Poster Discussion: BASIC SCIENCE AND TRASLATIONAL REASEARCH

Erika Martinelli, MD, PhD Medical Oncology Second University of Naples Italy

Session Outline

	177PD	Exosomal long non-coding RNA (IncRNA) in Lung Cancer	Goetz Kloecker, US
	1645PD	microRNA-9 and -224 in trastuzumab resistant HER2 positive breast cancer cells.	Karen Howe, IE
15'		Discussant	Erika Martinelli, IT
15'		Questions	
	1646PD	Customized first line chemotherapy according to ERCC1 and RRM1 SNPs in advanced Non-Small-Cell Lung cancer (NSCLC) patients: a phase II study	Francesca Mazzoni, IT
	176PD	Prediction of late breast cancer recurrence by the ROR (PAM50) score in postmenopausal women in the TransATAC cohort	Jack Cuzick, UK
15'		Discussant	Caroline Dive, UK
15'		Questions	

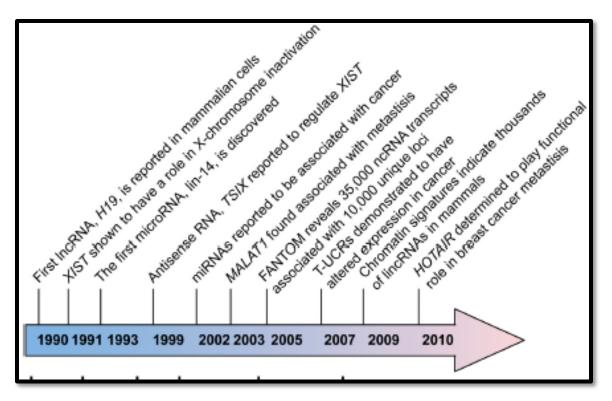
Disclosure slide

• I have no conflict of interest to declare

Focus on the target: classes of human non-coding RNA

	Туре	Class	Characteristics and function	
		Small Interfering RNAs (siRNAs)	21-22 nt double-stranded RNAs produced by Dicer and involved in gene silencing and viral defence	
		microRNAs (miRNAs)	18–25 nt RNAs that modulate gene expression posttranscriptionally	D PD#1645
		Transfer RNAs (tRNA)	An adaptor molecule with an inverted L structure involved in translation of mRNA into protein	V
	Small ncRNA (<200 nt)	PIWI-interacting RNAs (piRNAs)	Dicer independent 26–31 nt RNAs located in the germline and adjacent somatic cells, involved in germline development and stability through the regulation of transposons	
	(Small nucleolar RNAs (snoRNAs)	Guide molecules for modification and processing of rRNA, specifically site-specific methylation and pseudouridylation	
		microRNA-offset RNAs (moRNAs)	RNAs derived from the ends of pre-miRNAs, predominantly from the 5' end, independent of the mature miRNA. The function of moRNAs are currently unknown	
		Ribosomal 5.8S	Transcribed by pol I as a part of the 45S precursor, 5.8S is a component of the large ribosomal subunit in eukaryotes, and thus involved in protein translation	
1		Promoter-associated short RNAs (PASRs)	Transcripts within a few hundred bases of protein coding or noncoding transcription start site that may regulate gene expression	
PD#177		Long ncRNA	A broad class of RNAs > 200 nt with functions in epigenetic regulation, splicing, and cellular localization	
N		Transcribed ultraconserved regions (T-UCR)	Non-coding sequences 100% conserved among humans, mice, and rats, with roles in the regulation of alternative splicing and gene expression, and altered in a number of human cancers	
	Long ncRNA (>200 nt)	Pseudogenes	Nonfunctional sequences of genomic DNA originally derived from functional genes but with mutations or premature stop codons that prevent their expression. Known to regulate gene expression and recombination	
		Promoter associated long RNAs (PARs)	Transcripts 250–500 nt long within a few hundred bases of protein coding or non coding transcription start sites that may regulate gene expression	
		Antisense RNAs	Single stranded RNA complementary to a transcribed mRNA, capable of binding and blocking translation of its complementary mRNA, and promoting target decay.	

Exosomal long non-coding RNA(IncRNA) in Lung Cancer (# 177PD)


<u>GH Kloecker</u>, M.D.¹, N. Vinayek, M.D.¹, CG Taylor, Ph.D.², DD Taylor, M.D.²

Departments of Medicine¹ and Gynecology²

University of Louisville School, USA

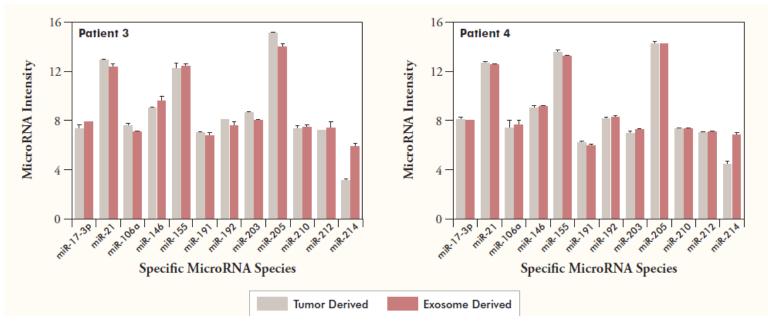
Long non-coding RNA (IncRNA)

