Is there a role for targeted agents in stage I-III NSCLC? oliver.gautschi@onkologie.ch ## Disclosure slide - Involved in investigator-initiated clinical trials supported by Roche and Eli Lilly - No other potential conflicts of interest ### **Current status** - Targeted agents are promising for selected patients with resectable NSCLC stage I-III. - If possible, patients should be enrolled in clinical trials. ## What we want ### Use cancer-specific drugs that - are highly active, well tolerated, and have no negative impact on surgery, radiation and chemotherapy, - enhance cure rate (eradicate cancer), or at least delay tumor recurrence (control cancer). ## What we do **not** want ### Add drugs which - preclude curative standard therapy, - increase (long-term) toxicity, - produce secondary (lung) cancers, - lead to early drug resistance. ## The Problem: Prognosis 5-Year Survival Rates and Numbers of Cases ## The Promise: Mutations Clinical testing March 2011-June 2012 (N=105) # September 2012 : Lung Cancer Genome Unraveled `ell nature **genetics** # Integrative genome analyses identify lamutations of small-cell lung cancer Martin Peifer^{1,2,57}, Lynnette Fernández-Cuesta^{1,2,57}, Martin L Sos^{1–4}, Juli Lawryn H Kasper⁶, Dennis Plenker^{1,2}, Frauke Leenders^{1,2,5}, Ruping Sun⁷ Mirjam Koker^{1,2}, Ilona Dahmen^{1,2}, Christian Müller^{1,2}, Vincenzo Di Cer Janine Altmüller¹¹, Ingelore Baessmann¹¹, Christian Becker¹¹, Bram de V Diana Böhm⁸, Sascha Ansén^{3,4}, Franziska Gabler², Ines Wilkening² Stefa Xin Lu^{1,2}, Scott L Carter¹³, Kristian Cibulskis¹³, Shantanu Ba Daniel Rauh¹⁶, Christian Grütter¹⁶, Matthias Fischer^{17,18}, Lau Prudence Russell²², Iver Petersen²³, Yuan Chen²³, Erich Stoel Hans Hoffmann²⁶, Thomas Muley²⁶, Michael Brockmann²⁷, Vito M Fazio²⁸, Harry Groen²⁹, Wim Timens³⁰, Hannie Sietst Daniëlle A M Heideman³¹, Peter J F Snijders³¹, Federico Cap John Field³⁵, Steinar Solberg³⁶, Odd Terje Brustugun^{37,38}, Marius Alex Soltermann⁴², Holger Moch⁴², Walter Weder⁴³, Benjami Validire⁴⁶, Benjamin Besse⁴⁵, Elisabeth Brambilla^{47,48}, Christ Lorimier⁴⁷, Peter M Schneider⁴⁹, Michael Hallek³⁻⁵, William Jay Shendure⁵⁴, Robert Schneider^{9,55}, Reinhard Büttner^{5,10}, Ji #### Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing Marcin Imielinski, ^{1,2,3,5,18} Alice H. Berger, ^{1,5,18} Peter S. Hammerman, ^{1,5,18} Bryan Hernandez, ^{1,18} Trevor J. Pugh, ^{1,5,18} Eran Hodis, ¹ Jeonghee Cho, ⁶ James Suh, ⁷ Marzia Capelletti, ⁸ Andrey Sivachenko, ¹ Carrie Suognez, ¹ Daniel Auclair, ¹ Michael S. Lawrence, ¹ Peter Stojanov, ^{1,5} Kristian Cibulskis, ¹ Kyusam Choi, ⁶ Luc de Waal, ^{1,5} Tanaz Sharifnia, ^{1,5} Angela Brooks, ^{1,5} Heidi Greulich, ^{1,5} Shantanu Banerii, ^{1,5} Thomas Zander, ^{9,11} Danila Seidel, ⁹ Frauke Leenders, ⁹ Sascha Ansén, ⁹ Corinna Ludwig, ⁹ Walburga Engel-Riedel, ⁹ Erich Stoelben, ⁹ Jürgen Wolf, ⁹ Chandra Goparju, ⁸ Kristin Thompson, ¹ Wendy Winckler, ¹ David Kwiatkowski, ⁶ Bruce E. Johnson, ⁹ Pasi A. Jänne, ⁶ Vincent A. Miller, ¹² # Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of *ERBB2* Heidi Greulich^{a,b,c,d,1}, Bethany Kaplan^{a,d}, Philipp Mertins^d, Tzu-Hsiu Chen^d, Kumiko E. Tanaka^{a,d}, Cai-Hong Yun^e, Xiaohong Zhang^a, Se-Hoon Lee^a, Jeonghee Cho^a, Lauren Ambrogio^d, Rachel Liao^{a,d}, Marcin Imielinski^{a,d}, Shantanu Banerji^{a,d}, Alice H. Berger^{a,d}, Michael S. Lawrence^d, Jinghui Zhang^f, Nam H. Pho^{a,d}, Sarah R. Walker^a, Wendy Winckler^d, Gad Getz^d, David Frank^a, William C. Hahn^{a,b,d,g}, Michael J. Eck^h, D. R. Mani^d, Jacob D. Jaffe^d, Steven A. Carr^d, Kwok-Kin Wong^{a,b,c}, and Matthew Meyerson^{a,d,g,i,j} #### ARTICLE doi:10.1038/nature11404 # Comprehensive genomic characterization of squamous cell lung cancers The Cancer Genome Atlas Research Network* Lukas C Heukamp¹⁰, Paul K Brindle⁶, Stefan Haas⁷ & Roman K Thomas^{1-5,10} # Mutations: Do they affect prognosis and adjuvant chemotherapy? Marks, JTO 2008 Tsao, JTO 2011 (NCIC BR10) # Phase III adjuvant gefitinib (Japan) Concern about ILD in advanced NSCLC: early closure # S0023: Maintainance gefitinib or placebo after CRT in stage III ### **BR.19 - Schema** Pts with completely resected stage IB,II, and IIIA NSCLC #### Stratified by - stage - histology - post-op RT sex adjuvant chemotherapy* **Randomized 1:1** Placebo 0 mg po daily x 2 yrs *Protocol amended January 2003 to allow adjuvant chemotherapy which became a stratification factor # Overall Survival by *EGFR* Mutation Status and Treatment Wild type **Sensitizing mutation** HR (95% C.I.) Gefitinib/Placebo: 1.21 (0.84, 1.73) Log Rank: p=0.301 Median (95% C.I.) -Placebo: Not reached (5.1, inf.) -Gefitinib: 5.0 (4.3, inf.) HR (95% C.I.) Gefitinib/Placebo: 1.58 (0.83, 3.00) **Log Rank:** p=0.160 **Median (95% C.I.)