

Gene expression profiling of breast cancer: past and future

Christos Sotiriou, MD, PhD Jules Bordet Institute Université Libre de Bruxelles (ULB) Brussels, Belgium

Outline

- Prognosis/prediction of response
- IMPAKT meeting (Brussels 2012) guideline session

• Future directions

Outline

- Prognosis/prediction of response
- IMPAKT meeting (Brussels 2012) guideline session

• Future directions

Example of a clinical case

A 61-year-old postmenopausal woman with left breast cancer

Surgery:

Breast Conserving Surgery and Sentinel Node Biopsy

Pathology:

-Infiltrating ductal carcinoma
-Histological grade 2
-no vascular or lymphatic channel invasion
-tumor size 1.9 cm with clear surgical margins
-ER 85% cells positive, PR 65% cells positive
-Ki-67 15%
-HER2 negative
-lymphadenectomy: all axillary nodes negative

Adjuvant! Online

Adjuvant! Online

Decision making tools for health care professionals

Adjuvant! for Breast Cancer (Version 8.0)

Patient Informa	tion					
Age: 61		No additional therapy:				
Comorbidity:	erfect Health					
ER Status: P	Positive	86.4 alive in 10 years.				
		7.8 die of cancer.				
Tumor Grade:	srade 2	5.8 die of other causes.				
Tumor Size:	.1 - 2.0 cm 🗘	With hormonal therapy: Benefit = 2.3 alive.				
Positive Nodes: 0	•					
Calculate For: Mortality		With chemotherapy: Benefit = 1.9 alive.				
10 Year Risk: 8	Prognostic					
		With combined therapy: Benefit = 3.7 alive.				
Adjuvant Thera						
Horm: Aromatase	Inhibitor for 5 yrs					
Chemo: 2nd Generation Regimens						
Hormonal Therapy: 32		Print Results PDF Access Help and Clinical Evidence				
Chemotherapy:	26	Images for Consultations				
Combined Therapy:	50					

? Ki67 15%

Adjuvant! Online

Adjuvant! Online

Decision making tools for health care professionals

Adjuvant! for Breast Cancer (Version 8.0)

Patient Information Age: 61 No additional therapy: \$ Perfect Health Comorbidity: 91.1 alive in 10 years. Positivo ER Status: 2.9 die of cancer. Grade 1 \$ Tumor Grace: 6.0 die of other causes. \$ 1.1 - 2.0 cm Tumor Size: With hormonal therapy: Benefit = 0.9 alive. \$ Positive Nodes: 0 With chemotherapy: Benefit = 0.7 alive. \$ Calculate For: Mortality 10 Year Risk: 3 Prognostic With combined therapy: Benefit = 1.4 alive. Adjuvant Therapy Effectiveness Horm: \$ Aromatase Inhibitor for 5 yrs Chemo: \$ 2nd Generation Regimens Print Results PDF Access Help and Clinical Evidence Hormonal Therapy: 32 Chemotherapy: 26 Images for Consultations Combined Therapy: 50

Next day... same pathologist regrade and Ki67:

-GRADE 1 -Ki67 10%

Adjuvant! Online

Adjuvant! Online

Decision making tools for health care professionals

Adjuvant! for Breast Cancer (Version 8.0)

Another center

-Ki67 20% -GRADE 3

Prognosis - 10 years survival Adjuvant! Online

Same patient -> 2 ≠ days ->2 ≠ pathologists...

Gene prognostic signatures:

Add additional information to current clinico-pathological parameters for treatment decision making for *some* patients

Recurrence score Independent validation (TransATAC)

Dowsett M, et al. J Clin Oncol. 2010;28(11):1829-1834.

Key messages

- Proliferation = driving force of 1st generation gene expression prognostic signatures
- ✓ Informative for ER+/HER2- BC
- ✓ Stage (T,N) still matters

Sotiriou C, et al. Nat Rev Cancer. 2007;7(7):545-553. Sotiriou C, et al. N Engl J Med. 2009;360(8):790-800.

Stage (T,N) still matters Prognostic signatures don't help!

Dowsett M, et al. J Clin Oncol. 2010;28(11):1829-1834.

High proliferative breast cancers benefit from chemotherapy...