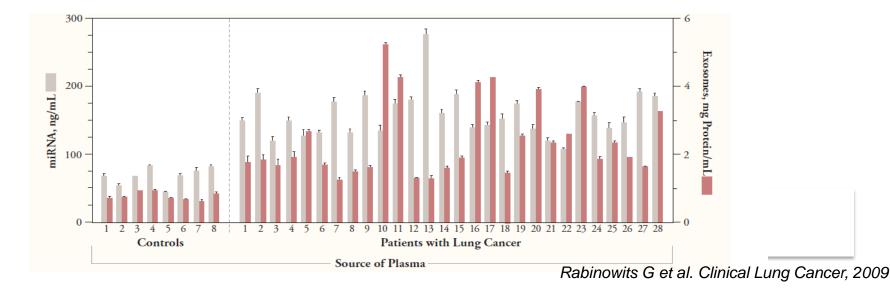
Adapted from Gibb Ea et al. Molecular Cancer, 2011

Long ncRNAs, are non-protein coding transcripts longer than 200 nuceotides

Human cancer associated IncRNA

LncRNA	Size	Cytoband	Cancer types	References
HOTAIR	2158 nt	12q13.13	Breast	[18,68]
MALAT1/α/NEAT2	7.5 kb	11q13.1	Breast, lung, uterus, pancreas, colon, prostate, liver, cervix ¹ , neuroblastoma ¹ , osteosarcoma	[135,137-139,152,255,256]
HULC	500 nt	6p24.3	Liver, hepatic colorectal metastasis	[170,171]
BC200	200 nt	2p21	Breast, cervix, esophagus, lung, ovary, parotid, tongue	[50,51]
H19	2.3 kb	11p15.5	Bladder, lung, liver, breast, endometrial, cervix, esophagus, ovary, prostate, choricarcinoma, colorectal	[74,92,95,97,102,103,257-264]
BIC/MIRHG 155/ MIRHG2	1.6 kb	21q11.2	B-cell lymphoma	[153]
PRNCRI	13 kb	8q24.2	Prostate	[187]
LOC285194	2105 nt	3q13.31	Osteosarcoma	[265]
PCGEM1	1643 nt	2q32.2	Prostate	[188,266,267]
UCA1/CUDR	1.4 kb, 2.2 kb, 2.7 kb	19p13.12	Bladder, colon, cervix, lung, thyroid, liver, breast, esophagus, stomach	[268-270]
DD3/PCA3	0.6 kb, 2 kb, 4 kb	9q21.22	Prostate	[189,190]
anti-NOS2A	~1.9 kb	17q23.2	Brain ¹	[271]
uc.73A	201 nt	2q22.3	Colon	[200]
TUC338 (encodes uc.338)	590 nt	12q13.13	Liver	[203]
ANRIL/p15AS/ CDK2BAS	34.8 kb & splice variants	9p21.3	Prostate, leukemia	[175,176,183,272]
MEG3	1.6 kb & splicing isoforms	14q32.2	Brain (downregulated)	[156-158,162]
GAS5/SNHG2	Multiple isoforms	1q25.1	Breast (downregulated)	[273]
SRA-1/SRA (bifunctional)	1965 nt	5q31.3	Breast, uterus, ovary (hormone responsive tissue)	[274,275]
PTENP1	~3.9 kb	9p13.3	Prostate	[173,174]
ncRAN	2186 nt, 2087 nt	17q25.1	Bladder, neuroblastoma	[276,277]


Adapted from Iorio and Croce. JCO, 2009

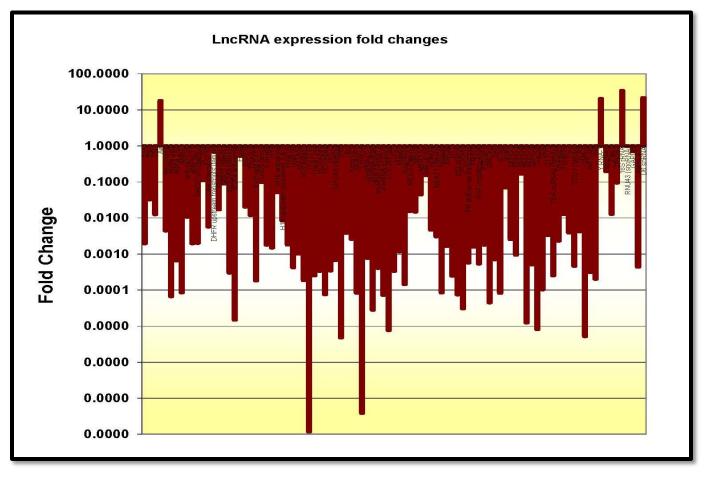

Tumor-derived exosomes

- Small (50-100 nm) membrane vescicles of endocytic origin, initially demontrated in peripheral circulation of cancer patients (Taylor DD et al. Cancer Res 1980)
- Role in cell-to-cell comunication by transferring genetics information between cells (Ratajczak J et al. Leukimia, 2006)
- Released exosomes contain a subset of both cellular mRNA and miRNA which could be transferred to target cell (Valadi et al. Nat Cell Biol, 2007)

