Sequence or Combination and If Yes, Which ?

INTORACT, INTORSECT and RECORD-2 abstracts LBA21_R, 7830 and LBA22_PR

Christian Kollmannsberger MD FRCPC

Div. of Medical Oncology BC Cancer Agency-Vancouver Cancer Centre Dept. of Medicine, University of British Columbia

Associate Member Dept. of Urologic Science, University of British Columbia

Vancouver, Canada

Disclosures:

- Member of Global and/or Canadian Advisory Boards for Pfizer, Novartis, GlaxoSmithKline, for Renal Cell Carcinoma
- Meeting and travel support by Pfizer, Novartis, GlaxoSmithKline
- Was an investigator on the INTORSECT study

Abstracts to Discuss

- LBA21_PR: Randomized phase IIIb trial of temsirolimus and bevacizumab versus interferon and bevacizumab in metastatic renal cell carcinoma: Results from INTORACT
- 7830: Randomized phase II study of first-line everolimus (EVE) + bevacizumab (BEV) versus interferon alfa-2a (IFN)+BEV in patients (pts) with metastatic renal cell carcinoma (mRCC): RECORD-2
- LBA22_PR: Temsirolimus vs sorafenib as second line therapy in metastatic renal cell carcinoma: Results from the INTORSECT trial.

RCC Treatment Algorithm: 2012

Treatment Status	Patient Status	Therapy (Level 1 evidence)	Other Options (≥ Level 2)
First Line	Good or intermediate risk	Sunitinib Bevacizumab + IFN Pazopanib	High-dose IL-2 (Sorafenib) Observation Clinical Trial
	Poor risk	Temsirolimus	Sunitinib Pazopanib Clinical trial
	Failed cytokines	Sorafenib Pazopanib Axitinib	Sunitinib Bevacizumab Clinical Trial
Second Line	Failed VEGFR inhibitor	Everolimus Axitinib	TKI's Temsirolimus
	Failed mTOR inhibitor	?	Clinical Trial

Treatment of Metastatic RCC Open Questions

- What is the best sequence of agents
 - TKI-mTOR-?
 - TKI-TKI-mTOR ?.....
- What is the best second line therapy
- Are combinations superior to sequential therapy
- Can we identify clinically relevant biomarkers

First-line Treatment of good/intermediate mRCC

Study	ORR, %	Median PFS, mo*	Median OS, mo*
Sunitinib vs IFN–a ¹	47 vs. 12	11 vs. 5 ₽<0.001	26.4 vs 21.8 <i>P</i> = 0.051
Bevacizumab + IFN−α vs IFN−α²	31 vs. 13	10.2 vs. 5.4 P= 0.0001	23.3 vs. 21.3 P= 0.91
Bevacizumab + IFN−α vs IFN−α³	25.5 vs. 13.1	8.5 vs. 5.2 P=0.0001	18.3 vs. 17.4 <i>P</i> = 0.097
Pazopanib vs placebo ⁶	32 vs. 4	9.2 vs. 4.2 P=0.0001	22.9 vs. 20.5 <i>P</i> = 0.224
Tivozanib vs sorafenib ⁵	33 vs 23	11.9 vs. 9.1 P < 0.042	Not Reported

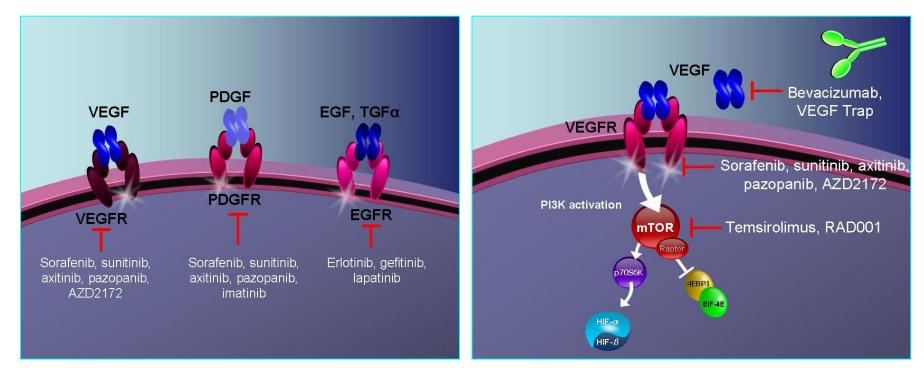
*Intent to treat analysis

Can combination regimens exceed these results ?

