Chemoprevention of Colorectal Cancer: Aspirin? NSAIDS? or Nothing? Nadir Arber, MD, MSc, MHA Head - Integrated Cancer Prevention Center **Tel Aviv Medical Centre** and Tel Aviv University ESMO 2012 Vienna 1.10.2012

NO Routine Use of Aspirin/ NSAIDs for CRC Prevention

• Personally I do believe in primary prevention with aspirin

t will be given

ABDIP/Mays

t at

not

- But it is a debate....and a f
- I am going to show th beneficial
- I am going to show that aspirin ISng 999 IDs have significant life threatening sity

le

t only s

guid

- I am going to prive the second second
- Most importal recommend it

NSAIDs and Aspirin Decrease the Incidence and the Mortality from CRC

*72 Epidemiological Studies, 1988-2012 Modified from Arber and Levin, Gastro 2008

NSAIDs and Aspirin are Toxic!

- Headache
- Dizziness
- Hearing impairment
- Dim vision
- Confusion
- Drowziness
- Sweating
- Hyperventilation
- Nausea

- Vomiting
- Acid-base disturbances
- Hyperpyrexia
- Dehydration
- Renal failure
- Exacerbation of IBD
- Hallucinations
- Depression
- Seizures
- Aplastic anemia

A Bleeding Ulcer

NSAIDs May Hike Long-Term CV Risk Post-MI (Circulation 2012)

- Study in Copenhagen
- Nearly 100,000 patients
- First-time MI
- NSAIDs users HR 1.59 at 1 year (95% CI 1.49 to 1.69) and HR 1.63 (95% CI 1.52 to 1.74) at 5 years
- 41% increased risk of a second MI
- 30% increased risk of coronary death during the 5-year follow-up

COX-2: Involved in All Stages of Carcinogenesis

PreSAP Study: 1561 106 clinical sites in 32 countries

high grade dysplasia, intramucosal or invasive carcinoma

Arber et al NEJM 31.8.2006

Cardiovascular AEs

Arber, et al NEJM 2006 Arber et al AJG 2011

Time to CV Death, MI, Stroke, or Heart Failure (APC Study)

Cardiovascular Risk of Celecoxib in Six Randomized Placebo-Controlled Trials

Rofecoxib: Cardiovascular Toxicity in the APPROVe Study

Bresalier et al. N Engl J Med. 2005;352:1092-1102.

Unless you see the "Bayer Cross" on paskage or on tablets you are not getting the genuine Bayer Aspirin proved milby millions and prescribed by physicians over twenty-seven years for

> Colds Neuriths Teethache Neuraigus

DEMAND

Headache Lambago' Rheamatian Pain, Pain

DOES NOT AFFECT THE HEART

Finch unbroken " Rever parkage contains proven directions. Handy boxes of twelve tablets cost first cents. Druggists also sell bottles of 24 and 100.

Aspirite is the trade much of Haver Manu-

No Effect of Aspirin on Vascular and Nonvascular Outcomes: Metaanalysis of RCTs

Conclusions: Despite important reductions in nonfatal MI, aspirin prophylaxis in people without prior **CVD** does not lead to reductions in either cardiovascular death or cancer mortality.....treatment decisions need to be considered on a case-by-case basis

Arch Intern Med. 2012;172(3):209-216

Time to Rethink Aspirin's CV Benefits

Our study demonstrated that the incidence of major bleeding events is much higher than that recorded in randomized, prospective clinical trials...the use of aspirin was associated with a 55% increase relative risk in major bleeding...

Aspirin Reduces Long-term CRC Mortality*

	Deaths du	e to cancer		OR (95% CI)
	Aspirin	Control		
500–1200 mg daily				
BDT (500 mg)	59/3429	40/1710		0.73 (0.49–1.10)
UK-TIA (1200 mg)	11/821	16/817		0.68 (0.31–1.47)
Subtotal	70/4250	56/2527		0.72 (0.50–1.03)
75–300 mg daily				10 51
UK-TIA (300 mg)	8/811	16/817		0.50 (0.21–1.17)
TPT (75 mg)	34/2545	55/2540		0.61 (0.40–0.94)
SALT (75 mg)	7/676	10/684		— 0·71 (0·27–1·86)
Subtotal	49/4032	81/4041	\Leftrightarrow	0.60 (0.42–0.86)
Total	119/8282	121/5751	\Leftrightarrow	0.66 (0.51–0.85)
		Г		
		0	1	2

*Pooled analysis of SALT, TPT, UK-TIA and BDT. Rothwell PM, et al. Lancet 2010;376:1741-50.

