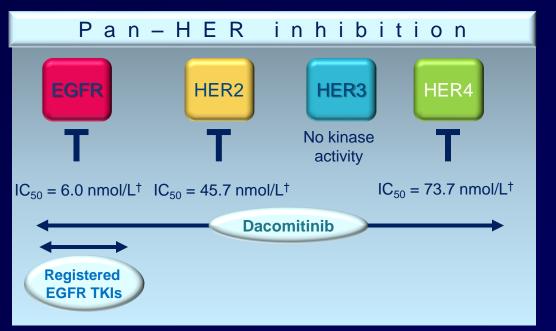
Dacomitinib (PF-00299804), an Irreversible pan-HER Tyrosine Kinase Inhibitor, for First-Line Treatment of *EGFR*-Mutant or *HER2*-Mutant or -Amplified Lung Cancers


Mark G Kris,¹ Tony Mok,² Sai-Hong Ignatius Ou,³ Renato G. Martins,⁴ Dong-Wan Kim,⁵ Zelanna Goldberg,⁶ Hui Zhang,⁷ Ian Taylor,⁸ Joseph O'Connell,⁹ and Pasi A. Jänne¹⁰

¹Memorial Sloan-Kettering Cancer Center, New York, NY, US; ²The Chinese University of Hong Kong, Shatin, Hong Kong; ³School of Medicine, University of California at Irvine, Irvine, CA, US; ⁴University of Washington, Seattle, WA, US; ⁵Seoul National University Hospital, Seoul, Republic of Korea; ⁶Pfizer Oncology, La Jolla, CA, US; ⁷Pfizer (China) Research & Development Co. Ltd, Shanghai, China; ⁸Pfizer Oncology, Groton, CT, US; ⁹Pfizer Oncology, New York, NY, US; ¹⁰Dana-Farber Cancer Institute, Boston, MA, US.

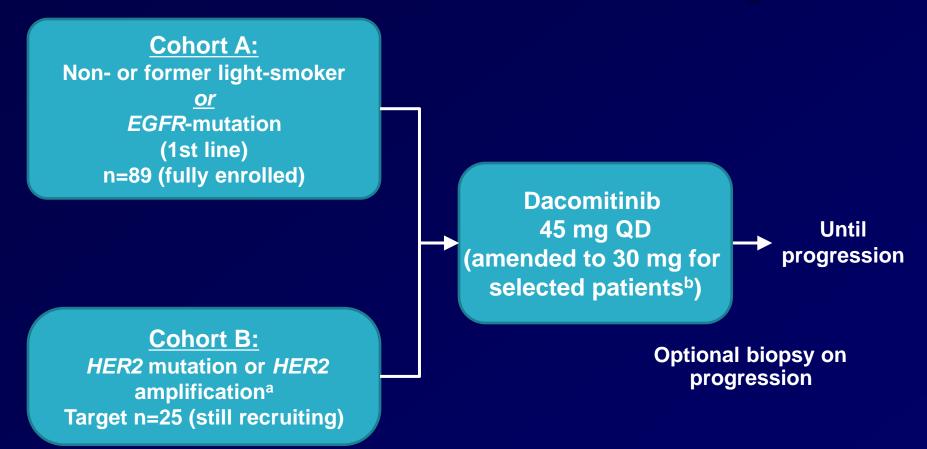
Disclosures

- Z. Goldberg is compensated as an employee by Pfizer Inc. (Medical Director) and holds stock in Pfizer Inc.
- P. Jänne has received compensation for consultant / advisory roles with Boehringer Ingelheim, Roche, Genentech, Abbott, Astra-Zeneca, Pfizer Inc., Sanofi and Teva, and has received other compensation from LabCorp
- D-W. Kim has received compensation for an advisory role with Pfizer Inc. and has received honoraria from Pfizer Inc.
- M. Kris has received compensation for advisory roles with Pfizer Inc., Boehringer Ingelheim and Genentech/Roche, and has received research funding from Pfizer Inc. and Boehringer Ingelheim
- R. Martins has received research funding from Pfizer Inc.
- T. Mok has received compensation for advisory roles with, and received honoraria from, AstraZeneca, Roche, Eli Lilly, Merck Sorono, Eisai, BMS, BeiGene, AVEO, Pfizer Inc., Taiho, Boehringer Ingelheim and GSK Biologicals, and has received research funding from AstraZeneca
- J. O'Connell is compensated as an employee of Pfizer Inc. (Senior Director) and holds stock in Pfizer Inc.
- S-H. Ou has received compensation for advisory roles with Pfizer Inc. and Genentech, has received honoraria from Pfizer Inc., Genentech and Eli Lilly and has received research funding from Pfizer Inc
- I. Taylor is compensated as an employee of Pfizer Inc. (Senior Director) and holds stock in Pfizer Inc.
- H. Zhang is compensated as an employee of Pfizer Inc. (Senior Manager) and holds stock in Pfizer Inc.