Paik et al, JCO 2006

Albain et al, Lancet Oncology 2009

Ki67, PAM50 and other proliferation-based signatures...

Tumor microenvironment matters...

Ignatiadis M, et al. J Clin Oncol. 2012 Apr 16.

High immune signal = better chemo response (N= 845 pts)

		OR	95% Cl	P	FDR	
	GGI	1.70	1.12 to 2.6	1.3E-02	3.7E-02	
	Gene70	2.02	1.29 to 3.2	2.4E-03	1.3E-02	
	CIN70	1.61	1.08 to 2.42	2.1E-02	5.1E-02	
	Stroma1	0.73	0.49 to 1.06	1.0E-01	2.1E-01	
	Stroma2	0.74	-0. 5 t o 1 . 07-	-1 .1 E - 0 1-	- 2.1E-01	
	Immune1	1.92	1.36 to 2.73	2.2E-04	3.7E-03	
5	Immune2	1.78	1.25 to 2.53	1.3E-03	1.1E-02	
	RAS	0.82	0.57 to 1.18	3.0E-01	4.9E-01	
	MAPK	0.85	0.56 to 1.27	4.2E-01	6.0E-01	-
	PTEN	1.75	1.18 to 2.62	5.8E-03	2.5E-02	
	AKTmTOR	0.84	0.59 to 1.19	3.2E-01	4.9E-01	-
	PIK3CA	1.01	0.67 to 1.53	9.5E-01	9.5E-01	-
	IGF1	0.97	0.65 to 1.45	8.9E-01	9.5E-01	_
	SRC	1.02	0.71 to 1.47	9.1E-01	9.5E-01	+
	MYC	1.10	0.78 to 1.56	5.8E-01	7.6E-01	- +
	E2F3	1.60	1.12 to 2.3	1.1E-02	3.7E-02	
	BetaCatenin	0.98	0.68 to 1.43	9.4E-01	9.5E-01	- + -
						<u> </u>
						0.25 1 5 10 20
						Odds Ratio

Ignatiadis M, et al. J Clin Oncol. 2012 Apr 16.

ER-/HER2-

Different processes/pathways are associated with pCR in different BC subtypes

HER2+

Ignatiadis M, et al. J Clin Oncol. 2012 Apr 16.

	OR	95% Cl	Р	FDR	
GGI	1.59	0.91 to 2.81	1.0E-01	2.2E-01	
Gene70	2.11	1.12 to 4.03	2.2E-02	1.6E-01	
CIN70	1.47	0.88 to 2.47	1.4E-01	2.7E-01	÷.
Stroma1	0.65	0.38 to 1.08	9.7E-02	2.2E-01	
Stroma2	0.66	0.4 to 1.08	9.9E-02	2.25-01	
Immune1	1.76	1.13 to 2.76	1.3E-02	1.6E-01	
Immune2	1.49	0.96 to 2.31	7.4E-02	2.2E\01	
RAS	0.77	0.5 to 1.19	2.4E-01	4.1E-01 -	
MAPK	0.81	0.47 to 1.38	4.3E-01	5.7E-01	-
PTEN	1.71	1.04 to 2.85	3.7E-02	1.6E-01	
AKTmTOR	0.84	0.54 to 1.3	4.3E-01	5.7E-01 -	-
PIK3CA	1.00	0.55 to 1.8	9.9E-01	9.9E-01 —	♣
IGF1	0.79	0.46 to 1.34	3.8E-01	5.7E-01 —	┠┼─
SRC	1.02	0.62 to 1.65	9.5E-01	9.9E-01 -	₽
MYC	1.13	0.73 to 1.75	5.7E-01	6.9E-01 -	.
E2F3	1.67	1.06 to 2.67	2.9E-02	1.6E-01	
BetaCatenin	1.12	0.69 to 1.82	6.4E-01	7.3E-01 -	╇-
					 , , , ,
				0.25	1 5 10 20

