

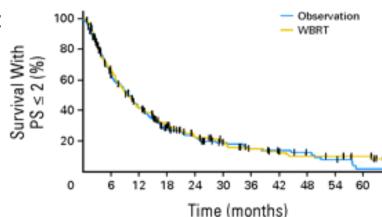
- Iuchi Toshihiko et al: Tyrosine kinase inhibitors for brain mets of EGRF mutant adenocarcinoma of the lung
- Bruno Chauffert et al: RCT phase II of irinotecan + Bev as neoadjuvant
 + adj. to TMZ treated unresectable GBM
 (TEMAVIR ANOCEF) study
- Emeline Tabouret et al: Association of a strong plasma biomarker level with response and survival in patients treated with Bevacizumab for recurrent HGG

Christine Marosi Medical University of Vienna

Disclosures

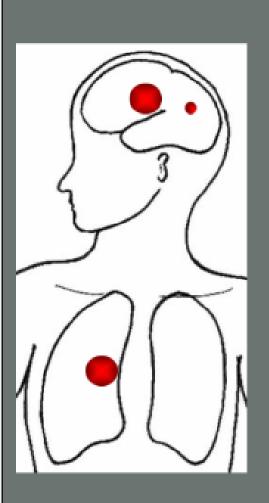
Christine Marosi received previously travel support, lecture honoraria and research funding from Roche.

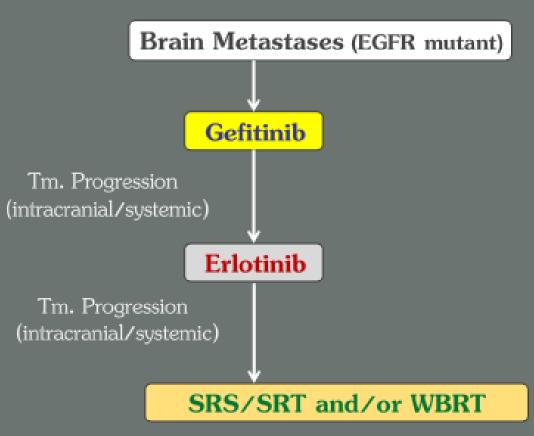
Tyrosine kinase inhibitors without radiation therapy for brain metastases from EGFR-mutant adenocarcinoma of the lung


Toshihiko luchi¹, M. Shingyoji², T. Sakaida¹, S. Yokoi³, M. Itakura², K. Kawasaki¹, Y. Hasegawa¹, H. Kageyama³, T. Iizasa²

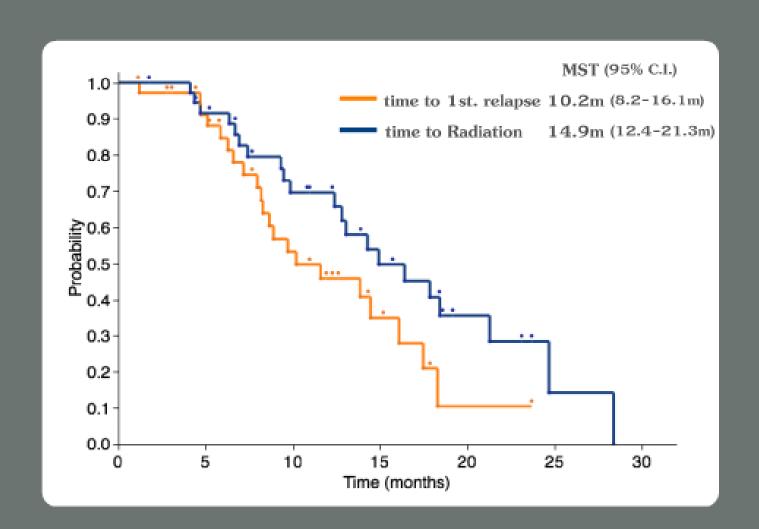
- 1. Neurological Surgery, Chiba Cancer Center, Chiba, JAPAN,
 - 2. Thoracic Disease, Chiba Cancer Center, Chiba, JAPAN,
- 3. Cancer Diagnosis, Chiba Cancer Center Research Institute, Chiba, JAPAN