Exomal microRNA: a diagnostic marker for lung cancer

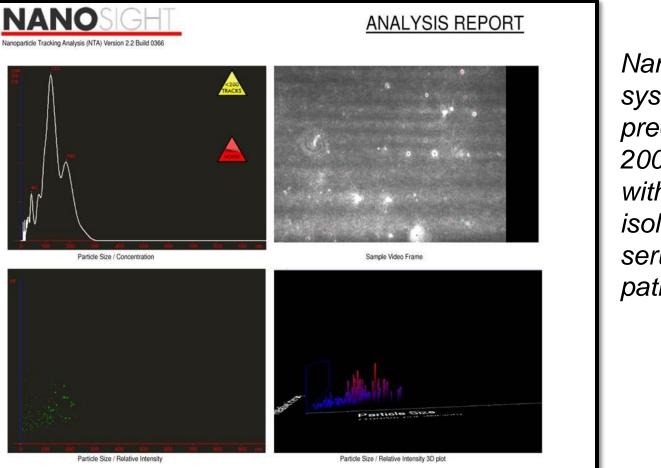
Research aim

- Examination of the InRNA content in a human NSCLC cell lines (H838) and compares it to the InRNA content in the supernatant exosomes.
- Comparison between InRNA profiles in blood-borne exosomes from cancer patients and controls.



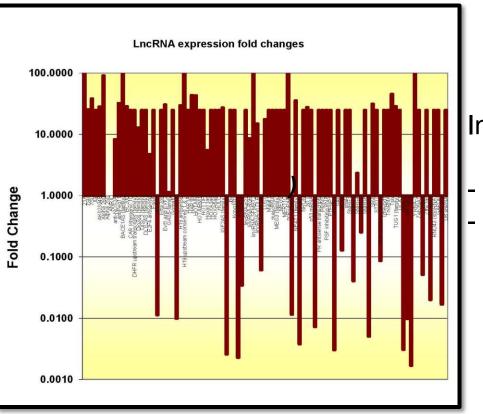
- Microvesicles in the supernatant in cell line culture were isolated by chromatography using Sepharose 2B.
- For serum samples, vesicles were isolated using ExoQuick from 1ml samples.
- Characterization of vesicle populations from the patient serum analyzed with a NanoSight LM10 with Nanoparticle Tracking software
- The total RNA fraction was analyzed for specific IncRNAs using the IncRNA profiler qPCR array (Systems Biosciences)

Ratios of the IncRNAs in exosomes versus IncRNA in <u>H838 cell line (>1, higher concentration in exosomes)</u>



The results showed selective exosomal levels of InRNA content compared to intracellular InRNA. CT values (ANRIL cells 23.80 vs. 26.44 exosomes. MALAT-1 cells 31.84 vs. 32.85 exosomes. BACE1AS cells 34.14 vs 34.86 exosomes)

Serum samples analysis in patients



Nanoparticle tracking system with vesicles predominately 50-200nm consistent with exosomes, isolated from the serum of lung cancer patients

Ratios of the IncRNA in lung cancer patients' serum versus normal control serum (>1, higher concentration in patients' serum)

In patients serum:

Increase level (20-fold) in 58 Inc RNA
Descreae level (10-fold) in 20 Inc RNA

(P# 177PD) www.esmo2012.org

Study conclusions

 The different profiles of exosomal InRNA in serum of cancer patients and controls makes InRNA a potential marker for <u>screening, diagnosis and monitoring</u>

 The high InRNA content of cancer cells, may make InRNA a <u>therapeutic target</u> in the treatment of lung cancer

(P# 177PD)

Circulating miRNA in the serum as diagnostic markers for different tumor entities

