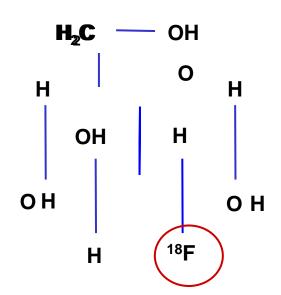
CLINICAL TRIALS WITH BIOLOGICAL ENDPOINT IN ESOGASTRIC CANCER

A. D. Roth MD CC

Oncosurgery HUG Geneva

Present biological endpoints

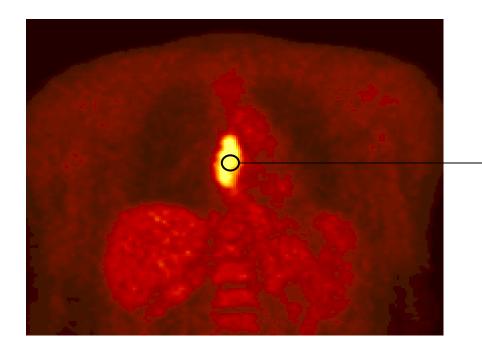

Proposed endpoint	Advantage	Disadvantage	
Response rate	Standardized	Not feasible for some disease (CRPC, ovarian cancer with peritoneal masses and so on)	
Progression arrest rate	Easily measurable	Imprecision measures	
Progression-free rate at fixed time point	Central review easily feasible	Idem with interference with physician/patient point of view ('symptomatic progression')	
TTP	Early outcome	With time assessment biases	
	Cheap method		
GMI	Attractive assessment in couples (patient/tumour) that are their own control	Not standardized	
		TTP1 and TTP2	
FDG-PET	Measurement of other effect of the drug on the tumour	Absence of standardization	
DCE-CT scan and DCE-MRI	Measurement of other effect of the drug on the tumour	Absence of standardization	
DCE-US	Measurement of other effect of the drug on the tumour	Ongoing standardization	
		Central review of animy with difficulties	

Cousin, S.: Curr Opin Oncol: <u>24</u>:338-44, 2012


Why do we need biological endpoints in esogastric cancers?

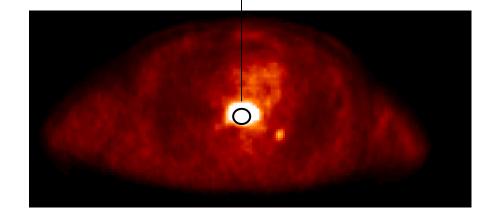
- Major curative treatment programs involve neoadjuvant (radio-)chemotherapy or perioperative chemotherapy
- There is no good way to assess the response to such TTT before surgery
 - Primary gastric tumors often difficult to assess
 - Esophageal cancer can be misleading
- To avoid unecessary neoadjuvant TTT in nonresponding tumors
 - Upper GI tumors ≄ breast cancer

[18F]-Fluorodeoxyglucose (FDG) - PET

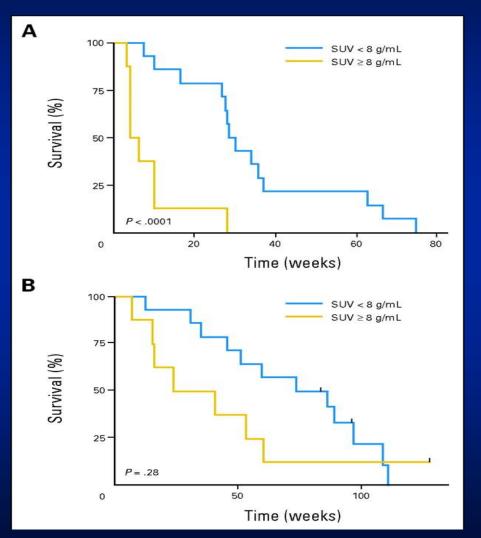


F18 substituted glucose molecule

Courtesy F. Lordick


Standard Uptake Value (SUV)

Standard uptake value (SUV)