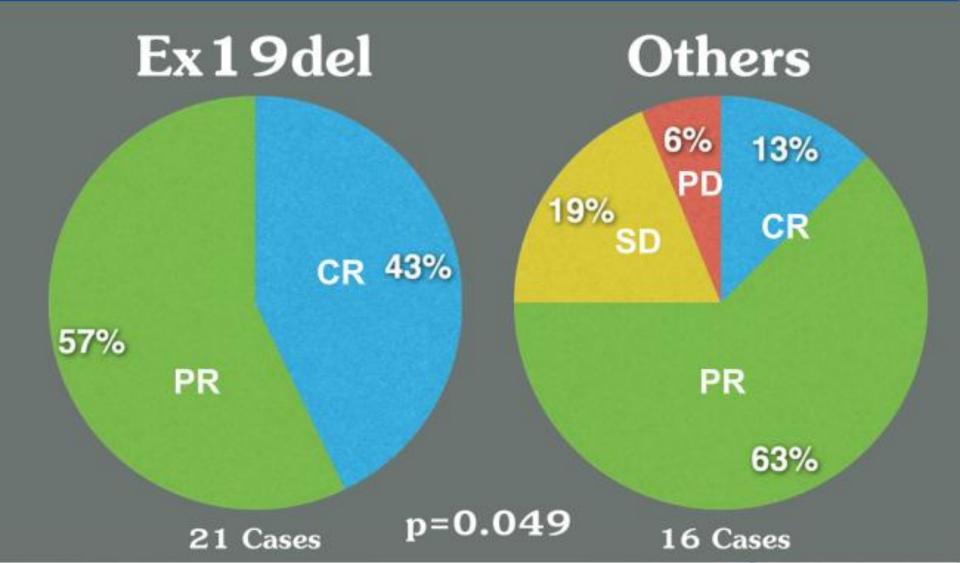
May radiotherapy be delayed to (certain) patients with brain metastases?


still a hot topic: brain metastases may affect 6% of the population


- ASCO 2006: W.Regine: The evidence favors whole brain radiotherapy
- Radiotherapy remains the mainstay of treatment of patients with BM
 - Gaspar LE et al: The role of whole brain radiation therapy in the management of newly diagnosed brain metastases:
 - Linskey ME, et al: The role of stereotactic radiosurgery in the management of patients with newly diagnosed brain metastases
 - both: J Neurooncology January 2010: systematic reviews and evidencebased clinical practice guideline.
- EORTC Study 22951/26001 Kocher et al: delay of WBRT in good prognostic patients duration of independent SV similar