www.esmo2012.org

1. Motzer RJ et al. *J Clin Oncol.* 2009; 2. Escudier B et al. *Lancet.* 2007. 3. Rini B et al. *J Clin Oncol.* 2008; 4. Escudier B et al. *J Clin Oncol.* 2009; 5. Hudes G et al. *N Engl J Med.* 2007. 6. Sternberg C et al. *J Clin Oncol.* 2010;

Combinations of Targeted Agents

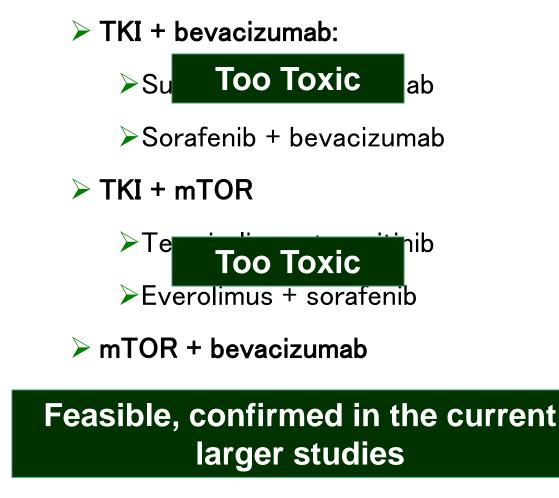

- Rationale:
 - Combination of 2 active agents may lead to increased activity
 - Potential for additive or synergistic effect
 - Delay or avoid development of resistance
- What are we looking for
 - Substantial increase in CR rate (prerequisite for cure)
 - Significantly better PFS (must be better than the sequence)
 - Longer overall survival
 - Tolerable toxicity profile

Combination of targeted Agents: Horizontal versus Vertical Blockade

Horizontal Blockade

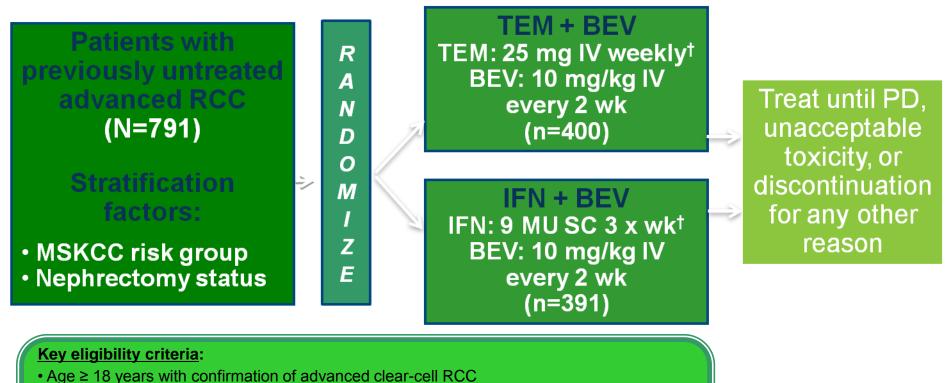
Vertical Blockade

Multiple different signaling pathways are targeted


A single signaling pathway e.g. VEGF is targeted in ≥ levels

www.esmo2012.org

Adapted from: Sosman JA, Puzanov I, Atkins M. Clin Cancer Res 2007


Rational Combinations of Targeted Therapies

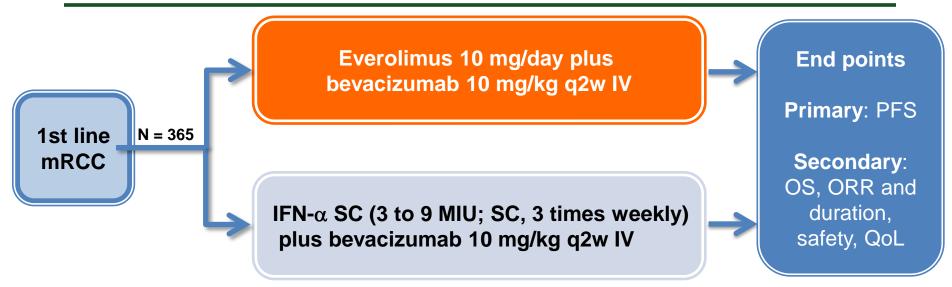
Feldman *et al. J Clin Oncol* 2008; Cooney et al. *J Clin Oncol* 2008; Sosman *et al. J Clin Oncol* 2008; Fischer P *et al. J Clin Oncol* 2008; Rosenberg *et al. J Clin Oncol* 2008; Whorf RC *et al. J Clin Oncol* 2008; Merchan et al J Clin Oncol 2011.

