Randomized phase II study of first-line everolimus (EVE) + bevacizumab (BEV) versus interferon alfa-2a (IFN) + BEV in patients (pts) with metastatic renal cell carcinoma (mRCC): RECORD-2

Ravaud A,¹ Barrios C,² Anak O,³ Gogov S,³ Pelov D,⁴ Louveau A,⁵ Alekseev B,⁶ Tay M-H,⁷ Agarwala S,⁸ Yalcin S,⁹ Lin C-C,¹⁰ Melichar B¹¹

¹Hospital Saint Andre CHU, Oncology, Bordeaux, France; ²PUCRS School of Medicine, Porto Alegre, Brazil; ³Novartis Pharma AG, Basel, Switzerland; ⁴Novartis Oncology, Florham Park, NJ, USA; ⁵Novartis Pharma, Paris, France; ⁶Hertzen Cancer Research Institute, Moscow, Russia; ⁷OncoCare Cancer Centre, Singapore, Singapore; ⁸St. Luke's University Hospital and Health Network, Bethlehem, PA, USA; ⁹Hacettepe University Institute of Oncology, Ankara, Turkey; ¹⁰National Taiwan University Hospital, Taipei, Taiwan; ¹¹Department of Oncology, Palacky University Medical School and Teaching Hospital, Olomouc, Czech Republic

Disclosure slide

- Member of Global, European and/or French boards for Pfizer, Novartis, Bayer Schering, GlaxoSmithKline, Astellas, Dendreon for renal cell carcinoma
- Meetings and travel support by Pfizer, Novartis
- Institutional support for grants by Pfizer, Novartis, Roche
- PI for international trials for Novartis, Pfizer

First-line Treatment of mRCC Efficacy Overview

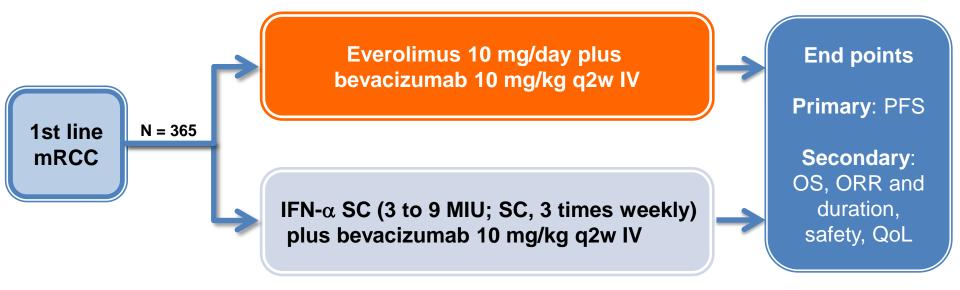
Study	ORR, %	Median PFS, mo
Sunitinib vs IFN- $lpha^1$	47 vs 12	11 vs 5 P < 0.001
Bevacizumab + IFN- $lpha$ vs IFN- $lpha^2$	31 vs 13	10.2 vs 5.4 P = 0.0001
Bevacizumab + IFN- α vs IFN- α^3	25.5 vs 13.1	8.5 vs 5.2 P < 0.0001
Sorafenib vs IFN- $lpha^4$	5.2 vs 8.7	5.7 vs 5.6* P = 0.50
Temsirolimus vs IFN-α ⁵	8.6 vs 4.8	5.5 vs 3.1*
Terrisironimus vs ii iv-a	0.0 vs 4.0	<i>P</i> < 0.001
Pazopanib vs placebo ⁶	32 vs 4	11.1 vs 2.8
i azopailib vs piacebo	JZ V3 4	<i>P</i> < 0.0001

^{*}Independent assessment.

congress

IFN, interferon; mRCC, metastatic renal cell carcinoma; ORR, objective response rate; PFS, progression-free survival.

www.esmo2012.org


Current Status for Patients With mRCC

- The benefits of VEGF-based therapies are transient^{1,2}
 - Durable response is rarely achieved, and most patients eventually develop progressive disease
 - Relapse is thought to occur via various escape mechanisms that allow for continued angiogenesis in spite of VEGF signaling blockade
- Current treatment strategies involve sequential administration of monotherapies^{3,4}
- Combination therapy has the potential to substantially improve prognosis for patients with mRCC⁵
 - Everolimus and bevacizumab block different molecular targets^{6,7}

VEGF, vascular endothelial growth factor.

