Stopping a cancer trial early: is it really for the benefit of patients? What about the quality of data?

Pinuccia Valagussa
Fondazione Michelangelo, Milano
I have no relevant relationships to disclose
Randomized clinical trials

They are typically designed with a specific accrual period (e.g. 2 years) and a subsequent follow-up time long enough (e.g. 5 years) to ensure sufficient information to reject with high probability (power) the null hypothesis of treatment equivalence when, in fact, the treatment differs by a specified amount.
Monitoring interim efficacy results is important for stopping trials early for unexpectedly large treatment differences, or for “negative” differences suggesting a positive result at the end of the trial would be extremely unlikely.
Reasons to Consider Premature Termination of a Clinical Trial

- **Non controversial**
 - excessive toxicity
 - changes in standard of care
 - poor accrual

- **Possibly controversial**
 - futility

- **Highly controversial**
 - apparent higher efficacy of the experimental arm
Why ‘early’ or ‘interim’ analysis?

The specific aim of ‘early’ or ‘interim’ analyses is to reduce the period required to determine the benefit of an applied treatment.

While this motivation is important, these analyses are not totally unbiased and they require careful evaluation and proper statistical considerations in that they should properly predict long-term results.
How should interim results be interpreted?

- Information about treatment efficacy is more limited in an early analysis than in a final analysis.
- In particular, there are concerns that treatment effects seen early may not be real or may be overly optimistic.
- Limited follow-up duration.
- Early transient effects in patients with worse prognosis.
Clinical studies are usually designed to answer a primary aim, phrased in terms that FFP/DFS distributions in two treatment groups are equivalent (null hypothesis)
Methodological Issues

- The alternative hypothesis is that FFP/DFS is prolonged in either of the two treatment groups.
 - 60% vs 67% at 3 years at the 0.05 level (type I error)
 - Median FFP 3 years vs 5.5 years at the 0.05 level (type I error)
Fleming et al. showed that the type I error can be as great as 26% if a statistical significance test is performed every 3 mos of a 3-year trial comparing two identical treatments.
Nominal Two-Sided Significance Levels for Interim Monitoring that Maintain Overall Type I Error Level of 0.05

<table>
<thead>
<tr>
<th>Analysis #</th>
<th>Pocock</th>
<th>Peto Haybittle</th>
<th>O’Brien and Fleming</th>
<th>Fleming</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.016</td>
<td>0.0027</td>
<td>0.00001</td>
<td>0.0051</td>
</tr>
<tr>
<td>2</td>
<td>0.016</td>
<td>0.0027</td>
<td>0.0013</td>
<td>0.0061</td>
</tr>
<tr>
<td>3</td>
<td>0.016</td>
<td>0.0027</td>
<td>0.008</td>
<td>0.0073</td>
</tr>
<tr>
<td>4</td>
<td>0.016</td>
<td>0.0027</td>
<td>0.023</td>
<td>0.0089</td>
</tr>
<tr>
<td>Final</td>
<td>0.016</td>
<td>0.049</td>
<td>0.041</td>
<td>0.0402</td>
</tr>
</tbody>
</table>
Stopping a trial early in oncology: for patients or for industry?

F. Trotta e al, Ann Oncol 2008

Medline retrieval
93 relevant reports identified
25 selected for analysis

Type of stop:
stop enrolment 16
disclosure of results 5
cross experimental arm 3
others 1

Final analysis results: same 22, different 1, NA 2

Registration trial 12, non registration trial 13
A total of 27 Phase III trials identified that were stopped or reported early for positive results. Accrual completed in 19; stopped in 8 of 27.

- < 80%* information = 9
- With additional follow-up data = 18
- Treatment effect similar or only slightly smaller = 17

*%info: observed events to events required at final analysis
Choice of the Primary End Point

- The primary end point for an adjuvant trial in breast cancer is usually considered DFS.

- The possibility exists that at the early stopping/release there are insufficient numbers of events for the non-primary end point OS.

- In addition, allowing cross-over treatment to the experimental arm because of early positive results on DFS may influence the OS survival data.
Studies with adjuvant therapy in early breast cancer

<table>
<thead>
<tr>
<th>Study Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EST-3189</td>
<td>CAF vs 16 week multidrug regimen in N+ ER- tumors</td>
</tr>
<tr>
<td>SWOG-8814</td>
<td>TAM vs CAF+TAM vs CAF→TAM in postmenopause, N+ ER+ tumors</td>
</tr>
<tr>
<td>CALGB-9344</td>
<td>AC (st vs int vs high) paclitaxel in N+ tumors</td>
</tr>
<tr>
<td>NCIC-MA17</td>
<td>Letrozole vs placebo in postmenopause after at least 5 years of adjuvant AI</td>
</tr>
<tr>
<td>NSABP-B31</td>
<td>AC→P trastuzumab</td>
</tr>
<tr>
<td>NCCTG-N9831</td>
<td>in HER2+, N+ or high-risk N- tumors</td>
</tr>
<tr>
<td>NCIC-MA21</td>
<td>EC(G-CSF)→P vs AC→P (vs CEF)</td>
</tr>
</tbody>
</table>
1 of 6 with premature closure of enrolment (NSABP-B31/NCCTG-N9831)

5 of 6 had DFS as primary objective

5 of 6 with reported additional follow-up

4 of 5 with additional follow-up had similar outcomes as reported at interim

3 of 4 studies reported statistically significant OS benefit
The National Cancer Institute Cooperative Group Experience From 1990-2005
(Korn et al, JCO April 2009)