 $SUV_{BW} =$

Region of interest (ROI) 1,5 cm around the maximal SUV

Courtesy F. Lordick

Second line sunctinib in GIST PET-CT predictive value

(A)Progression-free survival

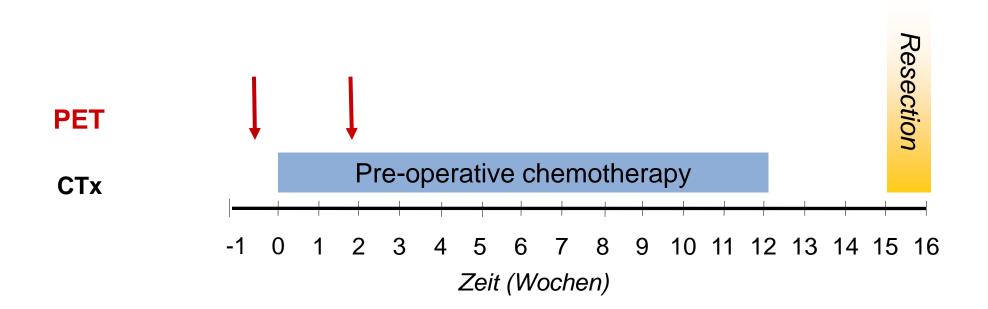
(B) overall survival

according to 18F-fluorodeoxyglucose positron emission tomography activity <u>at 4 weeks</u>

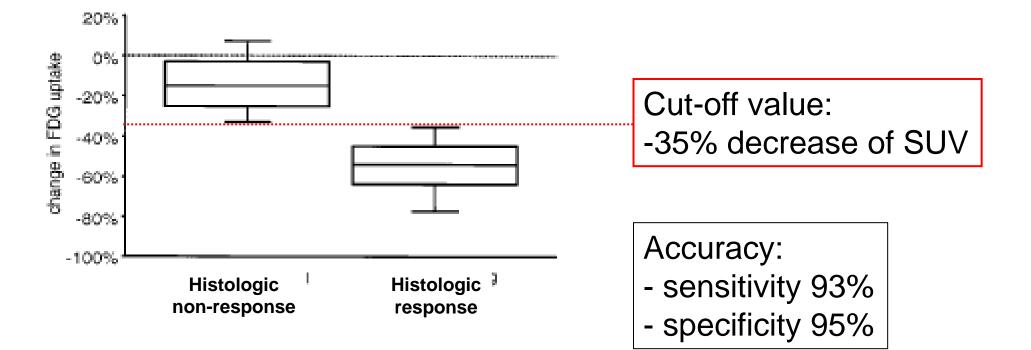
(standardized uptake value: < 8 g/mL, blue; ≥ 8 g/mL, yellow)

Prior J O et al. JCO 2009;27:439-445

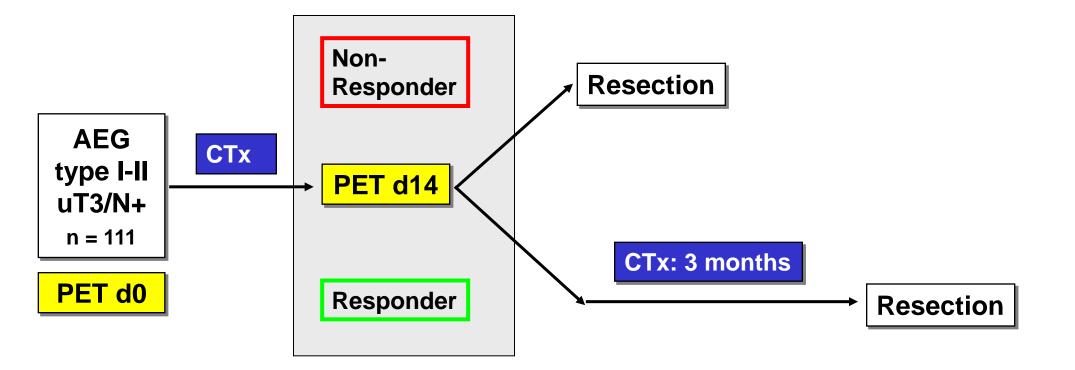
©2009 by American Society of Clinical Oncology


Quantitative Changes of the SUV during Treatment in esogastric cancer

Early metabolic response


Can PET help to tailor treatment according to response?