RECORD-2: Study Design

Randomized, open-label, phase II study

Key eligibility criteria:

- Age ≥ 18 years with confirmation of advanced metastatic clear-cell RCC
- ≥ 1 measurable lesion per RECIST criteria
- Prior nephrectomy
- KPS ≥ 70%

Key exclusion criteria:

• Prior systemic treatment for mRCC, including prior therapy with VEGF or mTOR inhibitor

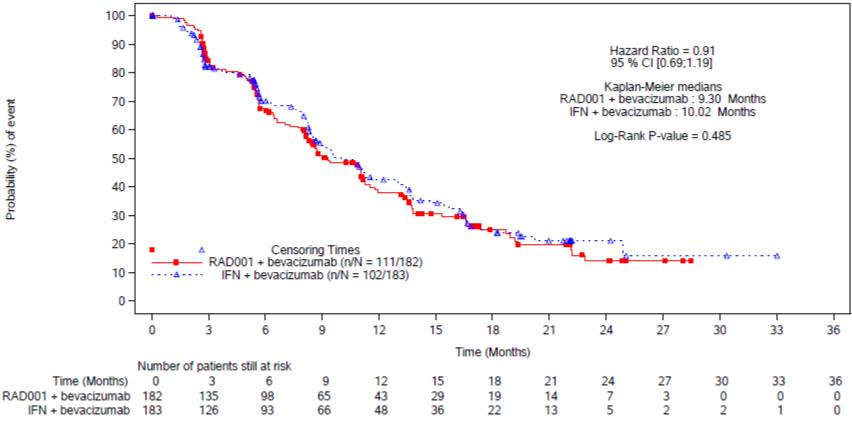
RECORD-2: Statistical Methods

- The primary objective was treatment effect on PFS per central review based on an estimate of the probability of success (PoS) in a subsequent phase III trial
 - The protocol-defined criterion for phase II success was: PoS ≥ 50%
 - The protocol-defined median PFS assumptions were: 10.2 months in the IFN- α + bevacizumab treatment arm vs 13.6 months in the everolimus + bevacizumab arm, leading to a hazard ratio of 1.33
- QoL was measured using 2 validated patient self-reported questionnaires
 - The FKSI-DRS assesses patient symptoms, including pain, fatigue, shortness of breath, fever, weight loss, coughing, and blood in urine
 - The total score can range from 0 (worst) to 36 (best)
 - A decrease by at least 2 score units represents deterioration
 - The EORTC QLQ-C30 assesses patients' physical, emotional, cognitive, social, and role function, global quality of life, and several specific symptoms
 - A 10% decrease from baseline represents deterioration

Patient Disposition

Disposition Reason		Everolimus + bevacizumab (n = 182)	IFN + bevacizumab (n = 183)	
Patients randomized, %	Untreated Treated	1 99	1 99	
Patients treated, %	Treatment ongoing* End of treatment	8 92	10 90	
Primary reasons for end of treatment, %	Disease progression AEs Death Withdrew consent New cancer therapy Protocol deviation Lost to follow-up Administrative problems	59 23 8 7 2 1 1 0	61 26 6 4 1 1 1	
Analysis set, %	Full analysis set Safety set	100 99	100 99	

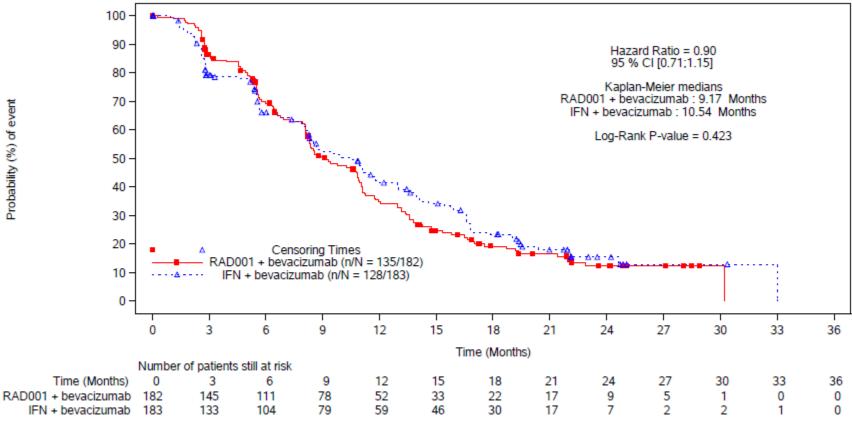
^{*}Patients ongoing at time of cut-off (12/31/2011). AEs, adverse events.