Dacomitinib

Irreversible inhibition[‡]

- Permanent blockade of catalytic activity
- Non-competitive inhibition
- Higher specificity and selectivity
- Low intracellular levels capable of inhibiting TK activity


Inhibition of all kinase-active HER receptors offers potential for a more complete inhibition of HER signaling: receptor dimerization is key to HER-family signaling

[†]In vitro kinase assay against WT receptor ;↑[ATP] = high concentrations of ATP (e.g. intracellular concentrations)

[‡] Potential benefits – based on preclinical data

Study 1017: Clinical Activity of Dacomitinib (PF-00299804) in First-Line Advanced NSCLC with an *EGFR*-activating Mutation

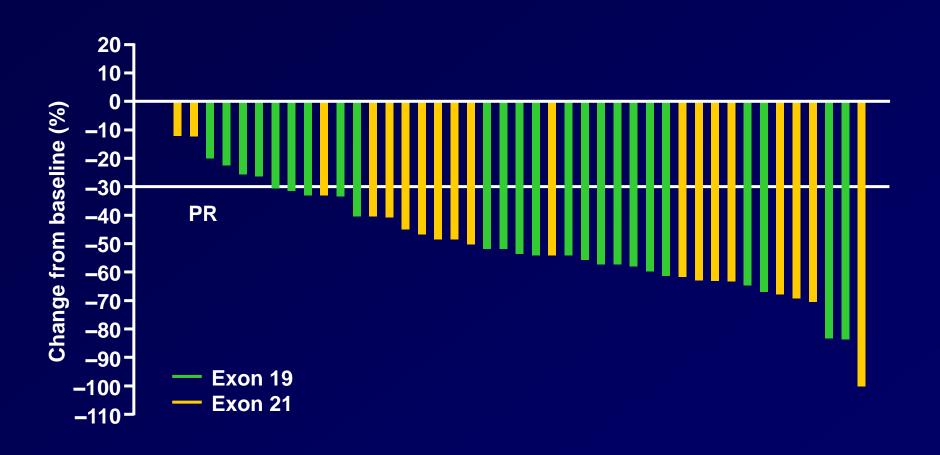
^a[gene]/[centromere of chromosome 17] ratio >2

bStarting dose changed to 30 mg QD with dose escalation to 45 mg QD after 8 weeks of treatment in absence of grade >1 toxicity for ≥1 month for 30 patients in Cohort A, and patients in Cohort B who had no prior lines of therapy

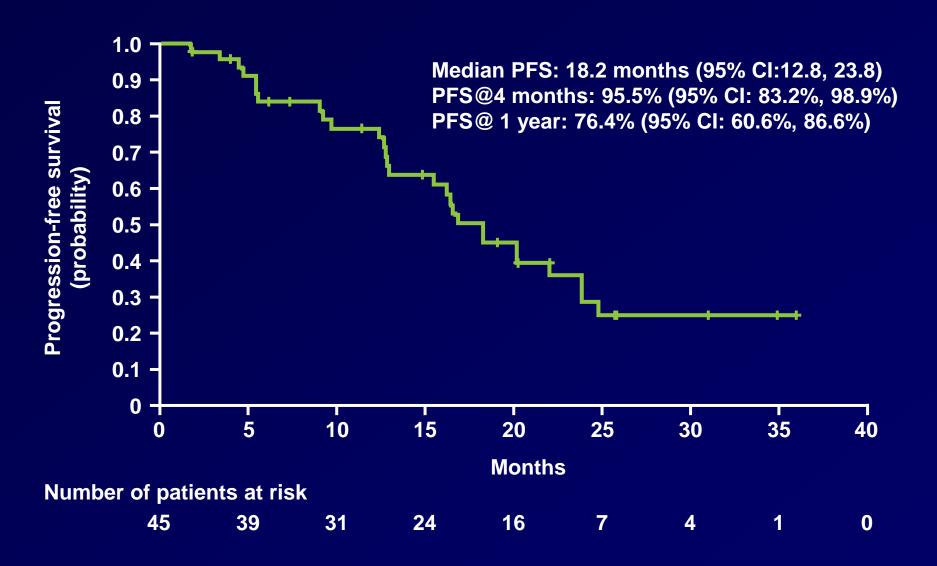
Mok T, et al. LBA18 presentation at the 35th ESMO, 2010