INTORACT (LBA21_PR) Study Design

- ≥ 1 measurable lesion per RECIST criteria
- No prior systemic treatment for RCC
- KPS ≥ 70%

Key exclusion criteria:

• Prior systemic treatment for mRCC, including prior therapy with VEGF or mTOR inhibitor



www.esmo2012.org

Rini B et al : abstract LBA21_PR, ESMO 2012

RECORD-2 (abstr. 7830): Study Design

Randomized, open-label, phase II study

Key eligibility criteria:

- Age ≥ 18 years with confirmation of advanced metastatic clear-cell RCC
- ≥ 1 measurable lesion per RECIST criteria
- Prior nephrectomy
- KPS ≥ 70%

Key exclusion criteria:

• Prior systemic treatment for mRCC, including prior therapy with VEGF or mTOR inhibitor

www.esmo2012.org

11

Rauvaud A. et al : abstract 783O, ESMO 2012

INTORACT and RECORD-2

- Design
 - Well designed and conducted randomized phase III and II, respectively
- Choice of comparator
 - Bevacizumab / Interferon is an accepted first-line option albeit not as frequently used in clinical practice as sunitinib or pazopanib
- Objective –Were the trials looking for too big of a difference ?
 - Both trials were looking for an approximately 30% improvement in PFS
 - At least what we would expect from combining 2 active agents
- Both studies accrued rapidly

First-line Treatment of good/intermediate mRCC

Study	ORR, %	Median PFS, mo	Median OS, mo		
Sunitinib vs IFN–α¹	47 vs. 12	11 vs. 5 <i>P < 0.001</i>	26.4 vs 21.8 <i>P = 0.051</i>		
Bevacizumab + IFN−α vs IFN−α²	31 vs. 13	10.2 vs. 5.4 <i>P = 0.0001</i>	23.3 vs. 21.3 <i>P = 0.91</i>		
Bevacizumab + IFN−α vs IFN−α³	25.5 vs. 13.1	8.5 vs. 5.2 P < 0.0001	18.3 vs. 17.4 <i>P = 0.097</i>		
Pazopanib vs placebo ⁴	32 vs. 4	9.2 vs. 4.2 P < 0.0001	22.9 vs. 20.5 <i>P = 0.224</i>		
BEV/TEM vs BEV/IFN ⁵	28 vs. 28	9.1 vs. 9.3 <i>p=0.759</i>	25.8 vs. 25.5 <i>p=0.638</i>		
BEV/EVER vs BEV/IFN ⁶	27 vs. 28	9.2 vs. 10 <i>p=0.485</i>	NA vs. 26		
No difference to existing first line options					
VIENNA 2012 ESVO www.esmo2012.org					

1. Motzer RJ et al, J Clin Oncol, 2009; 2. Escudier B et al, Lancet, 2007, 3. Rini B et al, J Clin Oncol, 2008; 4. Sternberg C et al. J Clin Oncol. 2010; 5. Rini et al ESMO 2012; 6. Ravaud et al ESMO 2012

Patient Characteristics of Current First-line Trials

Study	MSKCC G / I	PS	Clear cell	Prior nephrectomy
Sunitinib vs IFN–a ¹	> 90 %	0–1	✓	91 % vs. 89 %
Bevacizumab + IFN−α vs IFN−α²	> 90 %	KPS ≥ 70 %	✓	✓
Bevacizumab + IFN−α vs IFN−α³	> 90 %	KPS ≥ 70 %	✓	85 % vs. 85 %
Pazopanib vs placebo ⁴	> 90 %	0–1	✓	89 % vs. 88 %
BEV/TEM vs BEV/IFN ⁵	> 90 %	KPS ≥ 70 %	~	85 % vs. 86 %
BEV/EVER vs BEV/IFN ⁶	> 90 %	KPS ≥ 70 %	✓	✓

No difference to existing first line options

www.esmo2012.org

Motzer RJ et al. J Clin Oncol. 2009; 2. Escudier B et al. Lancet. 2007. 3. Rini B et al. J Clin Oncol. 2008;
 4. Sternberg C et al. J Clin Oncol. 2010; 5. Rini et al ESMO 2012; 6. Ravaud et al ESMO 2012

Rationale for Bevacizumab / Temsirolimus combination

Phase I study:

Prior therapy:

> RR:

> PFS:

N = 12, all ECOG 0–1 n = 7, cytokines in 6/7 <u>NO CR</u> PR=7 (60 %) SD = 3 (25 %) n/a