Aspirin and NSAIDs Should Not be Used for Cancer Prevention: The St. Galen Consensus:

(The Lancet Oncology 2009, Vol 10, Issue 5, P. 501 - 507)

Evidence clearly shows a chemopreventive effect

for aspirin and NSAIDs on CRC and probably other

cancer types; however, data on the risk-benefit

profile for cancer prevention are insufficient and

no definitive recommendations can

be made.....

Dose Long Term Aspirin Prevent Cancer? (Moayyedi & Jankowski)

If most of the population started taking aspirin our gastrointestinal services might be overwhelmed. Until further evidence from RCTs is accrued, aspirin should **NOT** be recommended for everyone

BMJ 2010;340:c7326

No Role of Aspirin in Primary CRC Prevention

Michael J. Thun, Eric J. Jacobs and Carlo Patrono

....in average-risk populations, these benefits alone do not outweigh harms from aspirininduced bleeding.....

Aspirin is NOT Effective Until a Decade of Use

Aspirin is NOT Effective Unless You Take it Everyday

Chan, JAMA 2005

Aspirin is NOT Effective Unless the Adenoma Express COX-2

Chan, JAMA 2005

Aspirin Prevents ONLY Proximal CRC

	Any aspirin treatment duration ¹		Scheduled aspirin treatment ≥5 years ¹		
	HR (95% CI)	P-value	HR (95% CI)	P-value	
Total CRC	0.76 (0.63-0.94)	0.01	0.68 (0.54- 0.87)	0.002	
Proximal	0.45 (0.28-0.74)	0.001	0.35 (0.20- 0.63)	<0.0001	
Distal	1.10 (0.73-1.64)	0.66	1.14 (0.69- 1.86)	0.61	
Rectum	0.74 (0.51-1.07)	0.11	0.81 (0.52- 1.25)	0.34	

NSAIDs and Aspirin *American Cancer Society Website on CRC*

- People who regularly use aspirin and NSAIDs have a lower risk of CR neoplasia
- Primary (IHD) and secondary (adenomas, cancer) prevention or therapy (arthritis)

But they can cause serious life-threatening side effects (e.g. bleeding, MI) which may outweigh the benefits of these medicines for the general public

 COX 2 inhibitors reduce polyp formation in high risk groups, it causes less GI toxicity but may increase the risk of heart attacks and strokes

One should takes no risks

Benefit:Risk Balance for Aspirin Use

BENEFIT

Prevention of

- **♦IHD**
- CVA
- Cancer
- Alzheimer
- Anti-thrombotic
- ♦Anti-platelet
- Antipyretic
- Anti-inflammatory

Public Health

Inexpensive
Widely available
High compliance

RISK

Bleeding

- Haemorrhagic stroke
- GI bleeds, ulcers
- Increases with age

Perforation

Oops...Risk:Benefit Balance for Aspirin Use

BENEFIT

Prevention of

- **∻**IHD
- CVA
- Cancer
- Alzheimer
- Anti-thrombotic
- ♦Anti-platelet
- Antipyretic
- Anti-inflammatory

Public Health

Inexpensive
Widely available
High compliance

RISK

Bleeding

- Haemorrhagic stroke
- ✤ GI bleeds, ulcers
- Increases with age

Perforation Obstruction

U.S. Mortality Data for Several Selected Disorders in 1997

N Engl J Med 1999;340:1888-1899

Approximately One Dollar is Added to a Day of NSAID Therapy for GI Problems

\$1.34: Daily cost of GI events when patient was on NSAIDs

\$0.40: Daily costs of GI events when patient was not on NSAIDs

\$1.34 - \$0.40 = \$0.94 Cost of GI events attributable to NSAIDs

Daily Cost

Chemoprevention in Populations at Risk for Colorectal Cancer?

High Risk: YES, in all subjects Familial Adenomatous Polyposis (FAP) Hereditary Non-Polyposis Colorectal Cancer (HNPCC) Lifetime risk ~ 80-100%

> Moderate Risk: YES, in some carefully chosen subjects Patients preference Personal history of adenoma or CRC Lifetime risk ~ 10-20%

Approaches in the General Population

Targeting Chemoprevention to Persons with Risky Phenotypes and/or Behaviors

Current smoking	RR 1.9
Current Smoking and > 25 pack years	RR 3.0
Alcohol, > 14 units per week	RR 2.2
Obesity, BMI > 27	RR 1.5
sedentarians	RR 1.7
Red meat, > 4 times per week	RR 2.7
Specific genetic profile	?