Treatment

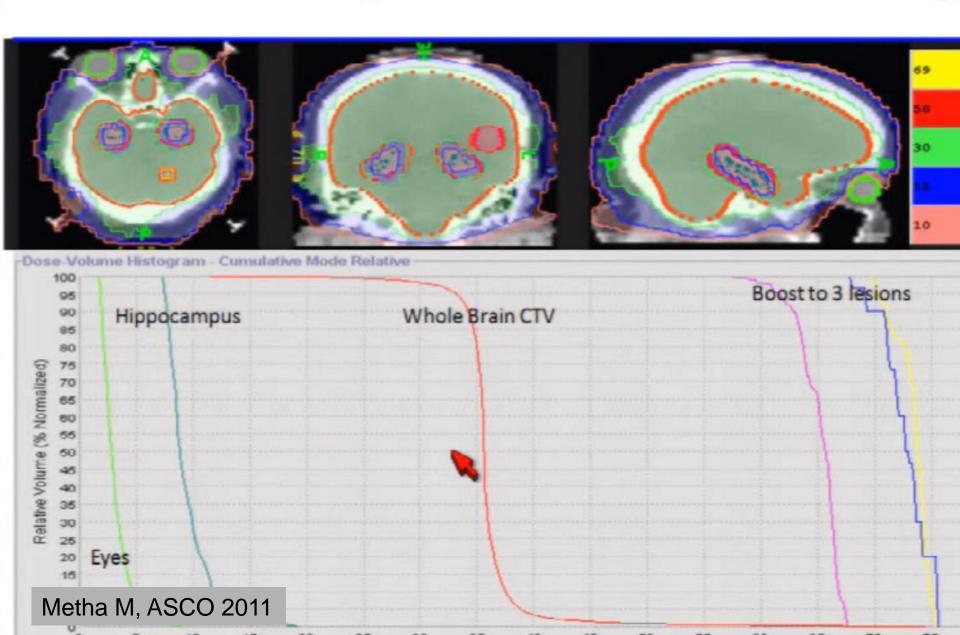



Lesion Control

EGFR mutations

Adverse Events

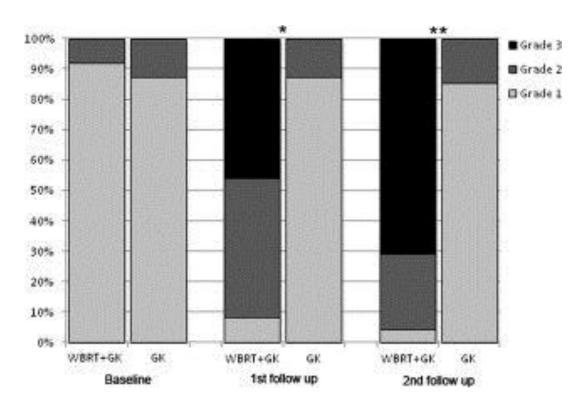
37 Cases


No Grade 4 Adverse Event

Grade 3 Adverse Events

Pneumonitis	1	2.7%
Skin Rash	8	21.6%
Blood toxicity	2 lymphocytopenia (1) Neutorpenia (1)	5.4%
Liver dysfunction	4	10.8%
Renal dysfunction	0	0.0%

HA-WBRT in conjunction with selective boosting

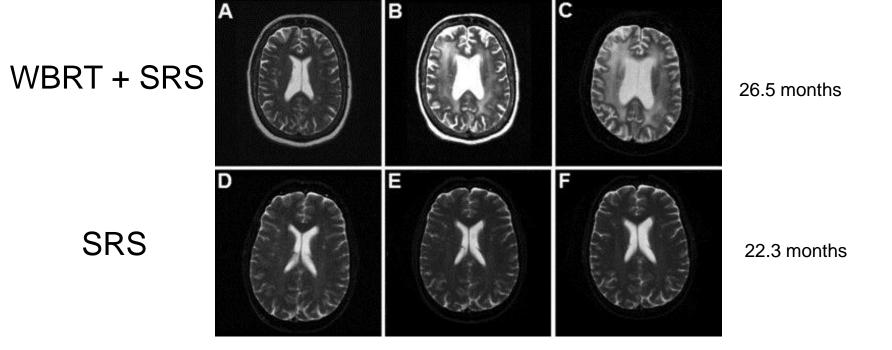


Neurocognitive function impairment after WBRT: an actual assessment

Assessments of neurocognitive outcomes after WBRT+/- SRS in patients with brain metastases: 16 studies.1648 patients

- biphasic pattern of neurocognitive impairment:
 - subacute, transient decline with a peak at 4 months
 (31-57% patients impaired at three months)
 - > -4 points at MMSE, -2 SD at HVLT, COWA
 - late delayed irreversible impairment months or years after WBRT, affecting more memory than motor functions
 48-85% patients impaired at 12 months
- must be balanced against the detrimental cognitive effects of brain disease recurrence