Courtesy F. Lordick


Early Metabolic Response During <u>Chemo</u>therapy

Early Metabolic Response

The MUNICON-I Algorithm

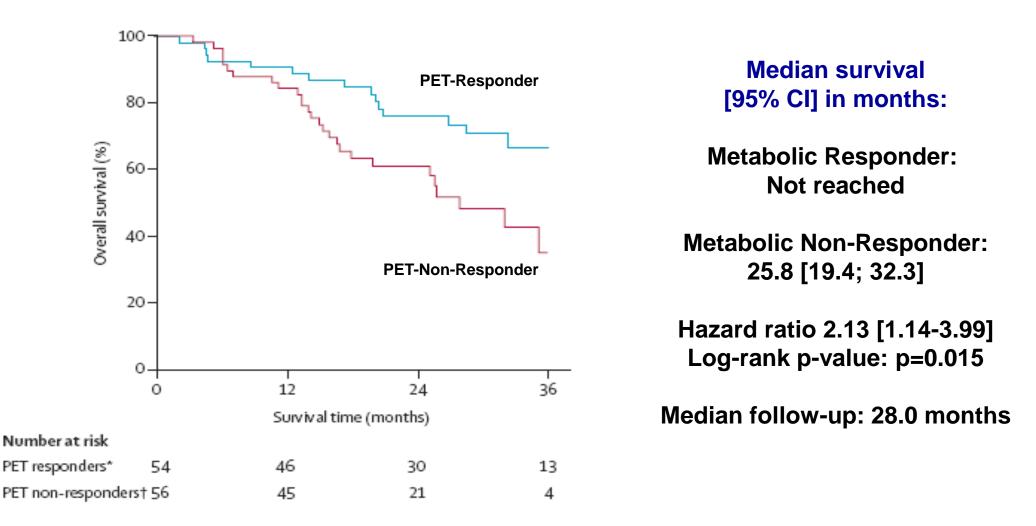
Lordick et al. Lancet Oncol 2007 Sep; 8: 797-805

MUNICON-I – Histopathologic Response

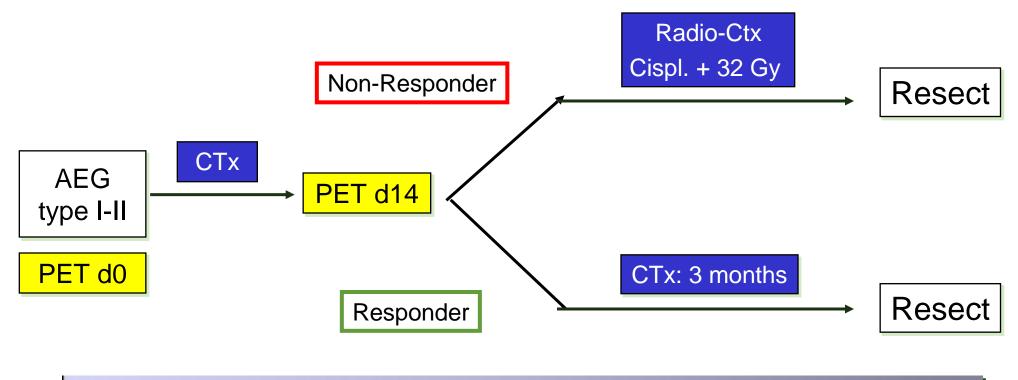
	PET-Responder (n = 50)	PET-Non-Responder (n = 54)
Complete remission (1a)	16.0%	0%
0% residual tumor	(n=8)	(n=0)
Subtotal remission (1b)	42.0%	0%
< 10% residual tumor	(n=21)	(n=0)
Moderate remission (2)	20.0%	3.7%
10-50% residual tumor	(n=10)	(n=2)
No remission (3)	22.0%	96.3%
> 50% residual tumor	(n=11)	(n=52)
Major remission (1a + 1b) 0 - 10% residual tumor	58.0% (n=29)	0% (n=0)

