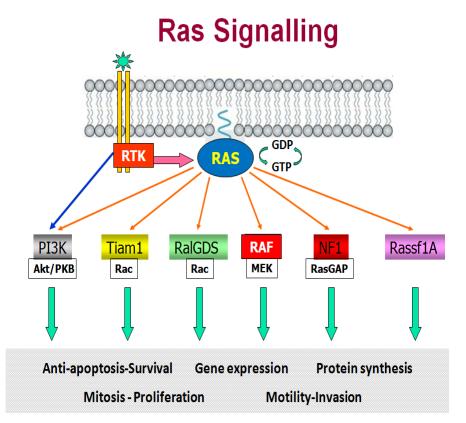

Prognostic and Predictive Values of KRAS in EGFR-based Subgroups and Combined with TP53 in Completely Resected Non-Small Cell Lung Cancer (NSCLC): a LACE-Bio Study

P.A. Jänne, F. A. Shepherd, C. Domerg, G. Le Teuff, R.A. Kratzke, P. Hainaut, J.-P. Pignon, R. Rosell, J.C. Soria and M. Tsao


> on behalf of the LACE-Bio Collaborative Group

TP53 and KRAS Mutations are Common in NSCLC

KRAS Mutation and NSCLC

- *RAS* mutations occur in 15-20% NSCLC, with >90% involving KRAS
- Associated with smoking and adenocarcinoma
- In 1990, KRAS mutation was first reported as a prognostic marker in lung adenocarcinoma

Previous KRAS results in LACE-Bio

Shepherd et al. ASCO 2012

Pooled analysis of KRAS mutation status in 1543 patients from 4 randomized trials (ANITA, JBR10, IALT and CALGB 9633) of adjuvant platinum-based chemotherapy or observation

No predictive nor prognostic significant value of KRAS mutation on OS and DFS

Analysis according to the sub-type of mutation showed that codon 13 mutation was predictive of a deleterious effect of chemotherapy

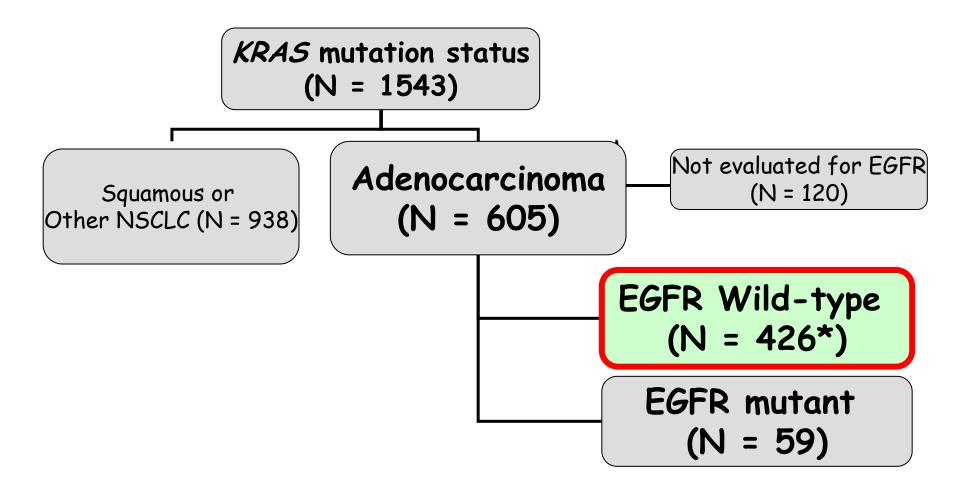
Aims of the Current Study

Assess the prognostic and predictive effects of KRAS mutations in 4 LACE-Bio trials of adjuvant chemotherapy versus observation

KRAS mutations in EGFR wild type (WT) adenocarcinoma

KRAS mutations combined with TP53 mutations

Methods: KRAS Analyses


Trial	Analysis Method (All blinded)	RAS family	Codon
ANITA	Sequencing & RFLP & ARMS	K	12, 13
IALT	Sequencing & RFLP	K	12, 13
JBR.10	Sequencing & ASOH	K, H, N	12, 13, 61
CALGB	Mass spectrometry	K	12, 13, 61

RFLP: Restriction fragment length polymorphism ASOH: Allelic specific oligonucleotide hybridization ARMS: Allelic refractory mutation system analysis (DxS Kit)

Methods: EGFR and TP53 analyses

EGFR exon 19 and 21 mutations and *TP53* were assessed by polymerase chain reaction / bidirectional sequencing in cases with DNA quality allowing also *KRAS* mutation search

KRAS Mutation in EGFR Wild-Type Adenocarcinoma Patients

* 27 ANITA patients were then removed of the analysis because of the uncertainty of the *EGFR* mutation detection