Combination feasible with both agents given at full dose High response rate \rightarrow further testing recommended

www.esmo2012.org

Merchan ASCO 2007

Rationale for Everolimus/Bevacizumab combination

Phase II study: N = 30 untreated patients in preliminary report N = 50 untreated patients in final report

- Median PFS: 12 months in ASCO 2008 presentation (9 months in abstract) 9.1 months in the final report (JCO 2010)
- RR: NO CR PR=23 % SD = 53 %

Combination feasible with both agents given at full dose Very active ("12 months PFS")→ further testing recommended

Rationale for RECORD-2 and INTORACT

BUT

- \succ Small trials
- ≻No CR
- > PR rate comparable to historical data e.g. sunitinib
- > PFS not available/comparable to historical data e.g. sunitinib
- > I am not aware of any preclinical additive/synergistic effect

Rationale strong enough for further development ?

Temsirolimus / Bevacizumab Randomized phase III trial Everolimus / Bevacizumab Randomized phase II trial

Combination of targeted Agents: Horizontal versus Vertical Blockade

Horizontal Blockade

Vertical Blockade

Multiple signaling pathways downstream of HIF-α are targeted

A single signaling pathway e.g. VEGF is targeted in ≥ levels

www.esmo2012.org

Adapted from: Sosman JA, Puzanov I, Atkins M. Clin Cancer Res 2007

Future Combinations of Targeted Agents

- Sound pre-clinical rationale (synergy/additive)
- Convincing efficacy in phase II
- Acceptable toxicity profile
- Phase III trial design should include a sequence as comparator
- Combine agents with different mechanism of action
 - e.g TKI plus antibody against other target
 - e.g. Immunotherapy with TKI

RCC Treatment Algorithm: 2012

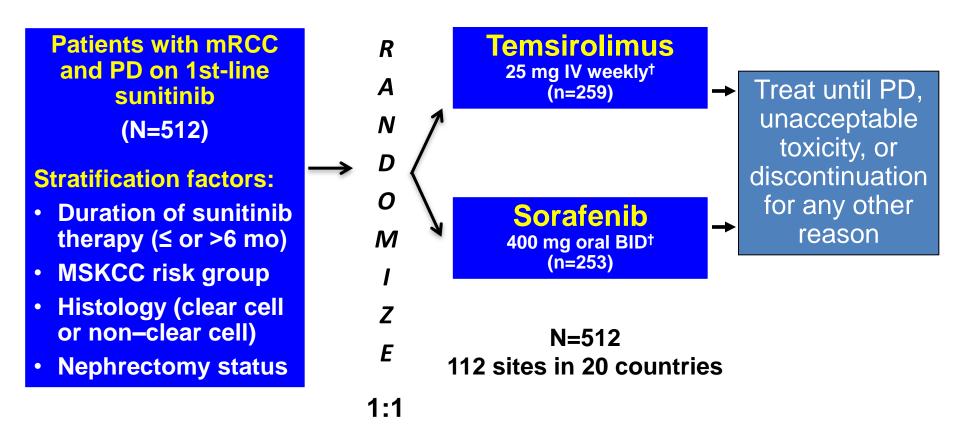
Treatment Status	Patient Status	Therapy (Level 1 evidence)	Other Options (≥ Level 2)
First Line	Good or intermediate risk	Sunitinib Bevacizumab + IFN Pazopanib	High-dose IL-2 (Sorafenib) Observation Clinical Trial
	Poor risk	Temsirolimus	Sunitinib Pazopanib Clinical trial
	Failed cytokines	Sorafenib Pazopanib Axitinib	Sunitinib Bevacizumab Clinical Trial
Second Line	Failed VEGFR inhibitor	Everolimus Axitinib	TKI's
	Failed mTOR inhibitor	?	Temsirolimus Clinical Trial

Choice of Second-Line Therapy

- Individual physician knowledge of data
- Distinct safety profiles of different agents
- Experience with drugs
- Availability of and access to various drugs
- Patient-specific issues such as co-morbidities, toxicities experienced on first-line therapy

Does Sequence Matter?