Development of a Risk Score for Colorectal Cancer in Men

Jane A. Driver, MD, MPH,^a J. Michael Gaziano MD, MPH,^{a,b,e} Rebecca P. Gelber, MD, MPH,^e I-Min Lee, MBBS, ScD,^{b,c} Julie E. Buring, ScD,^{a,b,c,d} Tobias Kurth, MD, ScD^{a,b,c}

Development of a simple scoring system for CRC in a cohort of >21.000 men

Predictor

Odds ratio (95%CI)

Prediction Score

Z

4

Points

Those in the <u>highest risk</u> group (9-10 points)

had an <u>OR</u> of <u>15.3</u> for CRC compared with

those with the lowest risk (0-3 points)

>30 kg/m²

1.02 (1.09-2.42)

1.36 (1.08-1.71)

Alcohol use (>once/week)

APC polymorphisms (I1307K)

APC polymorphisms (E1317Q)

Driver et al. Am J Med 2007; 120: 257-263.

Impact of Genetic Polymorphisms on Adenoma Recurrence and Toxicity in a COX-2 Inhibitor (Celecoxib) Trial:

Ulrich and Arber groups Submitted for publication

Candidate Genes

Mostpromisinggenesforchemoprevention are genotypes in:

- *** COX-1, COX-2**
- Prostacyclin synthase (PGIS)
- * Thromboxane synthase (TBXAS)
- Arachidonate 15-Lipoxygenase (ALOX15)
- * 5-Lipoxygenase activating protein (FLAP)
- Prostaglandin EP4/E2 receptor genes

Coxib

tailored

COX Polymorphisms (1)

	Adenoma Recurrence =YES	Adenoma Recurrence= NO		Adenoma Recurrence =YES	Adenoma Recurrence =NO		Adenoma Recurrence =YES	Adenoma Recurrence =NO
COX1_ rs6478565	19 (32.8%)	12 (20.7%)	COX1_ rs10306164	19 (32.2%)	10 (17.2%)	COX1_ rs10306194	15 (25.0%)	23 (39.7%)
	39 (67.2%)	46 (79.3%)		40 (67.8%)	48 (82.8%)		45 (75.0%)	35 (60.3%)

Chi-square p-value Crude OR and 95% CI: 1.9 (0.8-4.3 Chi-square p-value=0.06 Crude OR and 95% CI: 2.3 (0.95-5.5) Chi-square p-value=0.09 Crude OR and 95% CI: 0.5 (0.2-1.1)

	Adenoma Recurrence =YES	Adenoma Recurrence =NO		Adenoma Recurrence =YES	Adenoma Recurrence =NO		Adenoma Recurrence =YES	Adenoma Recurrence =NO
COX2_ rs5275	45 (77.6%)	33 (57.9%)	COX2_ rs5277	9 (15.3%)	15 (25.9%)	COX2_ rs2066826	30 (50.9%)	20 (35.1%)
	13 (22.4%)	24 (42.1%)		50 (84.8%)	43 (74.1%)		29 (49.2%)	37 (64.9%)

 Chi-square p-value=0.02
 Fisher's p-value=0.18

 Crude OR and 95% CI: 2.5 (1.1-5.7)
 Crude OR and 95% CI: 0.5 (0.2-1.3)

Chi-square p-value=0.09 Crude OR and 95% CI: 1.9 (0.9-4.0)

COX Polymorphisms (2)

	Adenoma Recurrence =YES	Adenoma Recurrence =NO
COX2_ rs2206593	3 (5.1%)	9 (15.5%)
	56 (94.9%)	49 (84.5%)

	Adenoma Recurrence =YES	Adenoma Recurrence =NO	
COX2_ rs2745557	13 (22.4%)	24 (41.4%)	
	45 (77.6%)	34 (58.6%)	

	Adenoma Recurrence =YES	Adenoma Recurrence =NO
COX2_ rs4648276	32 (52.5%)	20 (35.1%)
	29 (47.5%)	37 (64.9%)

Fisher's p-value=0.07 Crude OR and 95% CI: 0.3 (0.07-1.1) **Chi-square p-value=0.03** Crude OR and 95% CI: 0.4 (0.2-0.9) Chi-square p-value=0.06 Crude OR and 95% CI: 2.0 (0.91-4.3)

	Adenoma Recurrence =YES	Adenoma Recurrence =NO
COX2_ rs4648308	33 (55.9%)	22 (38.6%)
	26 (44.1%)	35 (61.4%)

Chi-square p-value=0.06 Crude OR and 95% CI: 2.0 (0.91-4.3)

Other Polymorphisms

	Adenoma Recurrence =YES	Adenoma Recurrence =NO	
ALOX15_ rs4796535	17 (28.8%)	7 (12.1%)	
	42 (71.2%)	51 (87.9%)	

	Adenoma Recurrence =YES	Adenoma Recurrence =NO
EP2_3779	5 (8.3%)	11 (19.0%)
	55 (91.7%)	47 (81.0%)

	Adenoma Recurrence =YES	Adenoma Recurrence =NO
EP2_7039	4 (6.8%)	9 (15.5%)
	55 (93.2%)	49 (84.5%)

