Is there a role for targeted agents in stage I-III NSCLC?

oliver.gautschi@onkologie.ch

Disclosure slide

- Involved in investigator-initiated clinical trials supported by Roche and Eli Lilly
- No other potential conflicts of interest

Current status

- Targeted agents are promising for selected patients with resectable NSCLC stage I-III.
- If possible, patients should be enrolled in clinical trials.

What we want

Use cancer-specific drugs that

- are highly active, well tolerated, and have no negative impact on surgery, radiation and chemotherapy,
- enhance cure rate (eradicate cancer), or at least delay tumor recurrence (control cancer).

What we do **not** want

Add drugs which

- preclude curative standard therapy,
- increase (long-term) toxicity,
- produce secondary (lung) cancers,
- lead to early drug resistance.

The Problem: Prognosis

5-Year Survival Rates and Numbers of Cases

The Promise: Mutations

Clinical testing March 2011-June 2012 (N=105)

September 2012 : Lung Cancer Genome Unraveled

`ell

nature **genetics**

Integrative genome analyses identify lamutations of small-cell lung cancer

Martin Peifer^{1,2,57}, Lynnette Fernández-Cuesta^{1,2,57}, Martin L Sos^{1–4}, Juli Lawryn H Kasper⁶, Dennis Plenker^{1,2}, Frauke Leenders^{1,2,5}, Ruping Sun⁷ Mirjam Koker^{1,2}, Ilona Dahmen^{1,2}, Christian Müller^{1,2}, Vincenzo Di Cer Janine Altmüller¹¹, Ingelore Baessmann¹¹, Christian Becker¹¹, Bram de V

Diana Böhm⁸, Sascha Ansén^{3,4}, Franziska Gabler², Ines Wilkening² Stefa Xin Lu^{1,2}, Scott L Carter¹³, Kristian Cibulskis¹³, Shantanu Ba Daniel Rauh¹⁶, Christian Grütter¹⁶, Matthias Fischer^{17,18}, Lau Prudence Russell²², Iver Petersen²³, Yuan Chen²³, Erich Stoel Hans Hoffmann²⁶, Thomas Muley²⁶, Michael Brockmann²⁷, Vito M Fazio²⁸, Harry Groen²⁹, Wim Timens³⁰, Hannie Sietst Daniëlle A M Heideman³¹, Peter J F Snijders³¹, Federico Cap John Field³⁵, Steinar Solberg³⁶, Odd Terje Brustugun^{37,38}, Marius Alex Soltermann⁴², Holger Moch⁴², Walter Weder⁴³, Benjami Validire⁴⁶, Benjamin Besse⁴⁵, Elisabeth Brambilla^{47,48}, Christ Lorimier⁴⁷, Peter M Schneider⁴⁹, Michael Hallek³⁻⁵, William Jay Shendure⁵⁴, Robert Schneider^{9,55}, Reinhard Büttner^{5,10}, Ji

Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing

Marcin Imielinski, ^{1,2,3,5,18} Alice H. Berger, ^{1,5,18} Peter S. Hammerman, ^{1,5,18} Bryan Hernandez, ^{1,18} Trevor J. Pugh, ^{1,5,18} Eran Hodis, ¹ Jeonghee Cho, ⁶ James Suh, ⁷ Marzia Capelletti, ⁸ Andrey Sivachenko, ¹ Carrie Suognez, ¹ Daniel Auclair, ¹ Michael S. Lawrence, ¹ Peter Stojanov, ^{1,5} Kristian Cibulskis, ¹ Kyusam Choi, ⁶ Luc de Waal, ^{1,5} Tanaz Sharifnia, ^{1,5} Angela Brooks, ^{1,5} Heidi Greulich, ^{1,5} Shantanu Banerii, ^{1,5} Thomas Zander, ^{9,11} Danila Seidel, ⁹ Frauke Leenders, ⁹ Sascha Ansén, ⁹ Corinna Ludwig, ⁹ Walburga Engel-Riedel, ⁹ Erich Stoelben, ⁹ Jürgen Wolf, ⁹ Chandra Goparju, ⁸ Kristin Thompson, ¹ Wendy Winckler, ¹ David Kwiatkowski, ⁶ Bruce E. Johnson, ⁹ Pasi A. Jänne, ⁶ Vincent A. Miller, ¹²

Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of *ERBB2*

Heidi Greulich^{a,b,c,d,1}, Bethany Kaplan^{a,d}, Philipp Mertins^d, Tzu-Hsiu Chen^d, Kumiko E. Tanaka^{a,d}, Cai-Hong Yun^e, Xiaohong Zhang^a, Se-Hoon Lee^a, Jeonghee Cho^a, Lauren Ambrogio^d, Rachel Liao^{a,d}, Marcin Imielinski^{a,d}, Shantanu Banerji^{a,d}, Alice H. Berger^{a,d}, Michael S. Lawrence^d, Jinghui Zhang^f, Nam H. Pho^{a,d}, Sarah R. Walker^a, Wendy Winckler^d, Gad Getz^d, David Frank^a, William C. Hahn^{a,b,d,g}, Michael J. Eck^h, D. R. Mani^d, Jacob D. Jaffe^d, Steven A. Carr^d, Kwok-Kin Wong^{a,b,c}, and Matthew Meyerson^{a,d,g,i,j}

ARTICLE

doi:10.1038/nature11404

Comprehensive genomic characterization of squamous cell lung cancers

The Cancer Genome Atlas Research Network*

Lukas C Heukamp¹⁰, Paul K Brindle⁶, Stefan Haas⁷ & Roman K Thomas^{1-5,10}

Mutations: Do they affect prognosis and adjuvant chemotherapy?