Tumor entity	References	Study Design	Sample Size	Circulating miRNAs examined	Technology	Normalization	Promising circulating miRNAs
B-Cell Lymphoma	Lawrie et al. [23]	Tumor vs. normal, retrospective study on prognosis	60 patients vs. 43 healthy controls	3	Quantitative RT-PCR	miRNA-16	miRNA-155, miRNA-210, and miRNA-21
Breast Cancer	Heneghan et al. [73]	Tumor vs. normal	83 patients vs. 44 healthy controls	7	Quantitative RT-PCR	miRNA-16	miRNA-195 and let7a
	Zhu et al. [83]	Tumor vs. normal	13 patients vs. 8 healthy controls	3	Quantitative RT-PCR	18 s rRNA	miRNA-155
Colon Cancer	Huang et al. [60]	Tumor vs. normal	Screening: 20 patients vs. 20 healthy controls Validation: 80 patients, 37 adenomas and 39 healthy controls	12	Quantitative RT-PCR	miRNA-16	miRNA-29 and miRNA92a
	Ng et al. [57]	Tumor vs. normal, tissue and serum	Screening: 5 plasma samples, associated tumor/ normal tissue <u>1.validation</u> : 25 patients vs. 20 healthy controls <u>2. validation</u> 180 samples	95	Quantitative RT-PCR Array	RNU6B	miR-17-3p and miR-92
Gastric Cancer	Tsujiura et al. [85]	Tumor vs. Normal	Screening: 8 samples and associated tissue Validation: 69 patients vs. 30 healthy controls	5	Quantitative RT-PCR	RNU6B	miR-17-5p, miR-21, miR-106a, miR- 106b and let-7a
Leukemia	Tanaka et al. [56]	Tumor vs. Normal	<u>Screening:</u> 2 patients vs. 7 healthy controls <u>Validation:</u> 61 patients vs. 16 healthy controls	723	microRNA Microarray (Agilent Technologies)	miRNA-638	miRNA-92a
Lung Cancer	Chen et al. [24]	Tumor vs. normal	Screening: Pool analysis Validation: 152 patients vs. 75 healthy controls	Genome-wide profiling by Solexa sequencing	Solexa sequencing, Quantitative RT-PCR	Directly normalized to total RNA	miRNA-25 and miRNA-223
	Hu et al. [74]	Study on prognosis (Overall survival)	Screening: 60 patients Validation: 243 patients	Genome-wide profiling by Solexa sequencing	Solexa sequencing, Quantitative RT-PCR	Referenced to control healthy serum sample	miR-486, miR-30 d, miR-1 and miR- 499
Oral Cancer	Liu et al. [80]	Tumor vs. normal	43 patients vs. 21 healthy controls	1	Quantitative RT-PCR arrays	miRNA-16	miR-31
Ovarian Cancer	Resnick et al. [67]	Tumor vs. normal	<u>Screening:</u> 9 patients vs. 4 healthy controls <u>Validation:</u> 19 patients vs. 11 healthy controls	365	Quantitative RT-PCR arrays	U44/U48 and miRNA-142-3p	miRNA-21, miRNA-92, miRNA-93, miRNA-126, miRNA-29a, miRNA- 155, miRNA-127 and miRNA-99b
Pancreatic Cancer	Ho et al. [28]	Tumor vs. normal	Screening: 11 patients vs. 14 healthy controls, Validation: 11 patients vs. 11 healthy controls	1	Quantitative RT-PCR arrays	c. elegans spike-in miRNA-54	miRNA-210
	Wang et al. [61]	Tumor vs. normal	49 patients vs. 36 healthy controls	4	Quantitative RT-PCR arrays	miRNA-16	miR-21, miR-210, miR-155, and miR-196a
Prostate Cancer	Mitchell et al. [25]	Tumor vs. normal	<u>Screening:</u> Pool analysis <u>Validation:</u> 25 patients vs. 25 healthy controls	6	Quantitative RT-PCR	c. elegans spike-in <i>cel-miR-39, celmiR-</i> 54, and <i>cel-miR-238</i>	miRNA-141
	Brase et al. [72]	Low grade vs. high grade	<u>Screening:</u> 7 high grade vs. 14 low grade Validation: 116 patients	667	Quantitative RT-PCR arrays	c. elegans spike-in <i>cel-miR-39, celmiR-</i> 54, and <i>cel-miR-238</i>	miRNA-141, miRNA-375
Squamous Cell Carcinoma	Wong et al. [81]	Tumor vs. Normal tissue screening, Validation in serum	30 patients vs. 38 healthy controls	1	Quantitative RT-PCR arrays	miRNA-16	miRNA-184

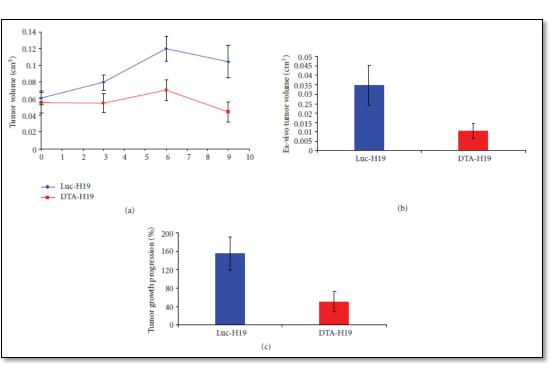
Putting the data in the context as biomarkes