Prognostic Value of KRAS Mutation on Overall Survival in EGFR WT AdenoCa

Observation Arm*	No deaths / No patients	HR for death	95% <i>C</i> I	Ρ
<i>KRAS</i> Status <i>KRAS</i> wild-type <i>KRAS</i> mutant	59 / 124 35 / 75	1 0.90	0.56-1.44	0.65

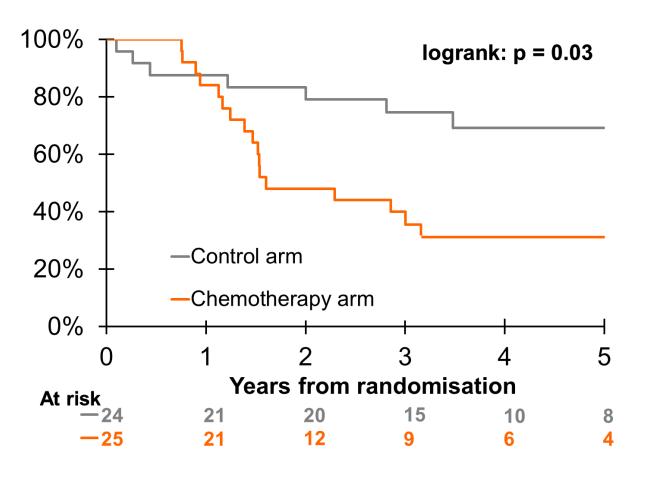
* 5 patients had missing values for one or more covariates

Predictive Value of KRAS Mutation on Overall Survival in EGFR WT AdenoCa

	Chemotherapy	Observation	HR for death	
	(Deaths / Pts)	(Deaths / Pts)	CT vs. no CT	
<i>KRAS</i> wild-type n=236*	44 / 112	59 / 124	0.74 [0.50 - 1.12] p = 0.16	
<i>KRAS</i> mutant n= 157*	35 / 82	35 / 75	0.91 [0.56 - 1.48] p = 0.69	
HR	1.12	0.92	1.22	
<i>KRAS</i> mutant vs.	[0.71 - 1.76]	[0.59 - 1.44]	[0.64 - 2,31]	
wild-type	p = 0.62	p = 0.71	p = 0.55	

* 6 patients had missing values for one or more covariates

Prognostic Value of *TP53* and *KRAS* Mutations on OS in Observation Patients (n=587)


	No deaths /	Multivariable		
	No patients	HR for death	95% IC	P value
<i>KRAS</i> mutation status	280 / 580*			
Wild-type	141 / 299	1		0.58
KRAS mutant	41 / 86	1.25	[0.86 - 1.81]	
TP53 mutant	89/171	1.08	[0.82 - 1.53]	
Double mutation	9 / 24	0.85	[0.43 - 1.69]	

*7 patients with missing covariates are excluded

Predictive Value of *TP53* and *KRAS* Mutations on Overall Survival

	Chemotherapy (Deaths / Pts)	Observation (Deaths / Pts)	HR for death CT vs. no CT
<i>KRAS/ TP53</i> wild type n=567*	109 / 268	141 / 299	0.82 [0.64 - 1.06] p = 0.13
<i>KRAS</i> mutant n= 184*	41 / 98	41 / 86	0.73 [0.47 - 1.13] p = 0.16
TP53 mutant n= 373	108 / 202	89 / 171	0.97 [0.73 - 1.29] p = 0.84
Double mutant n=49	17 / 25	9 / 24	2.49 [1.10 - 5.66] p = 0.03
HR Double mutation vs. WT	2.76 [1.62 - 4.68] P = 0.0002	0.91 [0.46 - 1.80] P = 0.79	3.03 [1.29 - 7.15] ₂ P = 0.01

Predictive Value of *TP53* and *KRAS* double Mutations on Overall Survival

Interaction Treatment X type of Mutation (comparison of the treatment effect in the 4 groups): p=0.06

Prognostic Summary

KRAS mutation in EGFR WT patients is not significantly prognostic in resected NSCLC

KRAS/TP53 mutations are not significantly prognostic in resected NSCLC

Predictive Summary

KRAS mutation overall is not significantly predictive of survival benefit from adjuvant chemotherapy in EGFR WT AdenoCa resected NSCLC

- Patients with both KRAS and TP53 mutations have a worse outcome when treated with adjuvant chemotherapy compared to those with WT/WT tumors
- Comparison of the effects of chemotherapy among the 4 groups defined by KRAS and TP53 mutations was of borderline significance (p=0.06)

These results require validation in other data sets

Research Support

Supported by research grants from:

Ligue Nationale Contre le Cancer (France)

PNES INCa (France)

National Cancer Institute (USA)

Canadian Cancer Society Research Institute (Canada)

Sanofi-Aventis (unrestricted grant)

Personal funding from the investigators