Eligibility of *EGFR*-mutant Cohort Dacomitinib Dose and Schedule

- Eligibility
 - Stage IIIB/IV lung adenocarcinoma
 - No prior systemic treatment for advanced disease
 - EGFR mutation
- Dose and schedule
 - Patients started treatment with dacomitinib 45 mg, or 30 mg with escalation to 45 mg, by mouth (po) daily if toxicity <grade 2 at 8 weeks


Patients with *EGFR*-mutant Lung Cancers: Baseline Characteristics

Clinical characteristic	<i>EGFR</i> exons 19 and 21 (n=45)	Other <i>EGFR</i> mutations (n=8)
Median age, years (range)	62 (39–84)	63.5 (54–83)
Gender, n (%) Female Male	31 (69) 14 (71)	5 (63) 3 (38)
Race, n (%) Asian Caucasian Black Other	25 (56) 18 (40) 1 (2) 1 (2)	3 (38) 5 (63) 0 0
Smoking history, n (%) Never Current/former	36 (80) 9 (20)	5 (63) 3 (38)
Mutations, n (%) Exon 19 deletion L858R	25 (56) 20 (44)	


Best Overall Response

Best response to dacomitinib	EGFR exon 19 and 21 mutations (n=45)	Other <i>EGFR</i> mutations (n=8)
Complete response, n (%)	0	0
Partial response, n (%)	34 (76)	3 (38)
Stable disease, n (%)	10	3
Progression, n (%)	1	1
Indeterminate, n (%)	0	1
Exon 19 partial responses, n (%) [n=25]	19 (76)	_
Exon 21 partial responses, n (%), [n=20]	15 (75)	_

Waterfall Plot for Patients with *EGFR*-mutant Lung Cancers with Exon 19 and Exon 21 Mutations (N=45)

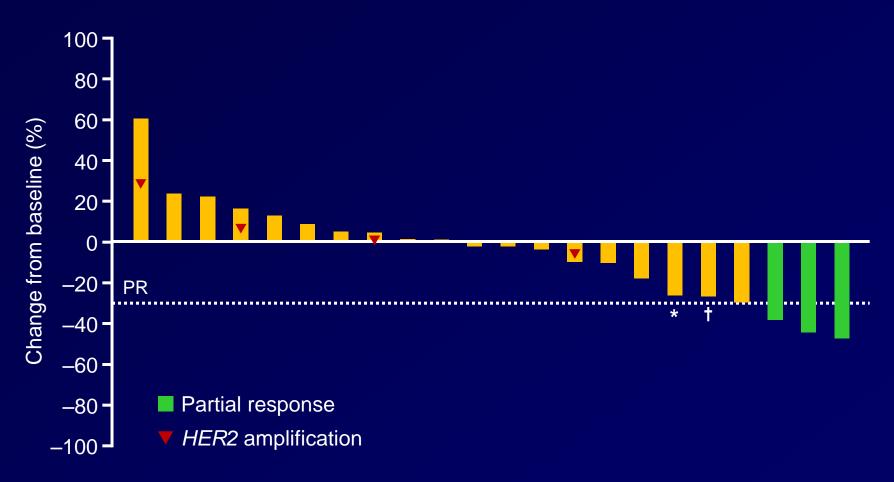
PFS for Patients with *EGFR*-mutant Lung Cancers with Exon 19 and Exon 21 Mutations

EGFR-mutant Subgroup: Conclusions

- For patients with EGFR-mutant lung cancers with exon 19 and L858R mutations
 - 76% experienced partial responses
 - 76% remained progression free at one year
 - Median PFS was 18 months
- Partial response rates and progression-free survival are similar for patients with exon 19 and L858R mutations
- Common side-effects were diarrhea and skin and nail changes

