Next generation sequencing in the context of current clinical practice: Implementation and challenges
Next generation sequencing of the cancer genome in the context of current clinical practice: Implementation and challenges
BIOLOGY OF CANCER

Networks of signal transduction pathways in the cell.

- Critical nodes ('hubs') in the signal transduction network are targets for oncogenic alterations

- Hanahan and Weinberg 2000/2011
Taming the dragon: genomic biomarkers to individualize the treatment of cancer
Nature Medicine 2011
Targeted Therapeutics in Cancer.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Genetic Alteration</th>
<th>Tumor Type</th>
<th>Therapeutic Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptor tyrosine kinase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td>Mutation, amplification</td>
<td>Lung cancer, glioblastoma</td>
<td>Gefitinib, erlotinib</td>
</tr>
<tr>
<td>ERBB2</td>
<td>Amplification</td>
<td>Breast cancer</td>
<td>Lapatinib</td>
</tr>
<tr>
<td>FGFR1</td>
<td>Translocation</td>
<td>Chronic myeloid leukemia</td>
<td>PKC412, BIBF-1120</td>
</tr>
<tr>
<td>FGFR2</td>
<td>Amplification, mutation</td>
<td>Gastric, breast, endometrial cancer</td>
<td>PKC412, BIBF-1120</td>
</tr>
<tr>
<td>FGFR3</td>
<td>Translocation, mutation</td>
<td>Multiple myeloma</td>
<td>PKC412, BIBF-1120</td>
</tr>
<tr>
<td>PDGFRα</td>
<td>Mutation</td>
<td>Glioblastoma, gastrointestinal stromal tumor</td>
<td>Sunitinib, sorafenib, imatinib</td>
</tr>
<tr>
<td>PDGFRβ</td>
<td>Translocation</td>
<td>Chronic myelomonocytic leukemia</td>
<td>Sunitinib, sorafenib, imatinib</td>
</tr>
<tr>
<td>ALK</td>
<td>Mutation or amplification</td>
<td>Lung cancer, neuroblastoma, anaplastic large-cell lymphoma</td>
<td>Crizotinib</td>
</tr>
<tr>
<td>c-MET</td>
<td>Amplification</td>
<td>Gefitinib-resistant non–small-cell lung cancer, gastric cancer</td>
<td>Crizotinib, XL184, SU11274</td>
</tr>
<tr>
<td>IGF1R</td>
<td>Activation by insulin-like growth factor II ligand</td>
<td>Colorectal, pancreatic cancer</td>
<td>CP-751,871, AMG479</td>
</tr>
<tr>
<td>c-KIT</td>
<td>Mutation</td>
<td>Gastrointestinal stromal tumor</td>
<td>Sunitinib, imatinib</td>
</tr>
<tr>
<td>FLT3</td>
<td>Internal tandem duplication</td>
<td>Acute myeloid leukemia</td>
<td>Lestaurnitin, XL999</td>
</tr>
<tr>
<td>RET</td>
<td>Mutation, translocation</td>
<td>Thyroid medullary carcinoma</td>
<td>XL184</td>
</tr>
<tr>
<td>Non–receptor tyrosine kinase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABL</td>
<td>Translocation (BCR-ABL)</td>
<td>Chronic myeloid leukemia</td>
<td>Imatinib</td>
</tr>
<tr>
<td>JAK2</td>
<td>Mutation (V617F), translocation</td>
<td>Chronic myeloid leukemia, myelo-proliferative disorders</td>
<td>Lestaurnitin, INCB018424</td>
</tr>
<tr>
<td>SRC</td>
<td>Overexpression</td>
<td>Non–small-cell lung cancer; ovarian, breast cancer; sarcoma</td>
<td>KX2–391, dasatinib, AZD0530</td>
</tr>
<tr>
<td>Serine–threonine–lipid kinase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRAF</td>
<td>Mutation (V600E)</td>
<td>Melanoma; colon, thyroid cancer</td>
<td>SB-590885, PLX-4032, RAF265, XL281</td>
</tr>
<tr>
<td>Aurora A and B kinases</td>
<td>Overexpression</td>
<td>Breast, colon cancer; leukemia</td>
<td>MK-5108 (VX-689)</td>
</tr>
<tr>
<td>Polo-like kinases</td>
<td>Overexpression</td>
<td>Breast, lung, colon cancer; lymphoma</td>
<td>BI2536, GSK461364</td>
</tr>
<tr>
<td>MTOR</td>
<td>Increased activation</td>
<td>Renal-cell carcinoma</td>
<td>Temsirolimus (CCI-779), BEZ235</td>
</tr>
<tr>
<td>PI3K</td>
<td>PIK3CA mutations</td>
<td>Colorectal, breast, gastric cancer; glioblastoma</td>
<td>BEZ235</td>
</tr>
<tr>
<td>DNA damage or repair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA1 and BRCA2</td>
<td>Mutation (synthetic lethal effect)</td>
<td>Breast, ovarian cancer</td>
<td>Olaparib, MK-4827 (PARP inhibitors)</td>
</tr>
</tbody>
</table>

* PARP denotes poly(adenosine diphosphate–ribose) polymerase.
Daily practice

- Amplification
- Clonality
- Genomic alterations/CIN
- Mutation
- Methylation (CpG islands)
- MSI analysis
- Translocation
- (mi)RNA expression
- Ploidie status
- Typing

BRAF 1796T>A (V600E)

MSI Analysis
Current tools

- Allele specific assays
- Classic Sanger DNA sequencing
- Flow cytometry
- Fragment analysis (typing, MSI)
- FISH, CISH/BRISH
- LIPA
- MLPA
- Melting curve analysis
- RT-PCR
Challenges 2012-….

