully human IgG4 anti-human PD-1-blocking Ab\(^1\)
- No known Fc function (ADCC, CDC)
- High affinity for PD-1 (KD ~3 nM), blocks binding of both PD-L1 (B7-H1) and PD-L2 (B7-DC)
- In the first-in-human, single-dose, dose-escalation study, BMS-936558 exhibited a manageable safety profile and preliminary evidence of clinical activity in patients with treatment-refractory solid tumors\(^1\)

Study Design: Phase I Multi-dose Regimen

8-wk treatment cycle

- Rapid PD or clin. deterioration → Off Study
- Unacceptable toxicity → Follow-up every 8 wks x 6 (48 wks)
- CR/PR/SD or PD but clinically stable → Treat to confirmed CR, worsening PD, unacceptable toxicity, or 12 cycles (96 wks)

* Dose administered IV Q2wk

Eligibility: Advanced MEL, RCC, NSCLC, CRC, or CRPC with PD after 1-5 systemic therapies
Study Objectives and Summary

- Primary
 - Assessment of safety and tolerability of BMS-936558

- Secondary/Exploratory objectives include preliminary efficacy of BMS-936558 and pharmacokinetics

- Accrual completed Dec. 2011; patient assessment ongoing (N=304)

- A maximum tolerated dose was not identified at doses up to 10 mg/kg

- There was no apparent relationship between drug dose and AE frequency in all treated patients

- Antitumor activity was seen in NSCLC, melanoma and RCC

RCC Cohorts

- **Dose Expansion**
 - 16 patients enrolled at 10 mg/kg followed by
 - 18 patients enrolled at 1 mg/kg
 - Assessment of antitumor activity
 - Assessment of safety and tolerability of BMS-936558

- **Current analysis for patients as of July 3, 2012**
 - Safety results are presented for the overall (N=304) and RCC (n=34) populations
 - Clinical activity is presented for the RCC population
Baseline Characteristics of RCC Patients

<table>
<thead>
<tr>
<th>Baseline Characteristic</th>
<th>n=34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, (range), yr</td>
<td>58 (35-74)</td>
</tr>
<tr>
<td>Male, no. (%)</td>
<td>26 (76)</td>
</tr>
<tr>
<td>ECOG PS, no. (%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>13 (38)</td>
</tr>
<tr>
<td>1</td>
<td>21 (62)</td>
</tr>
<tr>
<td>Lesions at baseline, no. (%)</td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td>10 (29)</td>
</tr>
<tr>
<td>Liver</td>
<td>9 (26)</td>
</tr>
<tr>
<td>Lung</td>
<td>30 (88)</td>
</tr>
<tr>
<td>Lymph node</td>
<td>28 (82)</td>
</tr>
<tr>
<td>Other</td>
<td>20 (59)</td>
</tr>
</tbody>
</table>

- >40% received 3 or more prior therapies
- >70% received anti-angiogenic therapy
BMS-936558-Related Adverse Events

<table>
<thead>
<tr>
<th>Drug-Related Adverse Event</th>
<th>All Grades</th>
<th></th>
<th>Graded 3-4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot Pop*,†</td>
<td>RCC</td>
<td>Tot Pop</td>
<td>RCC</td>
</tr>
<tr>
<td>No. (%) of Patients, All Doses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any adverse event</td>
<td>220 (72)</td>
<td>29 (85)</td>
<td>45 (15)</td>
<td>7 (21)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>78 (26)</td>
<td>14 (41)</td>
<td>5 (2)</td>
<td>—</td>
</tr>
<tr>
<td>Rash</td>
<td>41 (14)</td>
<td>9 (27)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>36 (12)</td>
<td>5 (15)</td>
<td>3 (1)</td>
<td>—</td>
</tr>
<tr>
<td>Pruritus</td>
<td>31 (11)</td>
<td>6 (18)</td>
<td>1 (0.3)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Nausea</td>
<td>24 (8)</td>
<td>2 (6)</td>
<td>1 (0.3)</td>
<td>—</td>
</tr>
<tr>
<td>Appetite ↓</td>
<td>24 (8)</td>
<td>3 (9)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hemoglobin ↓</td>
<td>18 (6)</td>
<td>2 (6)</td>
<td>1 (0.3)</td>
<td>—</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>16 (5)</td>
<td>3 (9)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*AEs occurring in ≥5% of the total population.
† Drug-related renal failure/nephritis occurred in 1% of the total population, with no grade 3-4 drug-related events, based on an analysis on July 3, 2012.
‡ The most common grade 3-4 AEs were respiratory system disorders (2 pts) and hypophosphatemia (2 pts). An additional 10 grade 3-4 drug-related AEs were observed and one or more occurred in a single patient.
Summary of Key Safety Results

● In the total treated patient population across all tumor types:
 – Grade 3-4 drug-related AEs occurred in 15%
 – Discontinuation of treatment due to drug-related AE occurred in 18/304 (6%) of patients
 – Three drug-related deaths occurred in patients with pneumonitis (2 with NSCLC and 1 with CRC)