Leukencephalopathy after WBRT + SRS vs SRS alone for metatstatic lung cancer

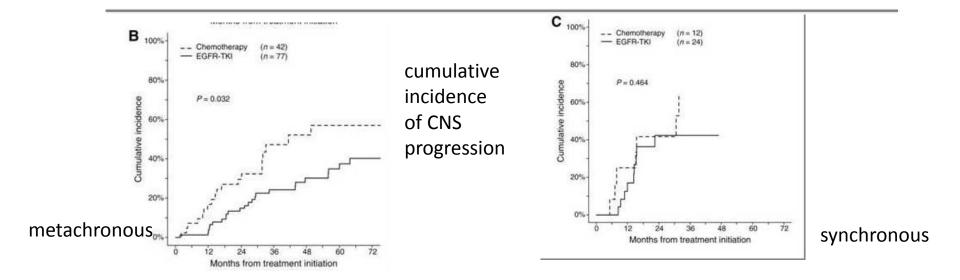

similar initial white matter grading,

at 12 months: 40% grade, and 45% grade 3 white matter changes

at 24 months 25% grade 2 and 70% grade 3 white matter changes in the WBRT group

Leukencephalopathy after WBRT + SRS vs SRS alone for metatstatic lung cancer

2 exemplary patients

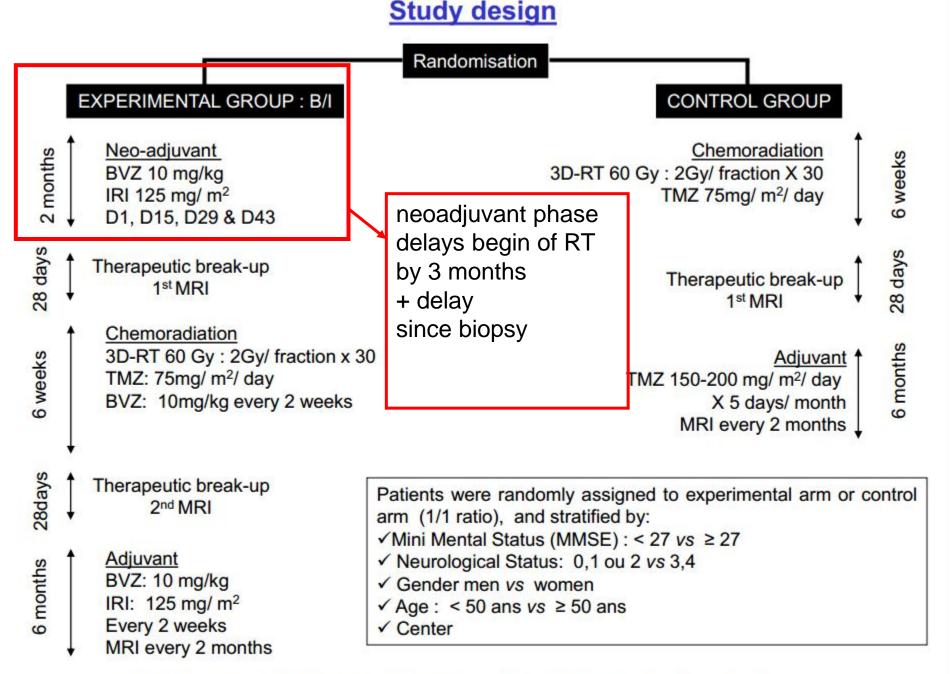


Clinical Cancer Research

Cancer Therapy: Clinical

The Impact of Initial Gefitinib or Erlotinib versus Chemotherapy on Central Nervous System Progression in Advanced Non-Small Cell Lung Cancer with EGFR Mutations

Stephanie Heon^{1,2,3}, Beow Y. Yeap^{2,4}, Neal I. Lindeman^{5,6}, Victoria A. Joshi^{5,6,7}, Mohit Butaney¹, Gregory J. Britt^{2,8}, Daniel B. Costa^{2,8}, Michael S. Rabin^{1,2,3}, David M. Jackman^{1,2,3}, and Bruce E. Johnson^{1,2,3}


TKIs prevented the formation of metachronous brain metastases (B), but not progression of established brain metastases (C) as compared to chemotherapy