- Increasing numbers with: **Limited (pre-)operative material**
 - Early diagnosis, **Neoadjuvant therapies**
 - Only tissue biopsies/cores
 - Enrichment/microdissection steps
 - FNA material

- **Identification of tumorheterogeneity**

- Laboratory automation
Preoperative Staging: on Cytological material

- Current lung cancer staging guidelines acknowledge:
 - Endosonography with fine needle aspiration
 - Mediastinal lymph nodes
 - Minimally invasive alternative to surgical staging to detect nodal disease.
 - Minimal material

Pathological diagnosis: On Cytology from lymph nodes
Molecular Pathology on the same material: Option for Personalized medicine?

J. Annema et al JAMA. 2010;304(20):2245-2252
EGFR activated, KRAS wildtype
Limited material

FNA mediastinal lymphnode
Allele specific taqman probes = FAST
Rapid Mutation Analysis of Fine Needle Aspirates using allele-specific qPCR

- EGFR: p.L858R*, exon 19 deletions*
- NRAS, HRAS, KIT, IDH1/2, ….
And it works on minimal input DNA

Effect of the DNA concentration on the c.34G.T KRAS assay.

R. van Eijk et al PlosONE 2011: 6 (3) e17791
And it works on minimal input DNA

Initial analysis in Bio-Rad CFX Manager
EGFR deletion exon 19

‘Classical detection’
FAST assay for exon 19 deletions

Wild type signal is lost if a deletion is present

Tony K.F. Yung,1,2 K.C. Allen Chan,1,2 Tony S.K. Mok,1,3 Joanna Tong,4 Ka-Fai To,4 and Y.M. Dennis Lo1,2,5

Rapid KRAS, EGFR, BRAF and PIK3CA Mutation Analysis of Fine Needle Aspirates from Non-Small-Cell Lung Cancer Using Allele-Specific qPCR

Tumor heterogeneity in melanoma

BRAFV600E

COBAS: BRAFV600 +

NO BRAF V600E

GTG -> AAG: V600K

2 Subcutane lesions
Intra- and Inter-Tumor Heterogeneity of $BRAF^{V600E}$ Mutations in Primary and Metastatic Melanoma

Molly Yancovitz1,9, Adam Litterman1,9, Joanne Yoon1, Elise Ng1, Richard L. Shapiro2, Russell S. Berman2, Anna C. Pavlick1,3, Farbod Darvishian4, Paul Christos5, Madhu Mazumdar5, Iman Osman1,3, David Polsky1,4,6

Table 4. BRAF mutation concordance between primary and metastatic specimens using MS-PCR.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Primary tumor</th>
<th>Metastatic tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wild Type</td>
<td>Mutant</td>
</tr>
<tr>
<td>2</td>
<td>Wild Type</td>
<td>Mutant</td>
</tr>
<tr>
<td>3</td>
<td>Wild Type</td>
<td>Mutant</td>
</tr>
<tr>
<td>4</td>
<td>Wild Type</td>
<td>Mutant</td>
</tr>
<tr>
<td>5</td>
<td>Wild Type</td>
<td>Mutant</td>
</tr>
<tr>
<td>6</td>
<td>Wild Type</td>
<td>Mutant</td>
</tr>
<tr>
<td>7</td>
<td>Mutant</td>
<td>Mutant</td>
</tr>
<tr>
<td>8</td>
<td>Mutant</td>
<td>Mutant</td>
</tr>
<tr>
<td>9</td>
<td>Mutant</td>
<td>Mutant</td>
</tr>
<tr>
<td>10</td>
<td>Mutant</td>
<td>Mutant</td>
</tr>
<tr>
<td>11</td>
<td>Mutant</td>
<td>Mutant</td>
</tr>
<tr>
<td>12</td>
<td>Mutant</td>
<td>Mutant</td>
</tr>
<tr>
<td>13</td>
<td>Mutant</td>
<td>Mutant</td>
</tr>
<tr>
<td>14</td>
<td>Mutant</td>
<td>Mutant</td>
</tr>
<tr>
<td>15</td>
<td>Mutant</td>
<td>Mutant</td>
</tr>
<tr>
<td>16</td>
<td>Mutant</td>
<td>Mutant</td>
</tr>
<tr>
<td>17</td>
<td>Mutant</td>
<td>Wild Type</td>
</tr>
<tr>
<td>18</td>
<td>Mutant</td>
<td>Wild Type</td>
</tr>
</tbody>
</table>

doi:10.1371/journal.pone.0029336.004
Tumor heterogeneity 1

Tumor heterogeneity 2: A trunk-branch model of intratumor heterogeneity.

Charles Darwin: The origin of species
NGS current vs NGS limited material

- FFPE biopsies /FNA
- Mutoom Genomic, Methylomic, Transcriptomic, miRNA, fusion info needed.
- No DNA/cDNA amplification possible because of false positivity
NGS first/2nd/third

- FFPE Sequenom
- FFPE Target enrichment of selected gene sets
- Helicos
- Illumina high seq/my seq
- Ion/Proton Torrent
- Nanopore
- Complete genomics

Challenges:
- Frozen tissue vs FFPE
- False positivity rates?
 Bioinformatics
- Logistics?
Taming the dragon: genomic biomarkers to individualize the treatment of cancer
Nature Medicine 2011
Concluding remarks:

Improving the human condition with genomic medicine

http://personalgenome.com/

Read Vogelstein and Kinzler:

Winning the war: Science Parkour

There is a difference between *proclaiming* a war and *winning* a war. In 1971, U.S. President Richard Nixon proclaimed a war on cancer.

Prevention and early detection

Immunotherapy, targeted therapy, achieving victory.

Hanahan and Weinberg, 2011