Demographics and Baseline Characteristics

Variable		Everolimus + bevacizumab (n = 182)	IFN + bevacizumab (n = 183)	All patients (N = 365)	
Age, years	Median (range)	60 (20-84)	60 (31-81)	60 (20-84)	
Male gender, %		76	72	74	
MSKCC risk, %	Favorable Intermediate Poor	36 57 7	36 57 7	36 57 7	
Metastatic sites, %	Lung Lymph node Bone Liver Mediastinum	83 47 26 23 15	73 54 30 20 20	78 50 28 21 17	

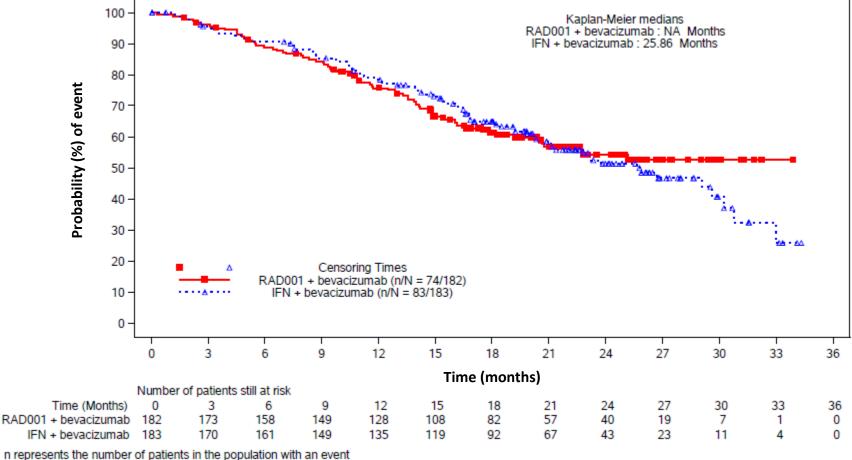
Efficacy: PFS

Based on central review



Log-Rank P-value is obtained from a Log-Rank test stratified by MSKCC criteria Hazard ratio IFN/RAD is obtained from an unadjusted Cox model stratified by MSKCC criteria In the expression (n/N), n represents the number of patients who experienced an event.

Efficacy: PFS


Based on investigator assessment

Log-Rank P-value is obtained from a Log-Rank test stratified by MSKCC criteria Hazard ratio IFN/RAD is obtained from an unadjusted Cox model stratified by MSKCC criteria In the expression (n/N), n represents the number of patients who experienced an event.

Efficacy: Overall Survival

Efficacy: Response Rates

Best overall response,* n (%)	Everolimus + bevacizumab (n = 182)	IFN + bevacizumab (n = 183)		
Complete response	0 (0.0)	1 (0.5)		
Partial response	49 (26.9)	50 (27.3)		
Stable disease	90 (49.5)	84 (45.9)		
Progressive disease	25 (13.7)	26 (14.2)		
Unknown	18 (9.9)	22 (12.0)		
Objective response rate (ORR)†	49 (26.9)	51 (27.9)		

^{*}Best overall response as per central radiology review by treatment (Full Analysis Set)

[†]ORR = complete + partial response.