** - Placebo: 5.1 (4.4, inf.) - Gefitinib: 3.7 (2.6, inf.) ## **MSKCC-Cohort** ## **MSKCC**: recurrences - 22/65 evaluable - 15 on TKI, 7 after TKI - 14 retreated with TKI - ORR=73% # **SELECT: Study Design** - Single arm Phase II study - Adjuvant erlotinib following surgery and "standard" therapy - Stage IA-IIIA NSCLC - Surgically resected - EGFR mutation positive - Completed routine adjuvant chemotherapy and/or XRT ## **SELECT: Disease Free Survival** ## SELECT: Treatments After Progression | Initial
stage | Adjuvant
duration
(mo) | Disease free
interval
(mo) | Site(s) of progression | Initial
mutation | Repeat
biopsy | Subsequent
therapy | Response
to erlotinib | Survival Post-
Progression
(mo) | |------------------|------------------------------|----------------------------------|------------------------------|---------------------|----------------------------|------------------------------|--------------------------|---------------------------------------| | IB | 24 | 17 | Lung nodules | Ex 19 | Ex19 | Erlotinib | Yes - PR | 12+ | | IIB | 24 | 3 | Multiple brain, lung nodules | L858R | - | Erlotinib | Yes | 26+ | | IB | 24 | 23 | Multiple brain + bone | L858R | - | Erlotinib | Yes - PR | 4+ | | IIIA | 11 | 24 | Solitary lung | Ex 19 | Ex19 | Lung resection | | 6+ | | IIIA | 23 | 13 | Solitary bone | Ex 19 | Ex19 | Bone XRT ->
Erlotinib | NMD | 7+ | | IIA | 23 | 14 | Solitary brain | L858R | L858R+
T790M | Brain resection -> XRT | • | 7+ | | IB | 24 | 6 | Solitary lung | L858R | L858R+
PIK3CA+
β-cat | Lung resection | • | 12+ | | IIB | 8.0 | 11 | Lung nodules | Ex 19 | - | Erlotinib | Yes | 13 (Died) | | IB | 24 | 7 | Solitary CNS | L858R | L858R | Brain resection -> Erlotinib | NMD | 5+ | | IB | 24 | 6 | 2 brain + Hilar
node | L858R | L858R | Brain XRT -> erlotinib | Yes – CR | 4+ | | IIIA | 11 | 19 | Lung, liver, adrenal, bone | L861Q | L861Q | Bone XRT -> Erlotinib | Yes | 7+ | | IIB | 16 | 0 | Lung, brain | Ex 19 | - | Brain XRT | - | 2 (Died) | PR = partial response CR = complete response Courtesy of L. Sequist PD = progressive disease NMD = no measurable disease #### **RADIANT** - Primary endpoint = disease-free survival (all patients, IHC+ve and/or FISH+ve) - Status: Closed - planned n=945 / actual accrual n=1252 **CTONG1104**: A national, multi center, randomized, open-label, phase III trial of gefitinib versus combination of vinorelbine plus platinum as adjuvant treatment in pathological stage II-IIIA(N1-N2) NSCLC with EGFR activating mutation (ADJUVANT) • Sample size was estimated to be 220 when HR of DFS, the primary endpoint, was estimated to be 0.6, the enrollment period was to be 2 years, the period of follow-up after the final enrollment was to be 5 years, statistically significant level (α) was to be 0.05, and the statistical power was to be 80%. The estimated total events is 122 from 208 analysed patients Courtesy of T. Wu ## Window of opportunity trials - Short course -> rapid results - Preoperative -> tissue - Confined sample size -> budget - Suitable to confirm predictive markers. - Not suitable to define standard-of-care. # Preoperative gefitinib (Toronto) ## Preoperative gefitinib (MSKCC) # Case presentation: induction therapy for stage IIIB with EGFR L858R Baseline After 3 months of EGFR-TKI After surgery and chemoradiation #### EGFR IHC on resected tumor # Intratumor heterogeneity and change over time ## Perspectives - Genomic characterization is feasible, let us focus on cancer-specific targets. - Adjuvant TKI-therapy is promising, but promises must be fulfilled. - New trial designs are important, but they are no substitute for phase III trials. ## Acknowledment - S. Peters for ETOP-LUNGSCAPE data - J. Diebold for IHC and FISH images - G. Goss, L. Sequist and T. Wu for slides - T. Mok and S. Aebi for discussion