Patients with *HER2*-Mutant or -Amplified Lung Cancers: Baseline Characteristics

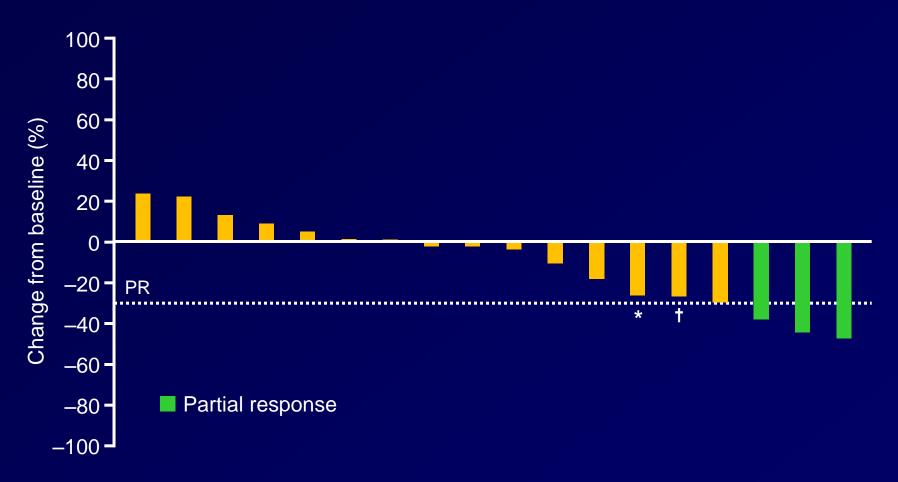
Clinical characteristic	30mg* (n=4)	45mg* (n=18)	Total (n=22)
Median age, years (range)	65 (62–73)	59 (42–72)	62 (42–73)
Gender, n (%) Female, Male	2 (50) 2 (50)	7 (39) 11 (61)	9 (41) 13 (59)
Smoking history, n (%)			
Never	4 (100)	9 (50)	13 (59)
Current/former	0	8 (44)	8 (36)
Not Reported	0	1 (6)	1 (5)
HER2 Status, n (%)			
Amplification	0	4 (22)	4 (18)
Mutation Exon 20 insertion Point Mutation	4 (100)	14 (78)	18 (82)
Prior systemic therapies			
1	0	6 (33)	6 (27)
2	0	2 (11)	2 (9)
≥3	0	10 (56)	10 (45)


^{*}Starting dose level

Best Overall Response: *HER2* Cohort

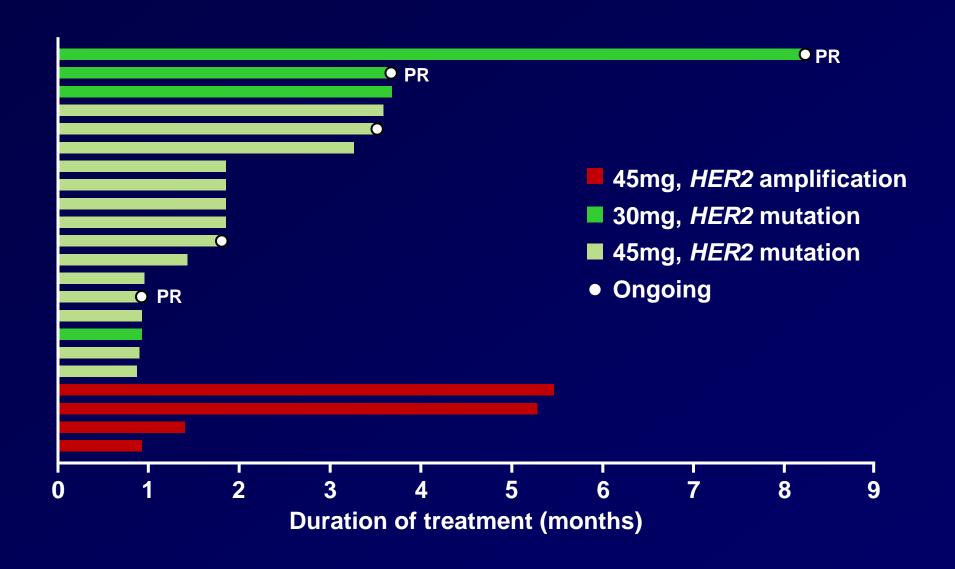
Best response to dacomitinib	30mg*(n=4)	45mg* (n=18)	Total (n=22)
Complete response, n (%)	0	0	0
Partial response, n (%)	2 (50)	1 (6)	3 (14)
Stable disease, n (%)	1 (25)	5 (28)	6 (27)
Progression, n (%)	0	10 (56)	10 (45)
Indeterminate, n (%)	1 (25)	2 (11)	3 (14)
HER2 amplification, n=4: partial response, n (%) [95% CI]	0	0	0
HER2 mutation, n=18: partial response, n (%) [95% CI]	2 (50) [6.8, 93.2]	1 (7) [0.2, 33.9]	3 (17) [3.6, 41.4]