Marks, JTO 2008 Tsao, JTO 2011 (NCIC BR10)

Phase III adjuvant gefitinib (Japan)

Concern about ILD in advanced NSCLC: early closure

S0023: Maintainance gefitinib or placebo after CRT in stage III

BR.19 - Schema

Pts with completely resected stage IB,II, and IIIA NSCLC

Stratified by

- stage
- histology
- post-op RT sex adjuvant chemotherapy*

Randomized 1:1

Placebo
0 mg po
daily x 2 yrs

*Protocol amended January 2003 to allow adjuvant chemotherapy which became a stratification factor

Overall Survival by *EGFR* Mutation Status and Treatment

Wild type

Sensitizing mutation

HR (95% C.I.)

Gefitinib/Placebo: 1.21 (0.84, 1.73)

Log Rank: p=0.301

Median (95% C.I.)

-Placebo: Not reached (5.1, inf.)

-Gefitinib: 5.0 (4.3, inf.)

HR (95% C.I.)

Gefitinib/Placebo: 1.58 (0.83, 3.00)

Log Rank: p=0.160

Median (95% C.I.)

- Placebo: 5.1 (4.4, inf.)

- Gefitinib: 3.7 (2.6, inf.)

MSKCC-Cohort

MSKCC: recurrences

- 22/65 evaluable
- 15 on TKI, 7 after TKI
- 14 retreated with TKI
- ORR=73%

SELECT: Study Design

- Single arm Phase II study
- Adjuvant erlotinib following surgery and "standard" therapy

- Stage IA-IIIA NSCLC
- Surgically resected
- EGFR mutation positive
- Completed routine adjuvant chemotherapy and/or XRT

SELECT: Disease Free Survival

SELECT: Treatments After Progression

Initial stage	Adjuvant duration (mo)	Disease free interval (mo)	Site(s) of progression	Initial mutation	Repeat biopsy	Subsequent therapy	Response to erlotinib	Survival Post- Progression (mo)
IB	24	17	Lung nodules	Ex 19	Ex19	Erlotinib	Yes - PR	12+
IIB	24	3	Multiple brain, lung nodules	L858R	-	Erlotinib	Yes	26+
IB	24	23	Multiple brain + bone	L858R	-	Erlotinib	Yes - PR	4+
IIIA	11	24	Solitary lung	Ex 19	Ex19	Lung resection		6+
IIIA	23	13	Solitary bone	Ex 19	Ex19	Bone XRT -> Erlotinib	NMD	7+
IIA	23	14	Solitary brain	L858R	L858R+ T790M	Brain resection -> XRT	•	7+
IB	24	6	Solitary lung	L858R	L858R+ PIK3CA+ β-cat	Lung resection	•	12+
IIB	8.0	11	Lung nodules	Ex 19	-	Erlotinib	Yes	13 (Died)
IB	24	7	Solitary CNS	L858R	L858R	Brain resection -> Erlotinib	NMD	5+
IB	24	6	2 brain + Hilar node	L858R	L858R	Brain XRT -> erlotinib	Yes – CR	4+
IIIA	11	19	Lung, liver, adrenal, bone	L861Q	L861Q	Bone XRT -> Erlotinib	Yes	7+
IIB	16	0	Lung, brain	Ex 19	-	Brain XRT	-	2 (Died)

PR = partial response CR = complete response

Courtesy of L. Sequist

PD = progressive disease NMD = no measurable disease

RADIANT

- Primary endpoint = disease-free survival (all patients, IHC+ve and/or FISH+ve)
- Status: Closed
 - planned n=945 / actual accrual n=1252

CTONG1104: A national, multi center, randomized, open-label, phase III trial of gefitinib versus combination of vinorelbine plus platinum as adjuvant treatment in pathological stage II-IIIA(N1-N2) NSCLC with EGFR activating mutation (ADJUVANT)

• Sample size was estimated to be 220 when HR of DFS, the primary endpoint, was estimated to be 0.6, the enrollment period was to be 2 years, the period of follow-up after the final enrollment was to be 5 years, statistically significant level (α) was to be 0.05, and the statistical power was to be 80%. The estimated total events is 122 from 208 analysed patients

Courtesy of T. Wu

Window of opportunity trials

- Short course -> rapid results
- Preoperative -> tissue
- Confined sample size -> budget

- Suitable to confirm predictive markers.
- Not suitable to define standard-of-care.

Preoperative gefitinib (Toronto)

Preoperative gefitinib (MSKCC)

Case presentation: induction therapy for stage IIIB with EGFR L858R

Baseline

After 3 months of EGFR-TKI

After surgery and chemoradiation

EGFR IHC on resected tumor

Intratumor heterogeneity and change over time

Perspectives

- Genomic characterization is feasible, let us focus on cancer-specific targets.
- Adjuvant TKI-therapy is promising, but promises must be fulfilled.
- New trial designs are important, but they are no substitute for phase III trials.

Acknowledment

- S. Peters for ETOP-LUNGSCAPE data
- J. Diebold for IHC and FISH images
- G. Goss, L. Sequist and T. Wu for slides
- T. Mok and S. Aebi for discussion

