Prevention and handling of acute allergic and infusion reactions in oncology

Markus Joerger MD PhD

Medical Oncology&Clinical Pharmacology

Cantonal Hospital St.Gallen (Switzerland)

Disclosures

research funding:

Roche Pharmaceuticals

Swiss National Foundation

Swiss Cancer League

Saladax Inc.

Sanofi-Aventis

OVERVIEW

- mechanism and definition
 immune-type hypersensitivity reaction (HSR)
 symptoms of acute infusion reaction (AIR)
 clinical significance of AIR
- chemotherapy
- monoclonal antibodies (mAb)
- management of AIR
- what to do after AIR occurred

not covered: AIR to contrast agents, blood products

Infusion-related Adverse Drug Reactions (ADR)

- intolerance (type A)
 - predictable ADR at normal doses due to the pharmacological activity of the drug
- idiosynkrasie (type B)
 - unpredictable ADR due to individual predisposition, e.g. enzyme defect

- "drug allergy" and "pseudo-allergy"
- one of four immune-type reactions
- "anaphylaxis" and "anaphylactoid"

Four Immune-type HSR (Gell&Coombs)

- type 1: IgE-mediated
- type 2: IgG-mediated cytotoxicity
- type 3: Immuncomplex-mediated
- type 4: T Cell-mediated, cytokines, complement

only with mAb

HSR: immediate/non-immediate

- definition by: European Network for Drug Allergy
- I. immediate Reaction after <1 hour of exposure
 - urticaria, angioedema, rhinitis, conjunctivitis, bronchospasm, overt anaphylaxis
- II. nonimmediate Reaction after >1 hour of exposure
 - cutaneous symptoms, maculopapular eruptions, vasculitis, toxic epidermal necrolysis, Stevens-Johnson syndrome, eosinophilia

Spectrum of acute HSR

GRADING OF HYPERSENSIVITY REACTIONS Common Terminology Criteria for Adverse Events (CTCAE) v4.0	
Grade 0 (no reaction)	No reaction
Grade 1 (mild)	Local reaction only Transient flushing or rash Drug fever <38°C (<100.4°F)
Grade 2 (moderate)	Flushing Mild bronchospasm Rash, urticaria, dyspnea Drug fever ≥38°C (≥100.4°F)
Grade 3 (severe)	Moderate bronchospasm, Severe local reaction (>10mm or lasting >24 hours) Serum sickness Allergy-related edema/angioedema Hypotension
Grade 4 (life-threatening)	Anaphylaxis
Grade 5	Death

Anaphylaxis/Anaphylactoid Reaction: Oncologic Emergency!

- anaphylaxis (HSR)
 - systemic, immediate, IgE-mediated
- anaphylactoid reaction (AIR)
 - unspecific degranulation of mast cells or basophils
- risk factors for HSR
 - repeated administration of the drug ("priming")
 - predisposition = atopy
 - history (or family history) of drug allergy

Clinical Significance of AIR

- every drug infusion may cause (severe) AIR
- skilled personel mandatory
- adequate premedication mandatory

Chung et al, The Oncologist 2008;13:725-32

CHEMOTHERAPY

Platinum Salts: Oxaliplatin

- mild/severe HSR in <25/1% of cases¹
- after 7-8 cycles, minutes after the start of infusion
- type I (II) reaction ²
- use H1/H2 blockers, steroids, slow infusion rate³
- consider desensitization if oxaliplatin fundamental
- differentiate between acute neurotoxicity and HSR

³ Brandi et al, Br. J. Cancer (2003) 89(3):477-481. I

¹Polyzos et al, Oncoogy 2009;76(1): 36-41.

² Syrigou et al, Curr Allergy Asthma Rep 2008;8(1):56-62.

Carboplatin

- mild/severe HSR in 19/2% after 8 cycles ¹
- minutes to days after the start of infusion
- type I (IV) reaction
- use H1/H2 blockers, steroids, slow infusion rate
- switch to cisplatin in severe case (75% success)²
- skin tests reliable

¹Sliesoraitis et al, Int J Gynecol Cancer 2005;15(1):13-18.

²Callahan et al, Am J Obstetr Gynecol 2007;977(2): 199.e1-199.e5.

Cisplatin

- lower incidence of mild (0.4%) and severe HSR (0.8%) ¹
- minutes from the start of infusion
- usually after ≥6 treatment cycles
- type I (IV) reaction
- skin test not reliable
- consider desensitization if cisplatin fundamental ²

¹Sakaeda et al, Int J Med Sci 2011;8(4):332-338.

²Castels et al, J Allergy Clin Immunol 2008;122(3):574-80.

Taxanes

- AIR primarily due to the solvent "cremophor EL" (paclitaxel) and "polysorbate 80" (docetaxel, cabazitaxel)
- solvent-triggered histamine release (not IgE)¹
- 30%/ ≤4% of patients without/with premedication
- dose- and infusion-rate dependent
- "hits early": first minutes of infusion, first 2 cycles
- disappears on rechallenge and premedication²

²Demoly et al, Immunol Allergy Clin North Am 2004;24(3):345-56.