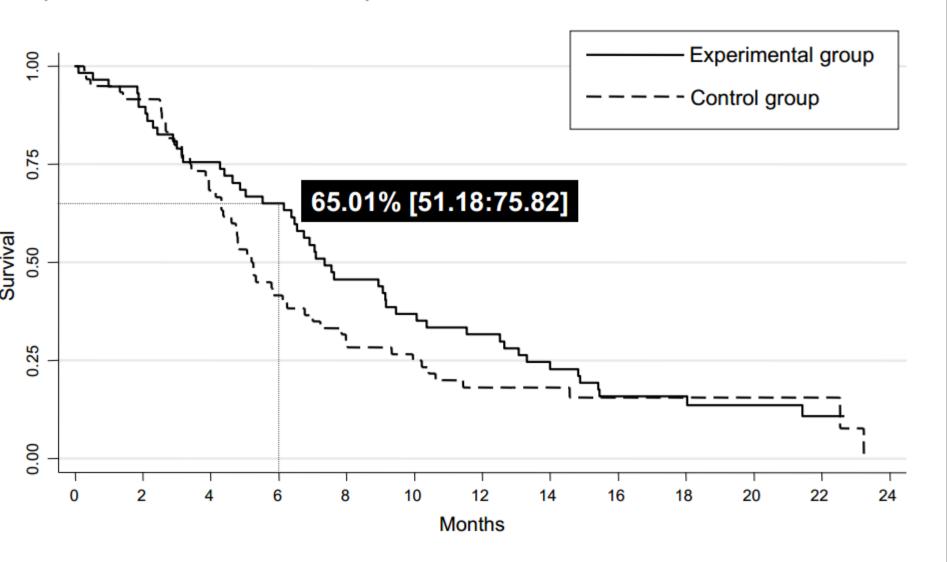
RANDOMIZED MULTICENTER PHASE II TRIAL OF IRINOTECAN AND BEVACIZUMAB AS NEO-ADJUVANT AND ADJUVANT TO TEMOZOLOMIDE-BASED CHEMORADIATION VERSUS CHEMORADIATION FOR UNRESECTABLE GLIOBLASTOMA

DEFINITIVE RESULTS OF THE TEMAVIR ANOCEF STUDY

B. Chauffert

Medical Oncology, University Hospital, Amiens FRANCE

BVZ: bevacizumab, IRI: Irinotécan, TMZ: Témozolomide, MRI: Magnetic Resonance Imaging


Grade III-IV toxicities (%)

Overall toxicities 46.3 37.7 Hematological 12.3 14.8 Neutropenia 8.8 9.3 Febrile neutropenia 1.8 0.0 Anemia 0.0 0.0		
Hematological 12.3 14.8 Neutropenia 8.8 9.3 Febrile neutropenia 1.8 0.0 Anemia 0.0 0.0	Control group (60 pts)	
Neutropenia 8.8 9.3 Febrile neutropenia 1.8 0.0 Anemia 0.0		
Febrile neutropenia 1.8 0.0 Anemia 0.0		
Thrombocytopenia 3.5 Lymphopenia 12.3 13.0		
Non Hematological 40 27.8		
Other infections 8.8 3.7 Stomatitis 3.6 1.9 Nausea/vomiting 1.8 0.0 Diarrhea 7.1 0.0 Cutaneous 0.0 0.0 Renal 0.0 0.0 Neurotoxicity 0.0 1.9		

Data presented above were censored the 31th of august 2012, two years follow-up is still ongoing.

Progression Free-Survival (PFS)

Kaplan Meier analysis was performed as secondary objective with an expected PFS at 6 months expected to be ≥ 66%.

Comments

Thanks ANOCEF!

You don't avoid difficult questions

- "negative" trial does just not meet the goals designed by youself (before)
 - impact of delaying RT in the experimental group
 - impact of cross over
- acceptable toxicity interesting QoL data: how is systemic toxicity, e.g. hypertension, diarrhea, skin rasch perceived and managed by glioma patients and their relatives
 - How many patients stopped early in the experimental arm?
- Impressive TTP and OS data in a difficult patient population
 - Mc Namara: OS in patients with GBM and biopsy 4.5 mo, max:
 6.3mo
- How would you design this trial today?