Efficacy:

Comparison With Previous Studies

- PFS and response rates with everolimus + bevacizumab were higher than those obtained with single-agent bevacizumab
- Results were within the range of those reported in prior studies in patients with treatment-naïve mRCC

	Phase II			Phase III						
Outcomes	RECO	RD-2	BEV ¹	EVE + BEV ²	IFN ±	BEV ³	IFN ±	BEV ⁴	SUN v	s IFN ⁵
	EVE + BEV	IFN + BEV	BEV	EVE + BEV	IFN + BEV	IFN	IFN + BEV	IFN	SUN	IFN
ORR, %	26.9	27.9	10	30	31	13	25.5	13.1	47	12
Median PFS, mo	9.3	10.0	4.8*	9.1	10.2	5.4	8.5	5.2	11	5

^{*}Time-to-progression.

ORR, objective response rate; PFS, progression-free survival; BEV, bevacizumab; EVE, everolimus; IFN, interferon- α ; SUN, sunitinib.

3. Escudier B et al. Lancet. 2007;370:2103-2111. 4. Rini BI et al. J Clin Oncol. 2008;26:5422-5428. 5. Motzer RJ et al. J Clin Oncol. 2009;27:3584-3590.

Safety: Summary

Category, %	Everolimus + BEV (n = 180)	IFN + BEV (n = 181)
Deaths		
All	41	46
On-treatment ^a	11	9
AEs	99	99
Suspected to be drug related	96	90
Grade 3/4	80	76
Suspected to be drug related	64	58
Clinically notable ^b	92	82
Suspected to be drug related	89	70
Leading to discontinuation ^c	24	24
Suspected to be drug related	16	17
Requiring dose interruption and/or reduction	80	76
Requiring additional therapy ^d	94	88
SAEs	43	39
Suspected to be drug related	21	18

^aOccurring up to 28 days after discontinuation of study treatment.

SAEs, serious adverse events.

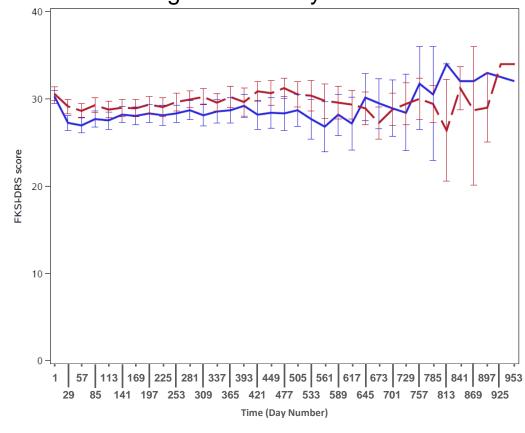
^bEvents of specific clinical interest in connection with everolimus or events which are similar in nature.

^cDiscontinuation defined as stopping of both drugs of the combined treatment.

^dIncludes all non-drug therapy and concomitant medications.

Safety: Most Common AEs

AEs (≥ 25% in either group) regardless of relationship to study drug

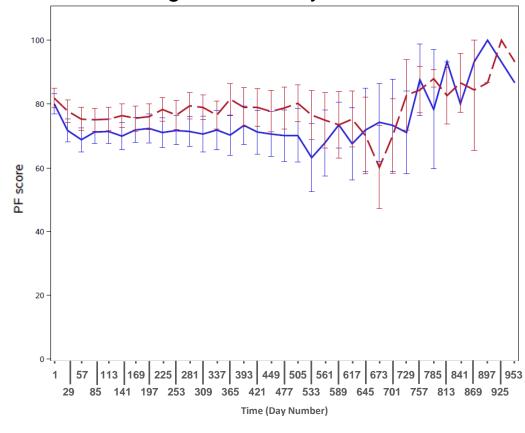

AF 9/	Everolir	nus + BEV (r	n = 180)	IFN + BEV (n = 181)			
AE, %	All grades	Grade 3 Grade 4		All grades	All grades Grade 3		
Stomatitis	63	10	1	23	2	0	
Proteinuria	49	22	1	37	9	1	
Diarrhea	39	2	1	27	1	0	
Hypertension	38	7	0	21	6	0	
Epistaxis	35	3	0	21	0	0	
Fatigue	32	5	0	41	17	0	
Cough	31	2	0	19	1	0	
Weight decreased	28	1	0	32	3	0	
Decreased appetite	27	3	0	45	5	0	
Asthenia	22	4	0	34	13	1	
Nausea	22	1	0	28	1	0	
Pyrexia	15	0	0	35	1	0	