(in the Absence of Predictive Markers)


1st-Line TKI	2nd-Line mTOR	
1st-Line TKI	2nd-Line TKI	
Sequences of Targeted Therapies	mPFS 1st drug, mo (95% CI)	mPFS 2nd drug, mo (95% CI)
Any VEGF to any mTOR (n = 277)	7.8 (6.5–9.1)	3.4 (2.9–4.5)
Sunitinib to temsirolimus (n = 115)	7.2 (5.7–9.3)	3.2 (2.6–5.0)
Sunitinib to everolimus (n = 130)	8.6 (6.6–10.7)	3.7 (2.8–5.3)
Any VEGF to any VEGF (n = 541)	7.5 (6.9–8.0)	4.0 (3.7–4.6)
Sunitinib to sorafenib (n = 257)	7.6 (6.5–8.2)	3.6 (2.9–4.1)
Sorafenib to sunitinib (n = 152)	7.3 (6.2–8.5)	5.2 (4.2–6.8)

www.esmo2012.org

Heng et al. J Clin Oncol. 2012;30(suppl5):Abstr 387.

INTORSECT (LBA22_PR) Study Design

First patient randomized: September 25, 2007; last patient randomized: January 31, 2012.

Data cutoff: May 4, 2012. At present, 2 patients are on study.

www.esmo2012.org

Hutson T. et al abstract LBA22_PR, ESMO 2012.

INTORSECT

- Design
 - Well designed and conducted randomized phase III study
 - "cleanest" study thus far with regards to prior therapy, included sunitinib pretreated patients only
- Choice of comparator
 - Sorafenib was an acceptable second-line option at the time of study development
- Objective -Was the trial looking for too big of a difference ?
 Trial was looking for a 33% improvement in PFS
- Study accrued rapidly

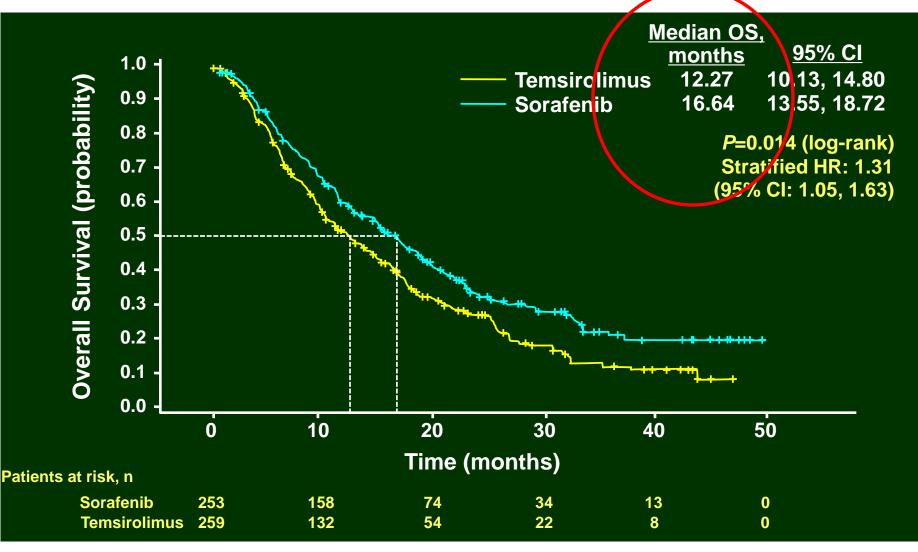
Results of Current second-line Trials

Study	ORR, %	Median PFS, mo
Temsirolimus vs. sorafenib¹	8 % vs. 8 %	4.3 vs. 3.9 p> 0.05
Everolimus vs placebo²	1.8 % vs. 0 %	4.6 ∨s. 1.8* p< 0.05
Axitinib vs. sorafenib ³	19 % vs. 9 %	4.8 vs. 3.4 p< 0.05

*Sunitinib pretreated patients only

No statistically significant nor clinically meaningful benefit for temsirolimus over sorafenib

Patient Characteristics of Current second-line Trials


Study	MSKCC G / I	PS	Clear cell	Prior anti VEGF
Everolimus vs placebo ¹	> 85 %	KPS ≥ 70 %	✓	Sunitinib and/or sorafenib
Axitinib vs. sorafenib²	65% vs. 64%	ECOG 0-1	✓	sunitinib
Temsirolimus vs. sorafenib ⁶	> 85 %	ECOG 0-1	83 % vs. 82 %	sunitinib

No substantial difference to existing second-line options

INTORSECT: Overall Survival

www.esmo2012.org

Hutson ESMO 2012

Results of Current second-line Trials

Study	ORR, %	Median PFS, mo	Median OS, mo
Temsirolimus vs. sorafenib¹	8 % vs. 8 %	4.3 vs. 3.9	12.3 vs. 16.6
Everolimus vs placebo²	1.8 % vs. 0 %	4.6 vs. 1.8*	14.8 vs. 14.4
Axitinib vs. sorafenib ³	19 % vs. 9 %	4.8 vs. 3.4	15.2 vs. 16.5
*Sunitinib pretreated patients only			