IncRNA	Significance	Technology	Source tissue	Reference
MALAT1	AT1 P: predict metastasis survival in early-stage NSCLC		Shock frozen primary NSCL tumors	Ji P, et al. Oncogene (22) 2003
BC200	D : Detectable at significant levels in tumors (lung)	In situ hybridization	Tumor and normal tissue frozen in liquid nitrogen	Chen W, et al. Journal of Pathology (183) 1997
H19	D: Loss of imprinting in lung adenocarcinoma	RT-PCR	Lung cancer and normal tissue	Kodha M, et al. Molecular Carcinogenesis (31) 2001
DD3PCA3	D : high level in prostate cancer tumor vs benign tumor	RT-PCR	Urine sediment	Tinzl M et al. European Urology (46) 2004
HULC	D: detected in the blood of HCC patients and in corresponding tissue samples	RT-PCR	Blood sample and tumor tissue (cryo- preserved, and paraffin-embedded)	Panzitt K, et al. Gastrenterology (342) 2007

P: prognostic D: diagnostic

Study conclusions

The different profiles of exosomal InRNA in serum of cancer patients and controls makes InRNA a potential marker for screening, diagnosis and monitoring

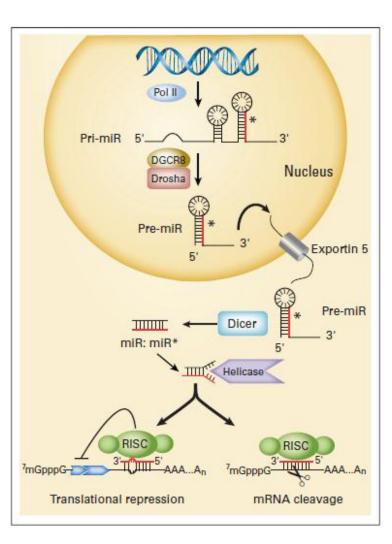

 The high InRNA content of cancer cells, may make InRNA a <u>therapeutic target</u> in the treatment of lung cancer

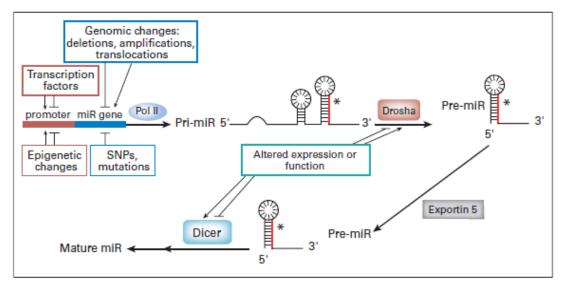
(P# 177PD)

Putting the data in the context: utility as cancer therapies

- Ohana P, et al. Gene Therapy and Molecular Biology (8) 2004
- Smaldone MC, et al. Curr Opin Mol Ther (12) 2010
- Midoux P, et al. Curr Gene Ther (8) 2008
- Amit D, et al. *J Transl Med* (8) 2010
- Mizrahi A, et al. J Transl Med (7) 2009

Scaiewicz V,et al. J Oncol 2010


MICRORNA-9 AND -224 IN TRASTUZUMAB RESISTANT HER2 POSITIVE BREAST CANCER CELLS (# 1645PD)


<u>K. Howe</u>, A. Eustace, S. Souahli, B.C. Browne, S. Aherne, N. Barron, N. Walsh, J.P. Crown, N. O'Donovan

National Institute For Cellular Biotechnology Molecular Therapeutics for Cancer Ireland, Dublin City University IRELAND

Focus on a target: MicroRNA (miRNA)

Adapted from Iorio and Croce. JCO, 2009

miRNA in cancer

microRNA	Expression	Cancer	Targets
miR-21	Upreguleted	Breast	PTEN, PDCD4, TPM1
miR-125b	Downregulated	Breast	HER2, HER3
miR-205	Downregulated	Breast	HER3
miR10b	Downregulated	Breast	HOXD10
Mir-155 Let-7	Upreguleted Downregulated	Lung cancer	RAS, HMGA2, c-MYC
mir-221 miR-122a miR- 34a	Upregulated Downregulated	HCC	P27 Cyclin G1 MET
miR-141/200	Upregulated Down	Ovarian, Prostate Kidney	ZEB, ZEB2

Research aim

 To identify novel microRNAs that play a role in trastuzumab resistance

 To investigate the function of microRNA targets in cell growth and/or trastuzumab sensitivity