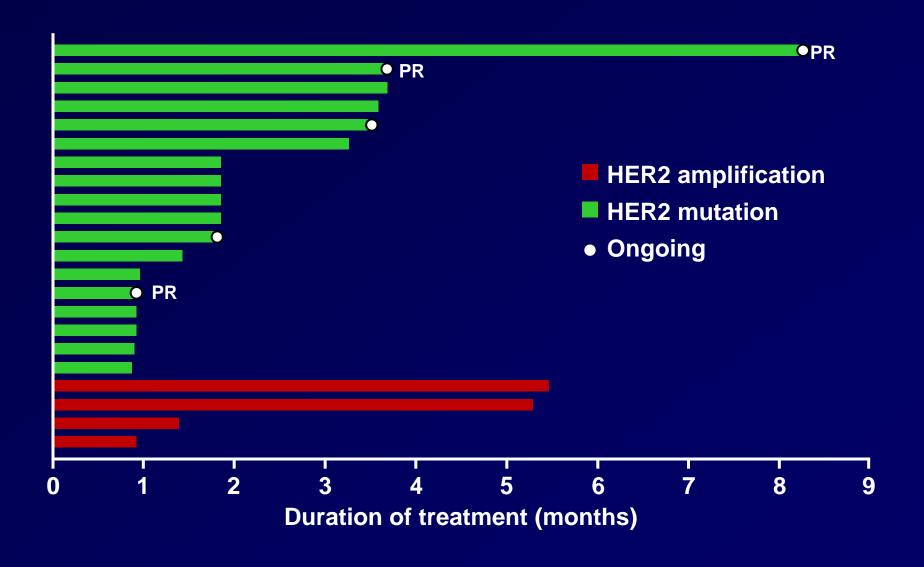
^{*}Starting dose level


Waterfall Plot: HER2 Cohort (n=22)

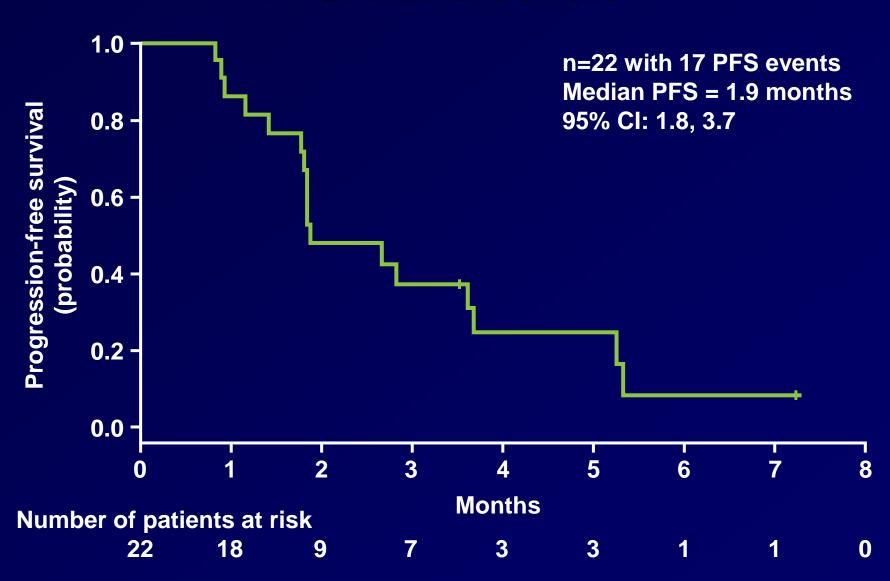
^{*}Patient was treated for 55 days but was removed from treatment due to an edge recurrence of a previously treated brain metastasis

