Poster discussion Sarcoma Abstracts 1484PD-1486PD

Stefan Sleijfer, MD, PhD

Erasmus MC

Daniel den Hoed Cancer Center

Rotterdam

The Netherlands
Disclosure slide

- No conflicts of interests
Poster discussion Sarcoma
Abstract 1484PD-1486PD
“Choose your battles wisely”
Battles

• All three abstracts address important issues, so wisely chosen battles

• Hohenberger et al (1484PD):
 – Metastatic GIST: Selective internal radiation therapy against focal progressive hepatic lesions

• Wardelmann et al (1486PD):
 – Localized GIST: Tumor aggressiveness of c-KIT exon-9 mutated GIST affected by tumor location?
 • Traditional risk scores + mutational status against traditional risk scores

• Miyazaki et al (1485PD):
 – Small gastric submucosal lesions: outcome of surgery for tumors with size enlargement during watchful waiting
 • Watchful waiting against early invasive procedures
Great success of TKIs in GIST

Improvement over doxorubicin

Verweij, Lancet 2004

Median overall survival of 5 years

Blanke, JCO 2008
Great success of TKIs in GIST

- The longer on imatinib, the lower the chance to develop resistance

- 10% metastatic GIST: > 10 yrs benefiting from 1st line treatment

- “Making cancer a chronic disease”
TKI-resistant disease

- Vast majority will develop TKI resistance over time and during treatment

- Most common mechanisms:
 - Secondary mutations
 - Re-activation of c-KIT by yet unknown mechanisms

- The great challenge: heterogeneity in genetic characteristics:
 - Between metastatic lesions
 - Within metastatic lesions
TKI-resistant disease

• GIST develops from:
 – a homogeneous disease with one major tumor driver mostly sensitive to one TKI
 – to a heterogeneous disease with multiple drivers acting in parallel and differing in TKI sensitivity

• Unlikely that 1 drug will induce stable disease for very prolonged periods in majority of pts progressing after 1st line treatment
TKI-resistant GIST

• Because of heterogeneity under treatment pressure:
 – Isolated/focal progression
 – Remaining lesions still under TKI control

• Local treatment options:
 – Surgery
 – RFA
Selective Internal Radiation Therapy (SIRT) for GIST liver metastases resistant to tyrosine kinase inhibitors

P. Hohenberger^, N. Rathmann*, A. Peschel*, J. Schuetteº
S.O. Schoenberg*, D. Dinter*, S. Diehl*

*Institute of Clinical Radiology and Nuclear Medicine
^Div. of Surgical Oncology & Thoracic Surgery
Medical Faculty Mannheim, University of Heidelberg
ºHämatologische Schwerpunktpraxis Düsseldorf
Treatment of Inoperable Primary Pancreatic and Liver Cancer by the Intra-Arterial Administration of Radioactive Isotopes (Y\(^{90}\) Radiating Microspheres)*

Irving M. Ariel, M.D., F.A.C.S.

*Ann Surg 1965; 162: 267 - 278

- \(^{90}\)Yttrium: Local radiation dose up to 120 Gy
- No significant hepatitis beyond of 8 mm of the tumor area
Characteristics and toxicity

• Characteristics:
 – 9 patients (34-73yrs)
 – Progressive hepatic metastases; 4 pts with stable extrahepatic disease
 – 1 pt. excluded: >20% hepato-pulmonary shunt

• Toxicity:
 – Transient elevation of liver enzymes (NCIC grade 3)
 – 1 pt persistent stomach ulcer; surgery needed
Patient characteristics and results of treatment