Remissions scored according to Becker et al. *Cancer* 2003; 98: 1521-30

χ²-test: p<0.001


Lordick et al. Lancet Oncol 2007 Sep; 8: 797-805

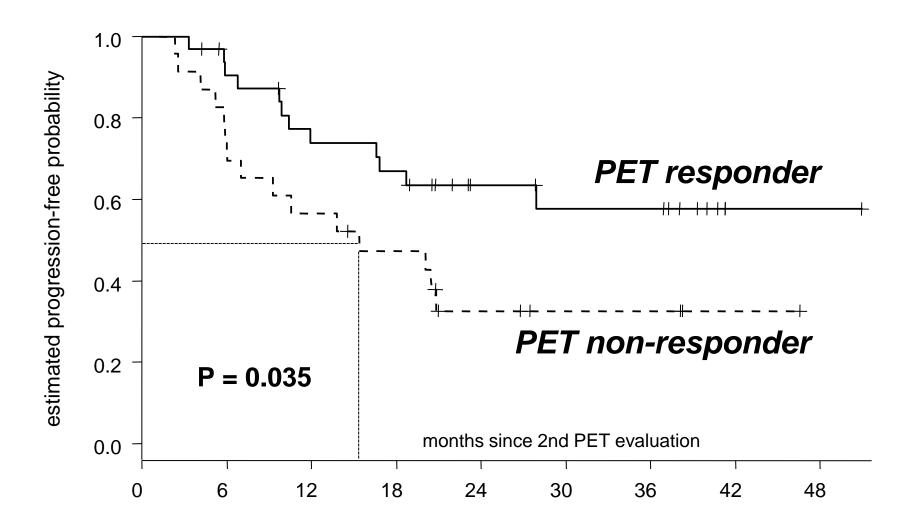
MUNICON-I – R0 Resections


	PET-Responder (n = 50)	PET-Non-Responder (n = 54)
R0	96% (n=48)	74% (n=40)
R1	4% (n=2)	26% (n=14)