¹Ardavanis et al, Anti-Cancer Drugs 2004, 15:581–585

Taxanes: AIR

- symptoms: dyspnea, hypotension, urticaria, erythematous rash, tongue swelling, dysphagia
- differentiate between platinum & taxane AIR when given in combination!
- rapid normalization after discontinuation of the drug

Taxanes: Prevention of AIR

- oral dexamethasone 20mg 12 / -6(2) hours
- i.v. H1 and H2 blocker –30min
- dexamethasone prevention over 3 days for docetaxel
- i.v. dexamethasone 10-20mg −30min also safe¹
- severe AIR @rechallenge: desensitization or nab-paclitaxel²
- cross-reactivity in 90%²

³Dizon et al, Gynecol Oncol 2005;100(1):149-51.

¹ Bookman et al, Annals of Oncology 8: 611-614, 1997

² Fader et al, Int J Gynecol Cancer 2009;19: 1281Y1283

L-Asparaginase

- enzyme from E. coli or Erwinia chrysanthemi
- 40% risk of IgE-mediated HSR (severe in ≤10%)¹
- risk factors: iv. (im.) application, previous exposure to L-Asp.²
- allergic patients have enzyme-neutralizing Ab's ³
- after HSR occurred:
 - Switch to Erwinia Asparaginase⁴
 - Switch to PEG-Asparaginase (polyethylene glycol)⁵

⁵ Raetz et al, J Pediatr Hematol Oncol 2010;32:544–563

¹Narta et al, Crit Rev Oncol Hematol 2007;61(3):208-221.

² Demoly, Toxicology 2005; 209(2):221-23.

³ Woo et al, Leukemia 1998;12:1527–1533.

⁴ Vrooman et al, Pediatr Blood Cancer 2010;54:199–205

Procarbazine

- HSR caused by type I, III or IV reaction
- HSR in 6 to 18% of patients
- symptoms include fever, maculopapular rash, urticaria, toxic epidermal necrolysis ¹
- rechallenge after HSR usually not successful, even with steroid prophylaxis ¹
- no rechallenge

¹Weiss, Semin Oncol 1992;19(5):458-77.

Podophyllotoxins

- AIR primarily due to the solvent "cremophor EL" (teniposide) and "polysorbate 80" (i.v. etoposide)
- AIR to teniposide in 6–41% ¹
- AIR to etoposide less frequent than with teniposide
- importance of adequate premedication and slow infusion
- high cross-reactivity ²

² Hudson et al, J Clin Oncol 1993;11(6):1080-84.

¹Lee et al, Ann Allergy Asthma Immunol 2009;102(3):179-87.

Intermediate potential for AIR

Anthracyclines

- usually mild cutaneous symptoms
- HSR may be prevented by low infusion rates
- desensitization to liposomal doxorubicin is an option ¹

Methotrexate

- infrequent, but potentially severe HSR
- acute pneumonitis after some days following MTX²
- very rare, acute liver failure³

³ Kaito et al, Rinsho Ketsueki 1990; 31:1862-1867.

¹Castells et al, j Allergy Clin Immunol 2008;122(3):574-80.

² Hlaing et al, Int J Rheumatol 2008;4 (2).

MONOCLONAL ANTIBODIES (mAb)

Monoclonal Antibodies (mAb)

- murine with -o- stem
 tositumomab, ibritumomab
- chimera with -xi- stem
 cetuximab, rituximab
- humanized with -zu- stem
 alemtuzumab, bevacizumab, trastuzumab, pertuzumab, gemtuzumab
- human with –u– stem
 panitumumab, ipilimumab, denosumab

mAb

- chimeric mAb: >50% human
- humanized mAb: 90% human
- fully humanized mAb: 99% human
- prevalent and induced anti-mouse Ab
- anti-mouse Ab \rightarrow cytokine release (less prevalent HSR)
- AIR: stop infusion, H1/H2 blockers, restart at slow rate

Monoclonal

Effector

more prevalent non-allergic type reaction (AIR)

mAb: General Remarks

- most AIR mild
- 2 pathomechanisms:
 - allergic → IgE
 - non-allergic → cytokine-mediated
- severe reactions are IgE-mediated
 - Consider desensitization, avoidance
- rechallenge successful with non-allergic reactions
- paracetamol & H1-blocker usually recommended
 ... except bevacizumab, panitumumab

mAb

NCI grading criteria for cytokine-release infusion reactions ¹

Grade 1	Mild reaction; infusion interruption or intervention not indicated
Grade 2	Infusion interruption indicated but responds promptly to symptomatic treatment (e.g., antihistamines, NSAIDS, steroids, IV fluids)
Grade 3	Prolonged symptoms (not rapidly responsive to symptomatic medication and interruption of infusion); recurrence of symptoms following initial improvement
Grade 4	Life-threatening consequences; vasopressors and/or ventilatory support indicated
Grade 5	DEATH

¹National Cancer Institute 2010.

mAb: Specific Compounds

- rituximab: AIR in 77% @ 1st application (7% severe HSR) 1
- trastuzumab: AIR in 40% @ 1st application 1

....lower with s.c.-trastuzumab

- alemtuzumab: given s.c. in a fractionated way to avoid AIR
- cetuximab: C-IgE in 0.6-21% of the U.S. population ²
- bevacizumab&panitumumab: no premedication necessary

² Chunge et al, N Engl J Med 2008;358:1109-17.