QoL as Measured by the FKSI-DRS Risk Score

- FKSI mean score is significantly better over the time for patients treated with everolimus compared with the IFN arm (P < 0.001)
- However, no significant difference between arms was shown in the time to definitive deterioration analysis (P = 0.782)

Longitudinal Analysis Results

IFN + BEV


www.esmo2012.org

RAD001 + BEV

QoL as Measured by the EORTC QLQ-C30

- PF mean score is significantly better over time for patients treated with everolimus compared with the IFN arm (P = 0.032)
- However, no significant difference between arms was shown in the time to definitive deterioration analysis (P = 0.533)
- For the global health status/QoL score, longitudinal analysis and time to definitive deterioration analysis did not show any significant treatment effect

Longitudinal Analysis Results

IFN + BEV

www.osmo2012.org

RAD001 + BEV

Summary

- The combination of everolimus with bevacizumab did not show superiority over the combination of interferon- α with bevacizumab
 - Both study arms performed similarly in terms of PFS and response rates
 - Optimization of sequencing of single-agent treatments may have a greater chance to improve treatment outcomes compared with combination approaches
- The combination of everolimus with bevacizumab was generally well tolerated in patients with treatment-naïve RCC
- No significant difference between treatment arms was observed in the time to definitive deterioration analysis. However, the physical functioning from EORTC QLQ-C30 and FKSI mean score is significantly better over time for patients treated with everolimus
- Final OS and safety updates for RECORD-2 are expected in Q4 2012

Countries Participating in the RECORD-2 Study

Acknowledgements

We sincerely thank the patients and the participating investigators

Belgium	Canon I.I. Dobruyno P. Gonnigons C. Machiels I. P. Poumoguèro T. Schöffski P. Van Aolst F.
	Canon J-L, Debruyne P, Gennigens C, Machiels J-P, Roumeguère T, Schöffski P, Van Aelst F
Brazil	Barrios C, Dzik C, Faccio A, Herchenhorn D, Koff W, Melo Cruz F, Pinczowski H
Czech Republic	Melichar B
Egypt	Gaefar R, Haggag M
France	Chapelle A, Chevreau C, Colin P, Dourthe L-M, Duclos B, El-Kouri C, Priou F, Ravaud A, Sevin E, Theodore C,
Germany	Beck J, Eichelberg C, Gauler T, Grunwold V, Holzer W, Jager E, Kamann L, Miller K, Rebmann U, Stenzl A
Hong Kong	Ng CF, Wong CS
Hungary	Bodrogi I, Kuronya Z
lask.	Bajetta E, Bearz A, Bracarda S, Bruni G, Conte P, Crino L, Ferrari V, Galligioni E, Milella M, Passalacqua R, Porta C,
Italy	Procopio G, Sternburg C, Venturini M
Korea	Kim J-G, Lim H-Y, Park K, Park S-H
Netherlands	Osanto S
Russian Federation	Alekseev B, Kalpinsky A, Karyakin O, Kupchan D, Matveev V, Naumov A, Popov A, Roman L, Shkolnik M, Shumskij I
Singapore	Tay M-H
South Africa	Bouwer JE, Dreosti L, Rapoport B
Spain	Anton A, Blanco Y, Castellano D, Delgado A, López M, Lopez Brea M, Maroto JP, Martinez E, Vázquez C
Switzerland	Borner M, Vorburger C, Cathomas R, Manetsch G
Taiwan	Chang Y-H, Lin C-C, Ou Y-C, Pang S-T, Yu D-S
Thailand	Arunee D, Maneechavakajorn J, Sriuranpong V
Turkey	Bozcuk H, Demir G, Evernsel T, Sahin B, Senler F-C, Turhal S, Yalcin S, Yilmaz U
United Kingdom	Hardie M, Jones R, Nathan P, Wheater M
United States	Agarwala S, Beck J, Drinkard L, Figlin R, Gadiyaram V, Kabbinavar F, Manno P, Pal S, Quinn D, Samlowski W,
United States	Thompson J, Vaishampayan U