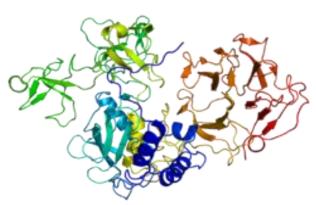
ASSOCIATION OF A STRONG CANDIDATE BIOMARKER PLASMA LEVEL WITH RESPONSE AND SURVIVAL IN PATIENTS TREATED WITH BEVACIZUMAB FOR RECURRENT HIGH GRADE GLIOMA

Emeline Tabouret¹

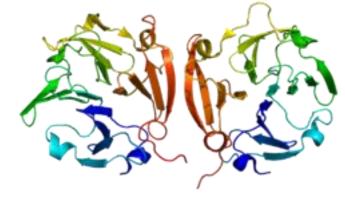
F. Boudouresque², M. Barrié¹, M. Matta¹, C. Boucard¹, A. Loundou³, M. Ouafik²,
O. Chinot¹

1. Neurooncology, AP-HM Timone,

2. Umr 911, 3. Santé Publique, AMU, Marseille FRANCE

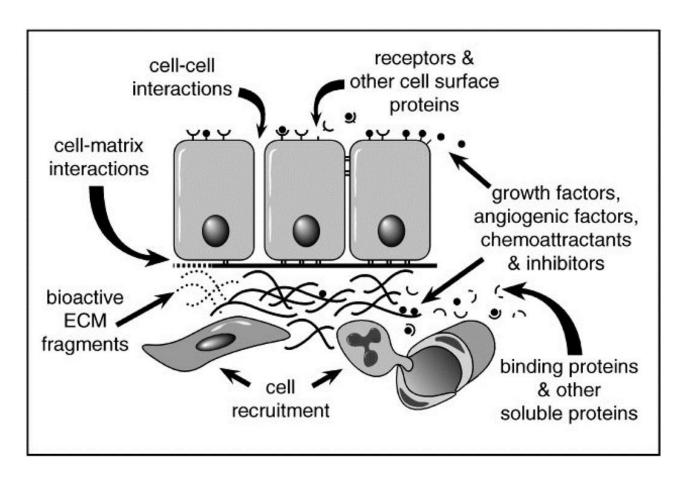

Circulating markers of angiogenesis, inflammation and coagulation in patients with glioblastoma

Reynes et al. J NeuroOncol 2011;102:35-41


	Patients	Controls	comment	n
n	40	60		р
COAGULATION				
Prothrombin factors 1&2 (nmol/l)	0.42 <u>+</u> 0.5	0.2 <u>+</u> 0.05	x2	<0.001
Tissue factor (pg/ml)	154 <u>+</u> 93	153 <u>+</u> 59	=	NS
Endogenous thrombin generation (UI/mI)	10.9 <u>+</u> 3.4	8.7 <u>+</u> 2.4	+25%	<0.01
INFLAMMATION				
IL-6 (pg/ml)	3.5 <u>+</u> 7.1	0.7 <u>+</u> 0.4	x7	<0.01
TNFalpha (pg/ml)	1.1 <u>+</u> 0.9	0.6 <u>+</u> 0.2	x2	<0.001
Fibrinogen (mg/dl)	300 <u>+</u> 156	232 <u>+</u> 31	+25%	<0.01
Sialic acid (mg/dl)	71 <u>+</u> 22	55 <u>+</u> 10	+40%	<0.001
CRP (mg/l)	17 <u>+</u> 26.6	1.8 <u>+</u> 2.7	x10	<0.001
ANGIOGENESIS				
VEGF (pg/ml)	268 <u>+</u> 186	123 <u>+</u> 64	x2	<0.001
sVEGF-R1 (pg/ml)	89 <u>+</u> 29	77 <u>+</u> 17	+15%	<0.05
Thrombospondin-1 (ug/ml)	47 <u>+</u> 14	46 <u>+</u> 10	=	NS

matrix metalloproteinases

- conserved in evolution from hydra to man
- depend on metal ions (zinc) for catalytic activity
- degrade structural proteins of the extracellular matrix & cell surface proteins, thus involved in signalling & motility


MMP-2: gelatinase A expression significantly elevated in glioma cells WHO II-IV involved in glial invasion & angiogenesis