<table>
<thead>
<tr>
<th>Patient, sex, age</th>
<th>Initial diagnosis</th>
<th>Start TKI for M1</th>
<th>Mutation status</th>
<th>Location of metastases</th>
<th>Follow-up method</th>
<th>Therapy response</th>
<th>Time to hepatic progression (months)</th>
<th>Time to extrahepatic progression (months)</th>
<th>Status after SIRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.B., f, 34</td>
<td>06/99</td>
<td>12/03</td>
<td>exons 11 and 17</td>
<td>right LL</td>
<td>MRI</td>
<td>CR</td>
<td>24</td>
<td>20</td>
<td>AWD at 52 months</td>
</tr>
<tr>
<td>M.L., f, 52</td>
<td>09/6</td>
<td>11/06</td>
<td>exon 9</td>
<td>both LL; EHD</td>
<td>MRI</td>
<td>PR</td>
<td>14</td>
<td>5</td>
<td>DOD at 19 months</td>
</tr>
<tr>
<td>B.K., m, 73</td>
<td>5/05</td>
<td>2/08</td>
<td>wt*</td>
<td>both LL; EHD</td>
<td>PET CT</td>
<td>PR</td>
<td>24</td>
<td>14</td>
<td>AWD at 33 months</td>
</tr>
<tr>
<td>A.H., m, 55</td>
<td>7/03</td>
<td>9/03</td>
<td>exon 11</td>
<td>both LL</td>
<td>MRI</td>
<td>PR</td>
<td>4</td>
<td>4</td>
<td>DOD at 21 months</td>
</tr>
<tr>
<td>W.B., m, 55</td>
<td>7/07</td>
<td>7/07</td>
<td>wt</td>
<td>right LL; EHD</td>
<td>MRI</td>
<td>CR</td>
<td>8</td>
<td>2</td>
<td>DOD at 26 months</td>
</tr>
<tr>
<td>I.H., m, 61</td>
<td>3/07</td>
<td>3/09</td>
<td>exon 11</td>
<td>both LL</td>
<td>MRI</td>
<td>SD</td>
<td>8+</td>
<td>-</td>
<td>AWD at 8 months</td>
</tr>
<tr>
<td>H.G; m, 58</td>
<td>6/08</td>
<td>6/10</td>
<td>exons 11 and 13</td>
<td>both LL; EHD</td>
<td>PET CT</td>
<td>PR</td>
<td>8+</td>
<td>8+</td>
<td>AWD at 8 months</td>
</tr>
<tr>
<td>S.N., m, 48</td>
<td>12/04</td>
<td>12/08</td>
<td>wt</td>
<td>right LL</td>
<td>CE CT</td>
<td>CR</td>
<td>9</td>
<td>-</td>
<td>AWD at 30 months</td>
</tr>
</tbody>
</table>

TKI = tyrosine kinase inhibitor, **LL** = liver lobe, **EHD** = extrahepatic disease, **AWD** = alive with disease, **DOD** = died of disease;

Neurofibromatosis type I
Patient characteristics and results of treatment

<table>
<thead>
<tr>
<th>Patient, sex, age</th>
<th>Initial diagnosis</th>
<th>Start TKI for M1</th>
<th>Mutation status</th>
<th>Location of metastases</th>
<th>Follow-up method</th>
<th>Therapy response</th>
<th>Time to hepatic progression (months)</th>
<th>Time to extrahepatic progression (months)</th>
<th>Status after SIRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.B., f, 34</td>
<td>06/99</td>
<td>12/03</td>
<td>exons 11 and 17</td>
<td>right LL</td>
<td>MRI</td>
<td>CR</td>
<td>24</td>
<td>20</td>
<td>AWD at 52 months</td>
</tr>
<tr>
<td>M.L., f, 52</td>
<td>09/06</td>
<td>11/06</td>
<td>exon 9</td>
<td>both LL; EHD</td>
<td>MRI</td>
<td>PR</td>
<td>14</td>
<td>5</td>
<td>DOD at 19 months</td>
</tr>
<tr>
<td>B.K., m, 73</td>
<td>05/05</td>
<td>2/08</td>
<td>wt*</td>
<td>both LL; EHD</td>
<td>PET CT</td>
<td>PR</td>
<td>24</td>
<td>14</td>
<td>AWD at 33 months</td>
</tr>
<tr>
<td>A.H., m, 55</td>
<td>07/03</td>
<td>9/03</td>
<td>exon 11</td>
<td>both LL</td>
<td>MRI</td>
<td>PR</td>
<td>4</td>
<td>4</td>
<td>DOD at 21 months</td>
</tr>
<tr>
<td>W.B., m, 55</td>
<td>07/07</td>
<td>7/07</td>
<td>wt</td>
<td>both LL; EHD</td>
<td>MRI</td>
<td>CR</td>
<td>8</td>
<td>2</td>
<td>DOD at 26 months</td>
</tr>
<tr>
<td>I.H., m, 61</td>
<td>03/07</td>
<td>3/09</td>
<td>exon 11</td>
<td>both LL</td>
<td>MRI</td>
<td>SD</td>
<td>8+</td>
<td>-</td>
<td>AWD at 8 months</td>
</tr>
<tr>
<td>H.G; m, 58</td>
<td>06/08</td>
<td>6/10</td>
<td>exons 11 and 13</td>
<td>both LL; EHD</td>
<td>PET CT</td>
<td>PR</td>
<td>8+</td>
<td>8+</td>
<td>AWD at 8 months</td>
</tr>
<tr>
<td>S.N., m, 48</td>
<td>12/04</td>
<td>12/08</td>
<td>wt</td>
<td>right LL</td>
<td>CE CT</td>
<td>CR</td>
<td>9</td>
<td>-</td>
<td>AWD at 30 months</td>
</tr>
</tbody>
</table>

TKI = tyrosine kinase inhibitor, LL= liver lobe, EHD = extrahepatic disease, AWD = alive with disease, DOD = died of disease;
*Neurofibromatosis type I

www.esmo2012.org
Conclusion & discussion

• Promising approach for durable hepatic disease control
• Not all patients eligible: hepato-pulmonary shunt must be <20%
• Treatment does not control extrahepatic disease
• Impact on overall survival/quality of life?
• Need for randomized studies:
 – In imatinib-resistant pts with focal liver progression: switch to 2nd line vs continuation of imatinib + local treatment (SIRT/Surgery)
Adjuvant imatinib

- Based on the success of imatinib in metastatic disease: exploration in adjuvant setting

Joensuu, JAMA 2012
Adjuvant imatinib

- Based on the success of imatinib in metastatic disease: exploration in adjuvant setting

Joensuu, JAMA 2012
Adjuvant setting

- Given large proportion of pts being overtreated:
 - Need for improved prognostic classification

- Standard prognosticators:
 - Tumor size
 - Mitotic rate
 - Location
 - Tumor rupture
 - (Mutational status?)