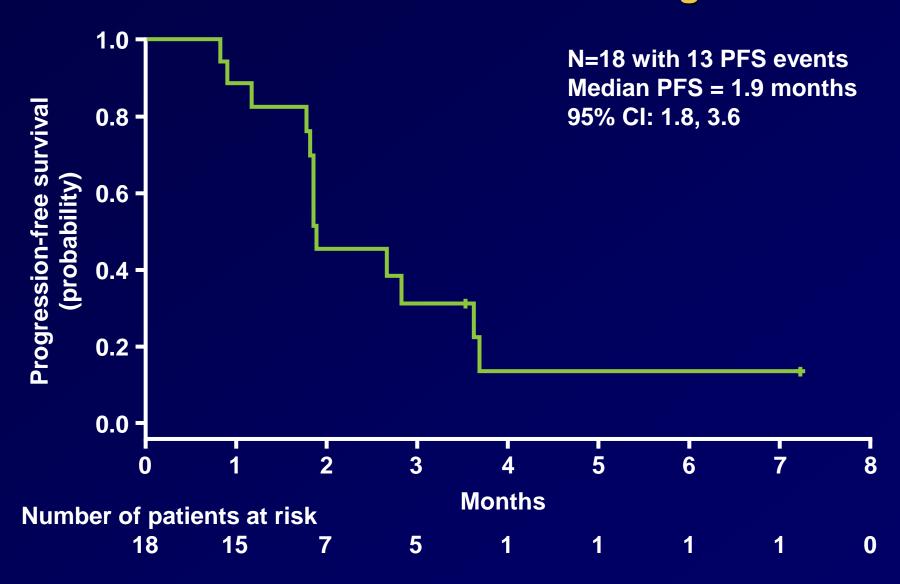
[†]Patient was treated for 28 days but discontinued due to an AE


Waterfall Plot for Patients with HER2-Mutant Lung Cancers (n=18)


^{*}Patient was treated for 55 days but was removed from treatment due to an edge recurrence of a previously treated brain metastasis

[†]Patient was treated for 28 days but discontinued due to an AE


Duration of Treatment: HER2 Cohort


Duration of Treatment by HER2 Status

PFS: HER2 Cohort

PFS: Patients with *HER2*-Mutant Lung Cancers

HER2 Cohort: Treatment-related Adverse Events in >15% of Patients

Adverse event, n (%)	Total (N=22)
Diarrhea	19 (86.4)
Dermatitis acneiform	16 (72.7)
Fatigue	11 (50.0)
Dry skin	9 (40.9)
Nausea	8 (36.4)
Paronychia	7 (31.8)
Vomiting	7 (31.8)
Decreased appetite	6 (27.3)
Pruritus	6 (27.3)
Skin fissures	6 (27.3)
Mucosal inflammation	5 (22.7)
Dehydration	4 (18.2)
Epistaxis	4 (18.2)
Rash erythematous	4 (18.2)
Stomatitis	4 (18.2)

HER2 Cohort: Toxicities

- Three (13.6%) out of 22 patients experienced treatment related serious AEs
- Three (13.6%) patients stopped dacomitinib due to treatment-related side effects
- One grade 5 hepatic failure was observed in one patient starting from 30 mg (drug-drug interaction with a concurrent medication)
- No grade 4–5 treatment-related AEs were observed in patients starting from 45 mg

Conclusions

- Dacomitinib has demonstrated high activity in EGFR-mutant lung cancer. This activity signal supports further development in a phase 3 study, which is currently planned
- The toxicity profile of dacomitinib is consistent with the mode of action and class effects. AEs are predominantly grades 1 and 2 and manageable.
- While dacomitinib targets HER2, the clinical activity is mixed, with 3 PRs and 9 SD in 22 enrolled patients as BOR to date. Enrollment is ongoing
- Further data analysis is ongoing to identify predictive markers of response

Acknowledgments

- We would like to thank all of the participating patients and their families, as well as the global network of investigators, research nurses, study coordinators, and operations staff
- Editorial assistance was provided by Christine Arris at ACUMED[®],
 Tytherington, UK with funding from Pfizer Inc