ER+/HER2-

2_ Odds Ratio

	OR	95% CI	Р	FDR	
GGI	3.19	1.26 to 8.72	1.8E-02	1.0E-01	
Gene70	3.43	1.25 to 9.66	1.8E-02	1.0E-01	
CIN70	3.38	1.31 to 9.35	1.4E-02	1.0E-01	
Stroma1	1.05	0.45 to 2.42	9.1E-01	9.1E-01	
Stroma2	1.33	0.57 to 3.1	5.1E-01	6.7E-01	
Immune1	1.40	0.59 to 3.15	4.3E-01	6.1E-01	
Immune2	1.71	0.7 to 4.17	2.4E-01	4.4E-01	
RAS	1.81	0.64 to 5	2.6E-01	4.4E-01	
MAPK	0.86	0.32 to 2.16	7.5E-01	8.5E-01	
PTEN	3.06	1.1 to 8.94	3.5E-02	1.2E-01	
AKTmTOR	1.78	0.66 to 5.02	2.6E-01	4.4E-01	
PIK3CA	0.84	0.38 to 1.83	6.6E-01	8.0E-01	
IGF1	1.78	0.65 to 4.96	2.6E-01	4.4E-01	
SRC	0.63	0.23 to 1.63	3.5E-01	5.4E-01←	-∎∔-
MYC	1.07	0.41 to 2.73	8.9E-01	9.1E-01	
E2F3	2.56	1.14 to 5.97	2.5E-02	1.1E-01	
BetaCatenin	0.43	0.17 to 1.09	7.5E-02	2.1E-01←	╉╌┤
				0.	25 1 5 10 20

Odds Ratio

Outline

- Prognosis/prediction of response
- IMPAKT meeting (Brussels 2012) guideline session

• Future directions

Clinical utility?

6 ≠ gene prognostic signatures including PAM50 ROR score ?

Guidelines session in Brussels

Evaluation Process

Evaluation Methods

The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) initiative: methods of the EGAPP Working Group

Steven M. Teutsch, MD, MPH¹, Linda A. Bradley, PhD², Glenn E. Palomaki, BS³, James E. Haddow, MD³, Margaret Piper, PhD⁴, Ned Calonge, MD, MPH⁵, W. David Dotson, PhD^{2,6}, Michael P. Douglas, MS^{2,6}, and Alfred O. Berg, MD, MPH⁷, Chair, on behalf of the EGAPP Working Group

Analytical validity

A test's ability to accurately and reliably *measure* genotype of interest

Clinical validity

A test's ability to accurately and reliably identify or predict a *relevant breast cancer survival endpoint*

Clinical utility

The evidence that using a test to guide management in patients with early stage breast cancer will *significantly improve health-related outcomes*

Genetics IN Medicine • Volume 11, Number 1, January 2009

Analytical Validity

According to EGAPP criteria, the panel grades Oncotype Dx & MammaPrint as convincing

IMProving cAre and Knowledge through

Translational research Clinical Validity

According to EGAPP criteria, the panel grades Oncotype Dx & MammaPrint as convincing

IMProving cAre and Knowledge through Translational research

Clinical Utility

According to EGAPP criteria, the panel grades **NONE** of the signatures as convincing

Take home messages from the past...

- ✓ Level I evidence *is still awaited* (MINDACT, TAILORx, RxPONDER)
- ✓ May consider to use the genomic tests in:
 - ER+/HER2-/N-
 - Relatively high absolute risk with low comorbidity
 - Absolute benefit of chemotherapy (>1%)
 - Patient's preference!

Outline

- Prognosis/prediction of response
- IMPAKT meeting (Brussels 2012) guideline session

• Future directions

Integration of genomic data with transcriptional data

Define and target the right phenotype

ARTICLE

The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups

Christina Curtis^{1,2}†*, Sohrab P. Shah^{3,4}*, Suet–Feung Chin^{1,2}*, Gulisa Turashvili^{3,4}*, Oscar M. Rueda^{1,2}, Mark J. Dunning², Doug Speed^{2,5}†, Andy G. Lynch^{1,2}, Shamith Samarajiwa^{1,2}, Yinyin Yuan^{1,2}, Stefan Gräf^{1,2}, Gavin Ha³, Gholamreza Haffari³, Ali Bashashati³, Roslin Russell², Steven McKinney^{3,4}, METABRIC Group[‡], Anita Langerød⁶, Andrew Green⁷, Elena Provenzano⁸, Gordon Wishart⁸, Sarah Pinder⁹, Peter Watson^{3,4,10}, Florian Markowetz^{1,2}, Leigh Murphy¹⁰, Ian Ellis⁷, Arnie Purushotham^{9,11}, Anne-Lise Børresen-Dale^{6,12}, James D. Brenton^{2,13}, Simon Tavaré^{1,2,5,14}, Carlos Caldas^{1,2,8,13} & Samuel Aparicio^{3,4}