χ²-test: p=0.002

MUNICON-I - Survival

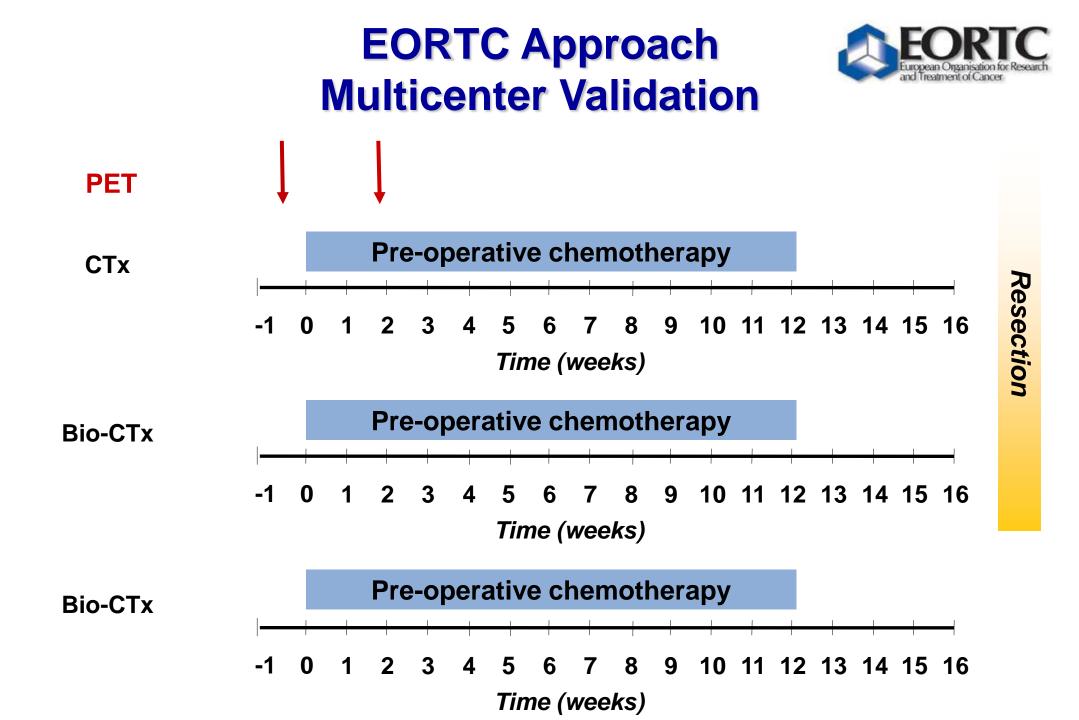
MUNICON II – Study Design

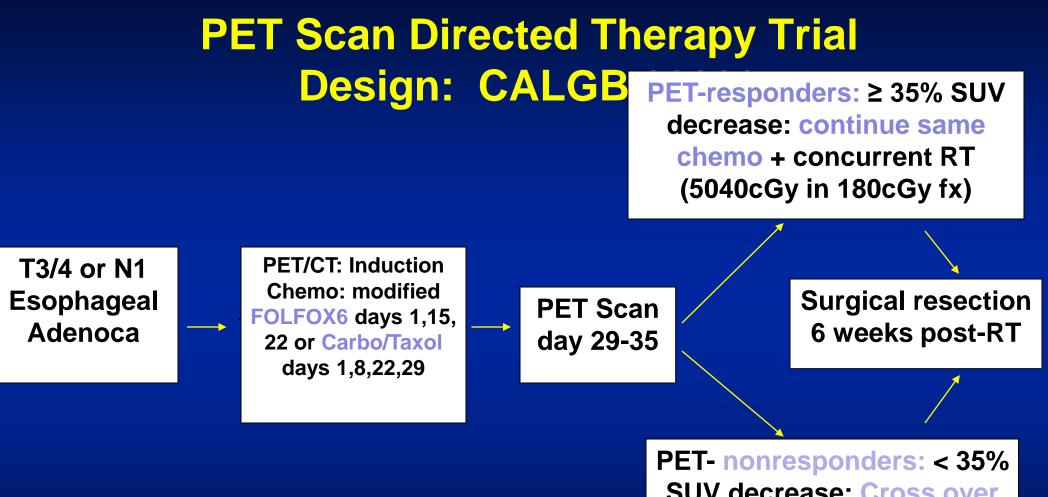

Response definition:Decrease of the SUVmeanPETd14 / PETbaseline > 35%Weber et al. J Clin Oncol 2001;19:3058-65Lordick et al. Lancet Oncol 2007;8:797-85

AEG: adenocarcinoma of the esophago-gastric junction; C: cisplatinum; d: day CTX: chemotherapy PET: positron emission tomography; SUV: standard uptake value

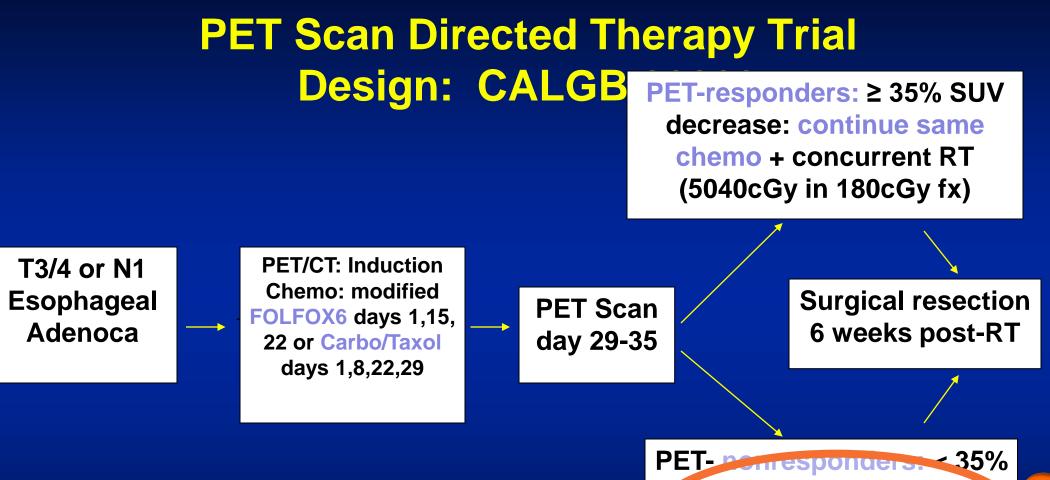
MUNICON-II – R0 Resections

	PET-Responder (n = 32)	PET-Non-Responder (n = 22)
R0	82% (n=27)	70% (n=16)
D1	(n=27) 6%	13%
R1	(n=2)	(n=3)