● In RCC patients:
 – Safety profile was similar to the total treated patient population
 – Grade 3-4 drug-related AEs occurred in 21% of pts
Clinical Activity of BMS-936558 in RCC Patients

<table>
<thead>
<tr>
<th>Population</th>
<th>Dose (mg/kg)</th>
<th>Patients (n)</th>
<th>Median Duration of Response Months (95% CI)</th>
<th>ORR n (%)</th>
<th>SD ≥24 wk n (%)</th>
<th>PFSR at 24 wk (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL RCC</td>
<td>1, 10</td>
<td>34</td>
<td>—</td>
<td>10 (29)</td>
<td>9 (27)</td>
<td>58</td>
</tr>
<tr>
<td>RCC</td>
<td>1</td>
<td>18</td>
<td>12.9 (9.2 – NE)</td>
<td>5 (28)</td>
<td>4 (22)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>16</td>
<td>12.9 (8.4 – NE)</td>
<td>5 (31)*</td>
<td>5 (31)</td>
<td>67</td>
</tr>
</tbody>
</table>

*One CR
NE, currently not estimable by Kaplan-Meier due to insufficient follow-up

- ORR was assessed using modified RECIST v1.0
- 3 additional RCC patients had a nonconventional pattern of response and were not classified as responders by the conventional RECIST
Changes in Target Lesions Over Time in RCC Patients Treated With 1 mg/kg BMS-936558

* line represents the protocol-specified maximum duration of active therapy (96 weeks)

- Shorter study duration in 1 mg/kg cohort is consistent with enrollment occurring after the 10 mg/kg cohort (except for the 2 pts enrolled during dose escalation)
Changes in Target Lesions Over Time in RCC Patients Treated With 10 mg/kg BMS-936558

* line represents the protocol-specified maximum duration of active therapy (96 weeks)
Partial Regression of Metastatic RCC in a Patient Treated with 1 mg/kg BMS-936558

- 57-year-old patient had developed progressive disease after receiving sunitinib, temsirolimus, sorafenib, and pazopanib
- Currently in cycle 6 with ongoing PR

Courtesy of C. Drake, Johns Hopkins Univ
Partial Regression of Metastatic RCC in a Patient Treated with 1 mg/kg BMS-936558: Durable Benefit off Therapy

- 48-year-old patient with low volume but poorly differentiated mRCC
- Developed progressive disease after sunitinib, sorafenib, and thoracic surgery
- Therapy held after 3 cycles due to near CR
- Response has continued for 3 years, while off therapy

Courtesy of M. Sznol, Yale Cancer Center
Correlation of PD-L1 Expression in Pretreatment Tumor Biopsies with Clinical Outcomes

PD-L1 expression by IHC in 61 pretreatment tumor biopsies across tumor types from 42 pts

- **CR/PR**
- **Non-responders**

* $P=0.006$

Patient samples: 18 MEL, 10 NSCLC, 7 CRC, 5 RCC, 2 CRPC

* 2 pts still under evaluation

Topalian et al NEJM, 2012
Summary

- BMS-936558 can be administered safely in an outpatient setting to pretreated RCC patients, while demonstrating durable clinical benefit

- Blockade of the PD-1 pathway may represent an important, new target for RCC immunotherapy

- Preliminary data correlating PD-L1 expression in pretreatment tumor biopsies with clinical outcomes is being further explored

- Clinical registration trials of BMS-936558 in patients with RCC are planned
Acknowledgments

- The patients and their families
- The study sites enrolling patients to the trial
- Support for this work from Bristol-Myers Squibb and Ono Pharmaceutical Company, Ltd.
- All authors contributed to and approved the presentation; medical writing assistance in the preparation of the slides was provided by StemScientific funded by Bristol-Myers Squibb
Principal Investigators Participating on the Study

Dr. S.J. Antonia, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
Dr. J.R. Brahmer, Sidney Kimmel Comprehensive Cancer Center at John Hopkins, Baltimore, MD
Dr. R.D. Carvajal, Memorial Sloan-Kettering Cancer Center, New York, NY
Dr. F.S. Hodi, Dana-Farber Cancer Institute, Boston, MA
Dr. D.P. Lawrence, Massachusetts General Hospital Cancer Center, Boston, MA
Dr. P. Leming, The Christ Hospital, Cincinnati, OH
Dr. D. McDermott, Beth Israel Deaconess Medical Center, Boston, MA
Dr. D. Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ
Dr. J.D. Powderly, Carolina BioOncology Institute, Huntersville, NC
Dr. D.C. Smith, University of Michigan, Ann Arbor, MI
Dr. J. Sosman, Vanderbilt University Medical Center, Nashville, TN
Dr. D.R. Spigel, Sarah Cannon Research Institute / Tennessee Oncology, PLLC, Nashville, TN
Dr. M. Sznol, Yale Cancer Center, New Haven, CT