Joensuu, Lancet Oncol 2012
Gastrointestinal stromal tumors of the stomach with *KIT* exon 9 mutations mostly present with a favorable prognosis

Eva Wardelmann, Heike Löser, Wiebke Jeske, Sabine Merkelbach-Bruse, Peter Hohenberger, Peter Reichardt, Sebastian Bauer, Reinhard Büttner, Sebastian Huss, Hans-Ulrich Schildhaus
Tumor aggressiveness of c-KIT exon-9 mutated GIST affected by location?

- 95 GIST with exon 9 mutation

- Size and mitotic index for tumors located in:
 - Stomach
 - Small bowel
 - Rectum

- Small bowel and rectal GIST have:
 - Larger size
 - Higher mitotic index

<table>
<thead>
<tr>
<th>Tumor Diameter (cm)</th>
<th>Stomach</th>
<th>Small Bowel</th>
<th>Rectum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)</td>
<td>4.2 (4.3)</td>
<td>6.6 (3.4)</td>
<td>5.5 (2.1)</td>
</tr>
<tr>
<td>Median</td>
<td>2.5</td>
<td>6.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

eva.wardelmann@uk-koeln.de

www.esmo2012.org
The proportion of exon 9-mutated, low risk-GIST is significantly higher in the stomach (76.2%) than in the small bowel (34.4%) and rectum (40%).
Conclusions

- Underlying mechanism?:
 - Different expression of co-factors needed for c-kit function (i.e., ETV1) by different miRNAs or methylation status?
 - Earlier presentation in case of gastric tumors vs rectum/small bowel?

- Collaborative effort to establish role of mutation status in prognostic models and role in adjuvant setting

Wozniak, Ann Oncol 2012
What to do with small gastric submucosal tumors?

Watchful waiting vs invasive procedures

• Gastric submucosal lesions:
 • Myogenic tumor (leiomyomas, LMS)
 • Neurogenic tumors (Schwannomas, neurofibromas)
 • GIST
Gastric small submucosal lesions

- **Guidelines**
 - Lesions > 2 cm:
 - Excision (preceded by biopsy)
 - Lesions < 2 cm:
 - Biopsy can be difficult, excision only way to get a diagnosis
 - Most lesions: low risk GIST or lesion of unknown significance
 - Standard approach:
 - Endoscopic ultrasound assessment
 - Annual follow-up
 - Excision when tumour increases in size or becomes symptomatic

ESMO guidelines
www.esmo2012.org
Clinical significance of surgery for gastric submucosal tumors with size enlargement during watchful waiting; Miyazaki Y et al (1485PD)

• Objective: outcomes of surgery for lesions increasing in size during watchful waiting

• Retrospective series, asymptomatic, no biopsy:
 – 23 pts (out of ?)
 – Median tumor size:
 • Base-line: 2.0 cm (0.8-4.0)
 • At resection: 3.2 cm (2.0-7.0)
 – Median waiting period: 63 months (8-181)
<table>
<thead>
<tr>
<th>Surgical procedure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>partial gastrectomy (laparoscopic/open)</td>
<td>18/4</td>
</tr>
<tr>
<td>proximal gastrectomy (laparoscopic/open)</td>
<td>0/1</td>
</tr>
<tr>
<td>Operation time (min)</td>
<td>110 (49-247)</td>
</tr>
<tr>
<td>Blood loss (ml)</td>
<td>20 (0-230)</td>
</tr>
<tr>
<td>Major operative/postoperative complications</td>
<td>0</td>
</tr>
</tbody>
</table>

Data were presented as median (range).

| Schwannoma | 2 |
| GIST | 21 |

Miettinen Risk Stratification

- None: 2
- Very low: 13
- Low: 1
- Moderate: 5
Conclusions

• Majority of pts underwent laparoscopic partial gastrectomy

• Difficult to put into perspective: also lesions > 2 cm

• But 5/21 pts: moderate risk GIST: candidates for adjuvant imatinib?
 – What if these cases were resected earlier?

• High need for prospective, large series in pts with asymptomatic lesions < 2 cm to assess:
 – Proportion of pts with increasing tumor size
 – Proportion of pts with unfavorable outcome
Choose your battles wisely!