Numerically longest OS rates have been reported with second line TKI in particular sorafenib

www.esmo2012.org

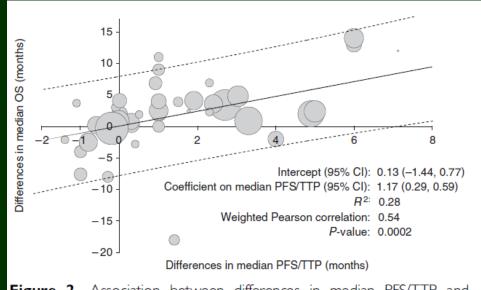
1. Hutson T. et al abstract LBA22_PR ESMO 2012; 2. Motzer RJ et al. Cancer 2010; 3. Motzer R. et al abstract 793PD ESMO 2012;

INTORSECT: Overall Survival

- True effect ?
- False positive ? (secondary endpoint)
- Difference in tumor biology and behavior ?
 - More rapid progression/tumor growth in one group ?
 - RCC is a molecularly very heterogenous tumor and patients with similar clinical presentation can have very different molecular profiles
 Stewart G et al Nat Rev Urol 2011
- Dose delivery ?
 - Discontinuation due to AEs TEM 17% vs. SOR 14%

INTORSECT: Overall Survival

- Subsequent therapies ?
 - few patients had third line therapy and vast majority crossed over to the other drug
- Is previous VEGF therapy altering the biology of the disease
 - protein expression in mRCC is heterogenous and expression of key proteins appear to vary with sunitinib therapy


Stewart G. et al GU ASCO 2012

The significant survival difference remains to be conclusively explained

PFS as a Surrogate for OS in Metastatic RCC

- Several retrospective studies have demonstrated a correlation between PFS and OS
- The vast majority of patients included into these studies were first-line patients
- PFS has become an acceptable standard endpoint for first-line studies

Figure 2 Association between differences in median PFS/TTP and differences in median OS. Abbreviation: R^2 = adjusted *R*-squared. Area of bubbles is proportional to the number of patients. Solid line is predicted value. Dashed lines are prediction intervals.

Hotte S et al Curr Oncol 2011; Heng D et al Cancer 2011; Delea et al Br J Cancer 2012 www.esmo2012.org

Is PFS a good surrogate for OS in metastatic RCC ?

Trial / Agent	PFS	OS
Temsirolimus	4.28 months	12.27 months
VS.	VS	VS
Sorafenib	3.91 months	16.64 months
Axitinib*	4.8 months	15.2 months
VS.	VS	VS
Sorafenib	3.4 months	16.5 months

*sunitinib pretreated pts only

Concept of PFS as surrogate for OS is challenged in second line therapy

Needs to be examined

Hutson T et al ESMO 2012 www.esmo2012.org Motzer R et al ESMO 2012

Conclusions (1)

- Combinations of targeted agents in metastatic RCC remain investigational
- "Vertical blockade" with combinations of currently available agents is either too toxic or lacks additive / synergistic effects
- "Horizontal blockade" may become feasible with the large number of agents in development
- Combinations with immunotherapy (e.g. PD-1 inhibitors) are under investigation

Conclusions (2)

- Sequential therapy remains the standard of care
- Current second line options include everolimus and axitinib
- Optimal sequence remains to be defined
- There appears to be an uncoupling of the relationship between PFS and OS in the second line setting
 - Implications for trial design in the future
- Biomarkers are urgently needed to allow a more rational selection of therapy and allow for patient enrichment in clinical trials

RCC Treatment Algorithm: 2012

Treatment Status	Patient Status	Therapy (Level 1 evidence)	Other Options (≥ Level 2)
First Line	Good or intermediate risk	Sunitinib Bevacizumab + IFN Pazopanib	High-dose IL-2 (Sorafenib) Observation Clinical Trial
	Poor risk	Temsirolimus	Sunitinib Pazopanib Clinical trial
	Failed cytokines	Sorafenib Pazopanib Axitinib	Sunitinib Bevacizumab Clinical Trial
Second Line	Failed VEGFR inhibitor	Everolimus Axitinib	TKI's Temsirolimus
	Failed mTOR inhibitor	?	Clinical Trial