Integration of genomic and transcriptomic analysis of breast cancer

- Refine BC classification
- Define putative drivers

(1) Somatic and germline variants influence breast tumor expression architecture (39% 11,198/28609 probes)

• *Cis* = a variant at a locus has an impact on its own expression

• Trans = a variant at a locus is associated with genes at other sites in the genome

(2) Integrative clustering reveals 10 novel *IntClust* molecular subgroups beyond the intrinsic subtypes

(3) *Trans*-acting associations
 reveal distinct modules

These **trans** aberrations can be grouped into pathway modules (induction of adaptive immune response)

The **ENCODE** project provides information on the human genome far beyond that contained within the DNA sequence — it describes *the functional genomic elements that orchestrate the development and function of a human.*

ARTICLE

doi:10.1038/nature11233

Landscape of transcription in human cells

Sarah Djebali¹*, Carrie A. Davis²*, Angelika Merkel¹, Alex Dobin², Timo Lassmann³, Ali Mortazavi^{4,5}, Andrea Tanzer¹, Julien Lagarde¹, Wei Lin², Felix Schlesinger², Chenghai Xue², Georgi K. Marinov⁴, Jainab Khatun⁶, Brian A. Williams⁴, Chris Zaleski², Joel Rozowsky^{7,8}, Maik Röder¹, Felix Kokocinski⁹, Rehab F. Abdelhamid³, Tyler Alioto^{1,10}, Igor Antoshechkin⁴, Michael T. Baer², Nadav S. Bar¹¹, Philippe Batut², Kimberly Bell², Ian Bell¹², Sudipto Chakrabortty², Xian Chen¹³, Jacqueline Chrast¹⁴, Joao Curado¹, Thomas Derrien¹, Jorg Drenkow², Erica Dumais¹², Jacqueline Dumais¹², Radha Duttagupta¹², Emilie Falconnet¹⁵, Meagan Fastuca², Kata Fejes-Toth², Pedro Ferreira¹, Sylvain Foissac¹², Melissa J. Fullwood¹⁶, Hui Gao¹², David Gonzalez¹, Assaf Gordon², Harsha Gunawardena¹³, Cedric Howald¹⁴, Sonali Jha², Rory Johnson¹, Philipp Kapranov^{12,17}, Brandon King⁴, Colin Kingswood^{1,10}, Oscar J. Luo¹⁶, Eddie Park⁵, Kimberly Persaud², Jonathan B. Preall², Paolo Ribeca^{1,10}, Brian Risk⁶, Daniel Robyr¹⁵, Michael Sammeth^{1,10}, Lorian Schaffer⁴, Lei-Hoon See², Atif Shahab¹⁶, Jorgen Skancke^{1,11}, Ana Maria Suzuki³, Hazuki Takahashi³, Hagen Tilgner^{1†}, Diane Trout⁴, Nathalie Walters¹⁴, Huaien Wang², John Wrobel⁶, Yanbao Yu¹³, Xiaoan Ruan¹⁶, Yoshihide Hayashizaki³, Jennifer Harrow⁹, Mark Gerstein^{7,8,18}, Tim Hubbard⁹, Alexandre Reymond¹⁴, Stylianos E. Antonarakis¹⁵, Gregory Hannon², Morgan C. Giddings^{6,13}, Yijun Ruan¹⁶, Barbara Wold⁴, Piero Carninci³, Roderic Guigó^{1,19} & Thomas R. Gingeras^{2,12}

"Here we report evidence that *three-quarters of the human genome is capable of being transcribed*, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously un-annotated RNAs. *These observations, taken together, prompt a redefinition of the concept of a gene"*

The *huge challenge* is how to make sense out of all this...

"You're the first patient ever to make sense of that chart. I'd say you're dyslexic."