Methods

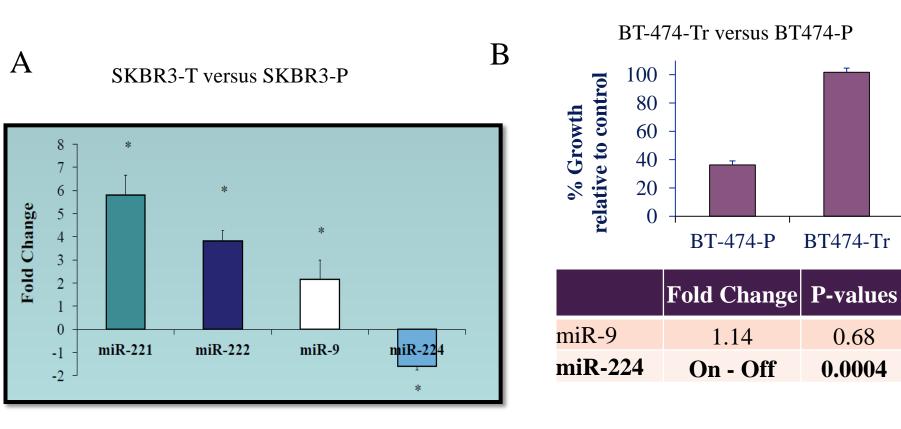
- Acquired trastuzumab resistant cell line, SKBR3-T, was developed previously, by treatment with trastuzumab (SKBR3-T) for 6 months and a media control cell line, SBR3-Parental was developed in parallel
- microRNA was isolated using the miRVANA microRNA isolation kit (Ambion)
- cDNA was synthesised using the TaqMan® MicroRNA RT Kit (Applied Biosystems) and qRT-PCR was performed TaqMan® Universal PCR Master mix
- miRNAs were with quantified using TaqMan MicroRNA Assays (Applied Biosystems), normalised with RNU48 on an An ABI Prism 7900HT
- Functional studies were carried out using Ambion® Pre-miR[™] miRNA Precursors and Anti-miR[™] miRNA Inhibitors. Cell counts were preformed using Guava Viacount reagent on the Guava EasyCyte.

(P# 1645PD)

miRNA profiling of trastuzumab resistant cells (SKBR3-T)

В

100 -80 -60 -40 -20 -0 -SKBR3-P SKBR3-T


Α

	Fold Change	P-value
miR-205	3.4	0.02
miR-221	3.2	0.01
miR-222	2.4	0.02
miR-9	2.4	3.93634E-06
miR-550	-2.2	0.03
miR-192	-2.8	0.01
miR-31	-3.1	0.05
miR-30d	-4.0	0.04
miR-148a	-4.4	0.03
miR-30a-5p	- 4.7	0.04
miR-224	-5.3	0.05
miR-194	-22.3	0.02

Fold change \geq 2 and p value \leq 0.05 were used as cut-offs.

miRNA qRT-PCR validation

*On - Off fold change denotes Ct values < 36 to Ct values of > 36 in the trastuzumab resistant cell lines.

www.esmo2012.org

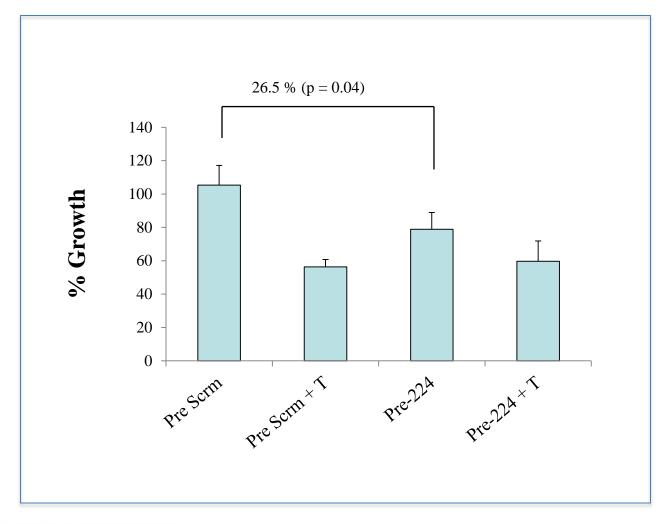
0.68

(P# 1645PD)

(P# 1645PD)

miR-9 and miR-224 in "innate" trastuzumab resistance cells lines

miR-9


	Fold Change	P-Value
UACC-732	4.0	0.14
JIMT-1	4.9	0.06
HCC-202	1.3	0.45
HCC-1954	2.9	0.20
HCC-1569	587.1	0.00004
MDA-MB-453	1.2	0.77

miR-224

	Fold Change	P-Value
UACC-732	On - Off	0.001
JIMT-1	On - Off	0.03
HCC-202	277.5	0.0001
HCC-1954	1490.4	0.00003
HCC-1569	On - Off	0.20
MDA-MB-453	On - Off	0.06

(P# 1645PD) Functional study on SKBR3

Study conclusions

 First report of involment of miRNA-9 and miRNA-224 in trastuzumab resitance in HER2 positive breast cancer

 Preliminary functional studies suggest that miRNA-224 may play a role in regulating cell growth in HER2 positive breast cancer cells

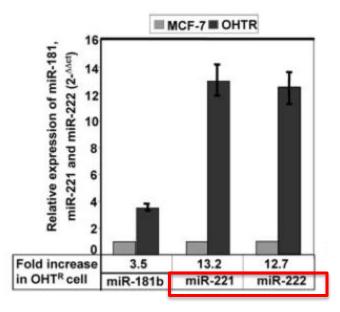
(P# 1645PD)