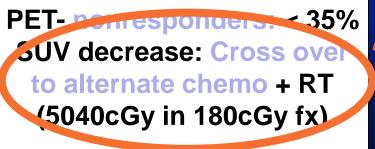

MUNICON II – Progression Free Survival



Lordick et al. ASCO GI 2011 abstr. 3


MUNICON II – Conclusion

- <u>Previous data (MUNICON-1) could be confirmed</u>: Early PET response during chemo-Tx is prognostic
- <u>Outcome is poor in metabolic non-responders</u> despite the addition of radiation therapy
- Early metabolic response assessment by FDG-PET allows to identify tumors with a <u>dismal biology & poor prognosis</u>



Hypothesis: changing chemo in PET non responding patients will improve pCR during chemo + RT SUV decrease: Cross over to alternate chemo + RT (5040cGy in 180cGy fx)

Hypothesis: changing chemo in PET non responding patients will improve pCR during chemo + RT

Major problems with PET-CT in this setting in esogastric tumors

- Insufficient reliability of the results for adequate use in the clinic
- Financial support of PET-CT trials
- In esogastric tumor, lack of evidence for efficient alternative therapy
 - Would a non responding tumor respond to something else??
- A surrogate tool to look at tumor biology......

We need molecular tools to select patients most likely to respond to TTT

A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer

Pierre Farmer^{1,2,18}, Hervé Bonnefoi³⁻⁶, Pascale Anderle^{1,7}, David Cameron^{8,18}, Pratyakasha Wirapati², Véronique Becette^{9,18}, Sylvie André¹, Martine Piccart¹⁰, Mario Campone¹¹, Etienne Brain⁹, Gaëtan MacGrogan³, Thierry Petit¹², Jacek Jassem¹³, Frédéric Bibeau¹⁴, Emmanuel Blot¹⁵, Jan Bogaerts⁶, Michel Aguet¹, Jonas Bergh¹⁶, Richard Iggo^{1,3,17} & Mauro Delorenzi^{1,2}

Farmer, P.: Nat. Med. <u>15</u>:68-74, 2009

Metagene « technology »

Previous table	 Figures and tables 	Index		
EORTC	Univariate ^b		Multivariate	
Variable ^a	Coefficient	P value	Coefficient	<i>P</i> value
Clinical node (N0 versus N1 and N2)	-0.099	0.862	0.014	0.982
Clinical size (T1 and T2 versus T3)	-0.076	0.895	-0.222	0.736
Grade (grade 1 and 2 versus 3)	1.030	0.080	0.923	0.141
ERBB2 (low versus high)			0.114	0.882
stromal metagene score (low versus high)	1.658	0.022	1.673	0.036
MDA	Unive	riatob		
Variableª	Coefficient	P value	Coefficient	P value
Clinical node (N0 versus N1 and N2)	0.789	0.231	1.844	0.044
Clinical size (T1 and T2 versus T3)	-0.357	0.54	-1.698	0.040
Grade (grade 1 and 2 versus 3)	1.191	0.181	1.009	0.333
ERBB2 (negative versus positive)	0.577	0.336	0.489	0.477
Stromal metagene score (low versus high)	1.217	0.043	1.605	0.039

Farmer, P.: Nat. Med. <u>15</u>:68-74, 2009

We need to develop biological endpoints

- We need to improve our understanding of tumor biology
 - Selection of patient population most likely to respond
 - Early biological markers of response
 - Reliable apoptosis markers
 - Other histological/molecular markers
 - Serum markers
- We need to have easier access to tumor material
 - Increasing public awareness of the role of tumor biology (patient advocacy groups)
 - Lobbying (authorities and ECs)

CONCLUSIONS

- We need good biological markers of response to tailor treatment in esogastric cancer
- PET-CT Scan is a surrogate biological marker of response with serious limitations
- We need to have a wider access to biopsy material in order to develop new biological tools of patient selection and early response assessment to therapy