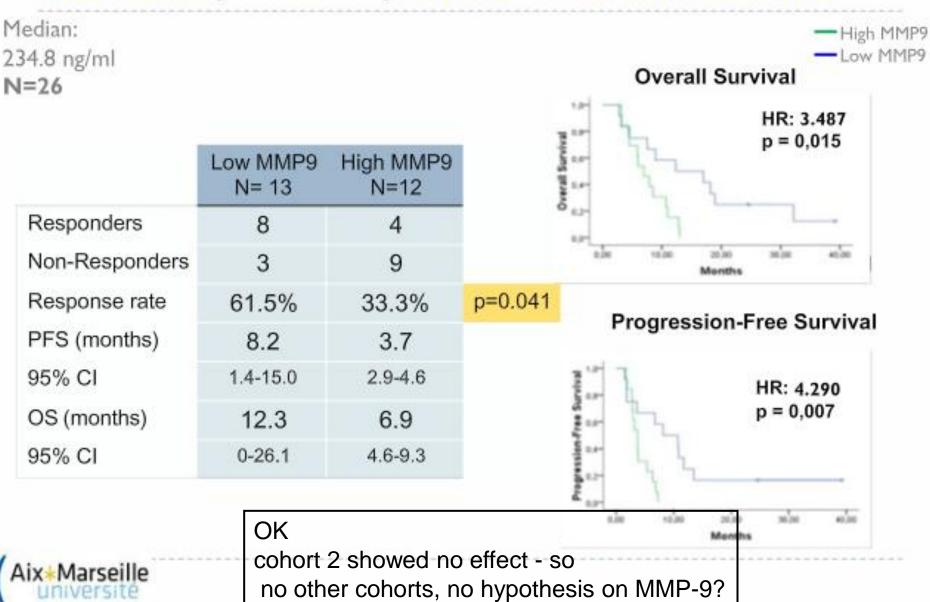
MMP-9: gelatinase B expressed in blood vessels at proliferating margins of glioma Involved in neoangiogenesis

matrix metalloproteinases and glioma

- 640 hits in PUB Med
- involved in cell motility, invasiveness and angiogenesis potential targets or markers?
- Zhao J, Li G, Zhao Z, Wang J, Gao G, He S. Matrix Metalloproteinase-9 Expression is Increased in Astrocytic Glioma and Associated with Prognosis of Patients. Jpn J Clin Oncol. 2012 Sep 12.

Online Submissions: http://www.wjgnet.com/2218-4333officewjco@wjgnet.comdoi:10.5306/wjco.v3.i5.67

World J Clin Oncol 2012 May 10; 3(5): 67-79 ISSN 2218-4333 (online) © 2012 Baishideng. All rights reserved.


REVIEW

A complete compilation of matrix metalloproteinase expression in human malignant gliomas

Carsten Hagemann, Jelena Anacker, Ralf-Ingo Ernestus, Giles H Vince

Results (cohort 1): MMP 9 baseline level

+ Cohort 3

Results (cohort 1): MMP 2 baseline level

Median: 227,2 ng/ml N=26	ROC AUC 0,827 (0,624-0,947) p = 0,0017		Cut-off (227,2) Se = 83,3 (51,6-97,9) Sp=92,31 (64-99.8)			High MMP2 Low MMP2	
			op 02,01(Cohort 3: without Bevacizumab			
	Low MMP2 N= 13	High MMP2 N=12		Low MMP2 N= 17	High MMP2 N=3 ◀		
Responders	2	10		4	1		
Non-Responders	(11	2		13	2		
Response rate	15.4%	83.3%	p=0.001	24%	(3%)	p=0.601	
PFS (months)	3.0	5.9	-	3.1	7.7		
95% CI	2.5-3.5	4.0-7.8		1.0-5.1	4.0-11.4		
OS (months)	7.3	12.8		5.8	8.9		
95% CI	5.2-9.4	10.4-15.2		3.0-8.5	3.2-14.6		

MMP-2: elevated plasma levels

- acute cornary infarction
- acute coronary syndrome
- aortic dilatation
- emphysema, COPD
- infectious meningitis
- breast cancer, lung cancer
- bladder cancer
- viral liver disease
- acute pulpitis
- psoriasis
- venous ulcers
- macula degeneration
- arthritis, rheumatic diseases
- direct inguinal hernia......
- any inflammatory reaction....

a single blood level – in 15 patients! - is not suitable to define "high level of MMP-2" as a predictive marker given the lack of specificity....

But this remains an interesting finding & kinetics could be informative....

Thank you for your attention

any questions?