Study conclusions

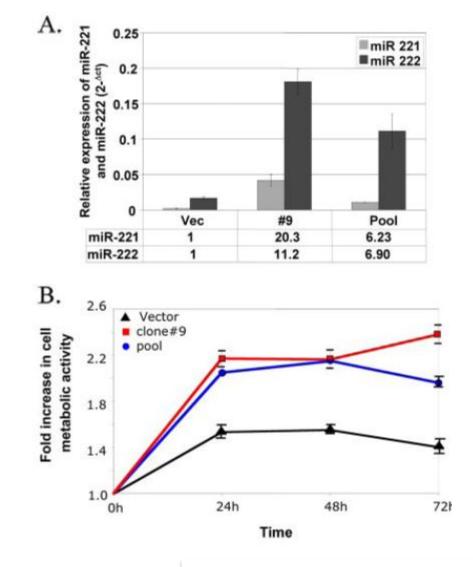
 First report of involment of miRNA-9 and miRNA-224 in trastuzumab resitance in HER2 positive breast cancer

Preliminary functional studies suggest that miRNA-224 may play a role in regulating cell growth in HER2 positive breast cancer cells

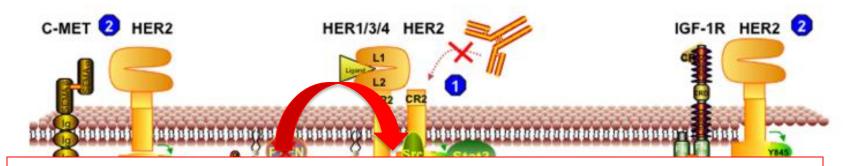
(P# 1645PD)


miRNAs modulate multidrug resistance in breast cancer

Mechanism	miRNA	Alteration	Targets	Resistant to	References
ABC transporters	miR-200c	Down-regulated	Pgp/MDR1	Doxorubicin	Chen et al. [13]
	miR-451	Down-regulated	Pgp/MDR1	Doxorubicin	Kovalchuk et al. [14]
	miR-345,-7	Down-regulated	MRP-1/ABCC1	Cisplatin	Pogribny et al. [11]
	miR-326	Down-regulated	MRP-1/ABCC1	VP-16	Liang et al. [15]
	miR-328,-519c	Down-regulated	BCRP/ABCG2	Mitoxantrone	Pan et al. [16]; Li et al. [18]
	miR-19	Up-regulated	MDR-1	Taxol	Liang et al. [19]
			MRP-1	VP-16	
			BCRP	Mitoxantrone	
Anti-apoptotic proteins	miR-125b	Up-regulated	Bak1	Taxol	Zhou et al. [12]
	miR-19	Up-regulated	PTEN	Taxol	Liang et al. [19]
				VP-16	
				Mitoxantrone	
	miR-21	Up-regulated	PTEN	Doxorubicin	Wang et al. [21]
	miR-21	Up-regulated	PTEN	Trastuzumab	Gong et al. [22]
EMT	miR-200	Down-regulated	E-cadherin	Doxorubicin	Tryndyak et al. [26]; Howe et al. [27]; Jurmeister et al. [28]
			ZEB1/ZEB2		
	miR-221/222				Stinson et al. [29, 30]
	miR-203				Moes et al. [31]
CSCs	miR-128	Down-regulated	Bmi-1		Zhu et al. [34]
			ABCC5		

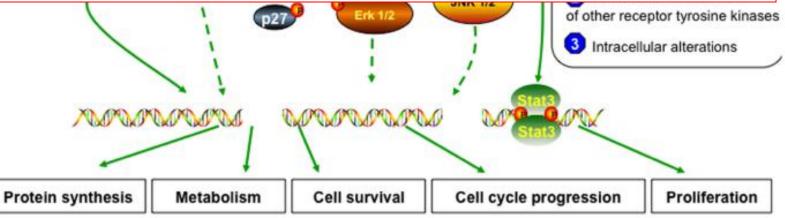

Tian W, et al. Clin Transl Oncol 2012

miRNA in drugs resistance


Distinct miRNA expression profilein <u>tamoxifen</u> resistance breast caner cell lines (OHTR)