¹Kimby E, Cancer Treat Rev 2005;31(6):456-73.

Rituximab: Tumor lysis-type Reaction

- Iymphocytes >25G/L, high tumor load
- hypotension and bronchospasm in 10% of pts @1st exposure
- electrolyte abnormalities, renal dysfunction, high LDH
- tumor cell agglutination > cytokine release
- stop infusion, do not restart before careful diagnostics and Tx
- prophylaxis: inpatient 1st exposure, fractionated dosing (100mg), allopurinol, hydration, close monitoring

Byrd JC, J Clin Oncol 17:791-95.

Kimby, CANCER TREATMENT REVIEWS (2005) 31, 456–473.

MANAGEMENT OF AIR/HSR

Preparation

- obtain baseline assessment and vital signs
- assess for risk factors (eg. previous treatment)
- educate patient about potential symptoms of AIR/HSR
- make sure emergency equipment is available
- confirm that patient took premedication

Treatment

- stop infusion
- give i.v. volume, keep systolic BP >90mmHg
- supine position (if no vomiting or dyspnea)
- severe: call emergency, epinephrine
- maintain airway, consider O₂
- monitor vital signs q2min until baseline is reached
- documentation

(suspected) Anaphylaxis: Treatment Algorithm

Infusion STOP and call for HELP legs-up position **ALWAYS** secure airways (except only cutaneous) CPR if necessary Epinephrine i/m anterolateral thigh - Epipen® 0.3 or 0.5 ml epinephrine (1mg/ml) children <30kg: Epipen® 0.15 or repeat every 2-5 minutes 0.2 ml epinephrine (1mg/ml) Oxygen (mask, 6 L/min) Monitoring (BP/Pulse, sO₂, Peak flow) Volume (NaCl 0.9% 500ml in 30min) Antihistamine i/v(clemastine 2mg slowly) Corticosteroid i/v (methylprednisolone 80mg) hypotension P > 100/min dyspnea yes reduced conciousness yes no Inhalation: 5mg salbutamol or 1mg epinephrine in 1ml NaCl 0.9%

2-6 h monitoring (perhaps o/n)

STRATEGIES AFTER AN AIR/HSR OCCURRED

Specific Compounds

platinum salts:

mild-moderate HSR: use H1/H2 blockers, steroids, slow infusion rate, severe HSR: desensitize, cautious cross-over

- taxanes, podophyllytoxins:
 intensify premedication, no substitution (except nab-paclitaxel)
- L-Asparaginase: switch to Erwinia/PEG-Asparaginase, intensify premedication, desensitize
- procarbazine: discontinue
- mAb
 intensify premedication, slow infusion rate
 cetuximab → panitumumab¹

¹Langerak et al ,ClinColorectal Cancer, 2009;8(1): 49-54.

Drug Desensitization

- only with IgE-mediated HSR
- mast cell desensitization* > tolerant state
- reversible process
- presence of trained allergist and nursing staff

^{*}receptor downregulation, exhaustion of mediators, enhanced metabolism or drug efflux

Drug Desensitization: Protocol

- conventional:
 - escalating i.d. doses (e.g. $1 \rightarrow 3 \rightarrow 10 \rightarrow 30 \rightarrow 100$)

- increasing i.v. infusion rate
- drug-specific, simplified (e.g. paclitaxel)¹:
 - 20mg oral dexamethasone -36/ -12/ -2 hrs
 - i.v. dexamethasone, H1 and H2 blocker –30min
 - paclitaxel 2mg/100ml NaCl/30min → 10mg/100ml/30min
 - remaining full dose in 500ml NaCl/3hrs

¹Markman et al, J Clin Oncol 2000; 8:102-105.

CONCLUSIONS

- differentiate between HSR, AIR, intolerance & idiosynkrasie
- intensify premedication in case of solvent/mAbrelated AIR
- desensitize or substitute in case of severe IgEmediated HSR

.....thanks for your kind attention!

Acknowledgments

- Institute for Toxicology and Clinical Pharmacology, University Hospital Basel (Switzerland)
 - Prof. Dr. St. Krähenbühl, Dr. M. Haschke, M. Donzelli
- Institute for Clinical Chemistry, University Hospital Bern (Switzerland)
 - Prof. Dr. C. Largiader, Dr. U. Amstutz, T. Fröhlich
- The Netherlands Cancer Institute and Slotervaart Hospital (NL)
 - Prof. Dr. J.H.M. Schellens, Prof. J.H. Beijnen, Dr. A. Huitema
- Institute of Pharmacy, University of Bonn (Germany)
 - Prof. Dr. U. Jaehde