Fisher's p-value=0.04 Crude OR and 95% CI: 2.9 (1.1-7.8)

Fisher's p-value=0.11 Crude OR and 95% CI: 0.4 (0.1-1.2) Fisher's p-value=0.15 Crude OR and 95% CI: 0.4 (0.1-1.4)

	Adenoma Recurrence =YES	Adenoma Recurrence =NO
EP4_2876	17 (28.8%)	6 (10.3%)
	42 (71.2%)	52 (89.7%)

	Adenoma Recurrence =YES	Adenoma Recurrence =NO
FLAP_ rs3803278	25 (43.1%)	34 (58.6%)
	33 (56.9%)	24 (41.4%)

	Adenoma Recurrence =YES	Adenoma Recurrence =NO
FLAP_ rs12019512	23 (39.7%)	14 (24.1%)
	35 (60.3%)	44 (75.9%)

Fisher's p-value=0.02

Crude OR and 95% CI: 3.5 (1.3-9.7)

Chi-square p-value=0.09 Crude OR and 95% CI: 0.5 (0.3-1.1)

Polymorphisms Significantly Associated with GI Toxicity

	Location	Gastrointestinal toxicity					
SNP		Both treatments	Celecoxib	Placebo			-
		OR (95% CI)	p-value ²	OR (95% CI)	p-value ²	OR (95% CI)	p- value ²
Primary genes of interest							
<i>EGFR</i> rs2072454	Cds-synon	2.48 (1.10-5.61)	0.03	2.51 (0.84-7.51)	0.10	1.86 (0.45-7.71)	0.39
<i>EGFR</i> rs4947984	Intron	0.46 (0.17-1.21)	0.12	0.20 (0.04-1.01)	0.051	0.83 (0.19-3.58)	0.80
Secondary genes of interest							
ALOX15 rs2255888	nearGene-5	2.04 (0.94-4.44)	0.07	3.49 (1.20-10.16)	0.02	1.20 (0.33-4.36)	0.79
<i>EP4</i> rs4133101	-1529G>A	1.35 (0.56-3.29)	0.50	5.52 (1.13-27.06)	0.04	0.20 (0.04-1.01)	0.052
<i>EP4</i> rs13186505	-1408G>A	2.61 (1.17-5.81)	0.02	3.35 (1.11-10.10)	0.03	1.86 (0.53-6.61)	0.34
<i>FLAP</i> rs4254165	Intron	0.37 (0.17-0.80)	0.01	0.55 (0.20-1.55)	0.26	0.12 (0.03-0.50)	<0.01
<i>PGDH</i> rs9312555	UTR-3	0.38 (0.17-0.89)	0.03	0.39 (0.12-1.22)	0.11	0.57 (0.15-2.18)	0.41
SRC rs7269342	Intron	0.49 (0.22-1.06)	0.07	0.59 (0.20-1.74)	0.34	0.26 (0.07-0.96)	0.04
Tertiary genes of interest							-
GPX3 rs3828599	Intron	0.43 (0.20-0.93)	0.03	1.09 (0.40-3.02)	0.87	0.11 (0.03-0.48)	<0.01
<i>GPX3</i> rs736775	nearGene-3	0.30 (0.13-0.70)	<0.01	0.50 (0.17-1.46)	0.20	0.14 (0.03-0.64)	0.01
GPX4 rs8178977	Intron	0.46 (0.22-0.99)	0.046	0.52 (0.18-1.51)	0.23	0.44 (0.13-1.50)	0.19
SEPP1 rs13168440	Intron	2.00 (0.71-5.61)	0.19	0.61 (0.11-3.40)	0.57	7.30 (1.19-44.85)	0.03
SEPP1 rs28919899	Intron	2 00 (0 71-5 61)	0.19	0.61 (0.11-3.40)	0.57	7 30 (1 19-44 85)	0.03

¹Most frequent gastrointestinal toxicities (n>5): abdominal pain, heartburn, diarrhea, reflux, constipation, vomiting

Kraus et al., submitted for publication

²All polymorphisms with p-values<0.05 in any one group are shown here

All Drugs Do Not Fit All

The Three Major Killing Diseases

Cardiovascular disease

***Alzheimer's disease**

Personalized Therapy

Calculate absolute 10-year risk of IHD, CRC and Alzheimr

High risk

Low risk

Personalized Therapy

Calculate absolute 10-year risk of IHD, CRC and Alzheimr

Personalized Therapy

Calculate absolute 10-year risk of IHD, CRC and Alzheimr

Copyright 2001 by Randy Glasbergen. www.glasbergen.com

"An aspirin a day will help prevent a heart attack if you have it for lunch instead of a cheeseburger."