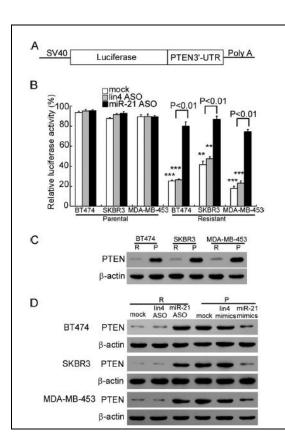
Miller TE et al. J Biol Chem 2008

Resistant mechanism to Trastuzumab

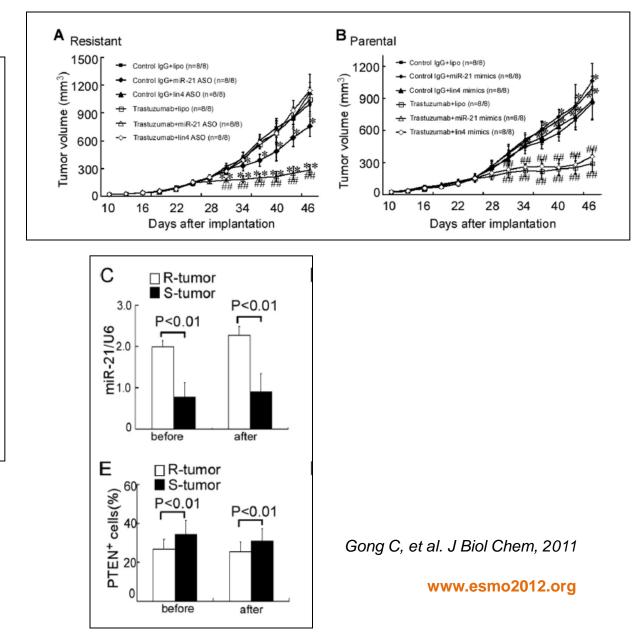


THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 286, NO. 21, pp. 19127–19137, May 27, 2011 © 2011 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.

Up-regulation of *miR-21* Mediates Resistance to Trastuzumab Therapy for Breast Cancer*^S


Received for publication, December 28, 2010, and in revised form, April 5, 2011 Published, JBC Papers in Press, April 6, 2011, DOI 10.1074/jbc.M110.216887

Chang Gong⁺¹, Yandan Yao⁺¹, Ying Wang⁺, Bodu Liu⁺, Wei Wu⁺, Jianing Chen⁺, Fengxi Su⁺, Herui Yao⁵², and Erwei Song⁺³ From the ⁺Breast Tumor Center and [§]Department of Medical Oncology, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China

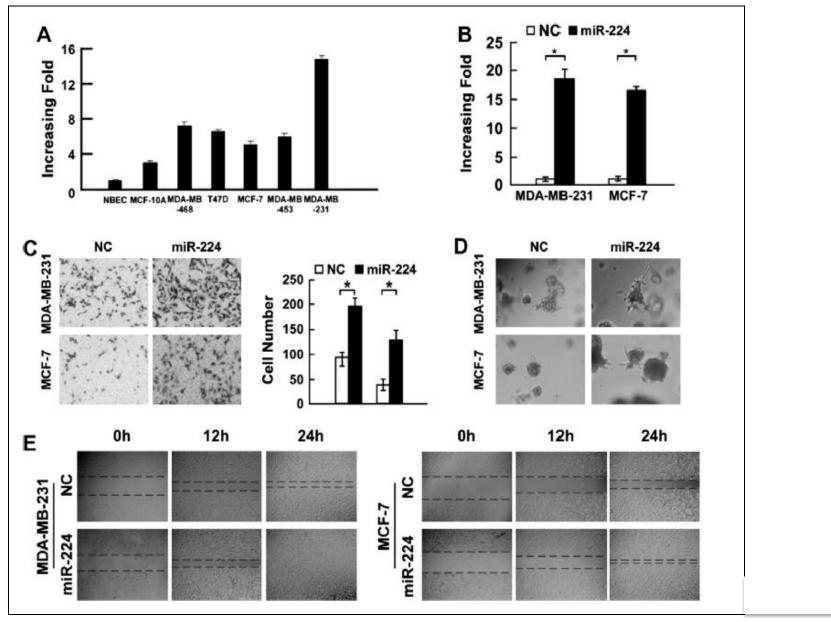


Adapted from Thuy Vu et al. Frontiers in Oncology, 2012

miR21/PTEN and acquired resistance to Trastuzumab

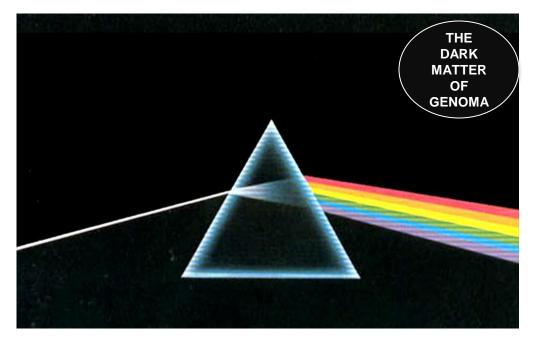
VIENNA 2012 congress

Study conclusions


 First report of involment of miRNA-9 and miRNA-224 in trastuzumab resitance in HER2 positive breast cancer

 Preliminary functional studies suggest that miRNA-224 may play a role in regulating cell growth in HER2 positive breast cancer cells

(P# 1645PD)


miRNA-224 in human breast cancer cells

Huang L, et al. Biochem Biophys Res Commun, 2012

CONCLUSIONS

New insight to understand more about the non coding RNA (ncRNA)

ncRNA will be probably be a major therapeutic modality in the near future !