<table>
<thead>
<tr>
<th>Study</th>
<th>First reported</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% info</td>
<td>effect</td>
</tr>
<tr>
<td>EST-3189</td>
<td>62</td>
<td>3-yr OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84% vs 73%</td>
</tr>
<tr>
<td>SWOG-8814</td>
<td>81</td>
<td>HR = 0.66</td>
</tr>
<tr>
<td>CALG-9011</td>
<td>25</td>
<td>HR = 0.79</td>
</tr>
<tr>
<td>NCIC-MA17</td>
<td>40</td>
<td>HR = 0.57</td>
</tr>
<tr>
<td>NSABP-B31</td>
<td>55</td>
<td>HR = 0.48</td>
</tr>
<tr>
<td>NCCTG-N9831</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCIC-MA21</td>
<td>58</td>
<td>HR = 0.60</td>
</tr>
</tbody>
</table>

%info: observed events to events required at final analysis
Overall survival

<table>
<thead>
<tr>
<th>Trial</th>
<th>HR</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWOG-8814</td>
<td>0.83</td>
<td>0.04</td>
</tr>
<tr>
<td>CALG-9011</td>
<td>0.82</td>
<td>0.0064</td>
</tr>
<tr>
<td>NCIC-MA17</td>
<td>0.82</td>
<td>0.30</td>
</tr>
<tr>
<td>NSABP-B31</td>
<td>0.63</td>
<td>0.0004</td>
</tr>
<tr>
<td>NCCTG-N9831</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCIC-MA21</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>
Only study had OS as primary end point (EST-3189)
3-yr OS = 84% vs 70.8%, P = 0.005 (62% information available)
4-yr OS = 78.1% vs 71.4%, P = 0.10 (90% information available)

Important
Statistical significance vanished, but there was no direct patient arm
Early vs Late Results: Remarks

- It has been noted that the treatment effect in a study that stops or is released early for positive results is, on average, higher than the true treatment effect.

- However, it is also true that the treatment effect observed for a study concluded and reported at its regularly scheduled end (e.g. at 5 years) may be, on average, higher than the treatment effect observed at a later follow-up (e.g. 10 years).
Premature Termination/ Early Release Consequences

- Immature data may change with further follow-up because data from the initial patients enrolled may be not representative of the general population of patients.

- Release of early data may prohibit the collection of meaningful data on long-term benefits or adverse events if this release results in a change in care for patients currently on the clinical trial (e.g. cross-over).
Adjuvant Docetaxel or Vinorelbine with or without Trastuzumab for Breast Cancer

Heikki Joensuu, M.D., Pirkko-Liisa Kellokumpu-Lehtinen, M.D., Petri Bono, M.D., Tuomo Alanko, M.D., Vesa Kataja, M.D., Raija Asola, M.D., Tapio Utriainen, M.D., Riitta Kokko, M.D., Akseli Hemminki, M.D., Maija Tarkkanen, M.D., Taina Turpeenniemi-Hujanen, M.D., Sirkku Jyrkkiö, M.D., Martti Flander, M.D., Leena Helle, M.D., Seija Ingalsuo, M.D., Kaisu Johansson, M.D., Anna-Stina Jääskeläinen, M.D., Marjo Pajunen, M.D., Mervi Rauhala, M.D., Jaana Kaleva-Kerola, M.D., Tapio Salminen, M.D., Mika Leinonen, M.Sc., Inkeri Elomaa, M.D., and Jorma Isola, M.D., for the FinHer Study Investigators*

CONCLUSIONS
Adjuvant treatment with docetaxel, as compared with vinorelbine, improves recurrence-free survival in women with early breast cancer. A short course of trastuzumab administered concomitantly with docetaxel or vinorelbine is effective in women with breast cancer who have an amplified HER2/neu gene. (International Standard Randomised Controlled Trial number, ISRCTN76560285.)
Adjuvant Docetaxel or Vinorelbine with or without Trastuzumab for Breast Cancer

Women who had verified HER2-positive cancer were randomly assigned to receive or not to receive trastuzumab. Nine trastuzumab infusions were administered at one-week intervals; the first

Figure 3. Effect of HER2/neu Amplification and Trastuzumab on the Kaplan–Meier Estimates of Survival Free of a First Distant Recurrence of Breast Cancer.
CI denotes confidence interval.
Fluorouracil, Epirubicin, and Cyclophosphamide With Either Docetaxel or Vinorelbine, With or Without Trastuzumab, As Adjuvant Treatments of Breast Cancer: Final Results of the FinHer Trial

![Graph showing distant disease-free survival](image)
Women with locally determined HER2-positive invasive early breast cancer

Surgery + (neo)adjuvant CT RT

Centrally confirmed IHC 3+ or FISH+ and LVEF ≥ 55%

Randomisation

Observation

1 year trastuzumab 8 mg/kg → 6 mg/kg 3-weekly schedule

2 years trastuzumab 8 mg/kg → 6 mg/kg 3-weekly schedule

After ASCO 2005, option of crossover to trastuzumab

HER2, human epidermal growth factor receptor 2; CT, chemotherapy; RT, radiotherapy; IHC, immunohistochemistry; FISH, fluorescence in situ hybridisation; LVEF, left ventricular ejection fraction
<table>
<thead>
<tr>
<th>Year</th>
<th>Follow-up</th>
<th>DFS Benefit</th>
<th>No. of DFS Events</th>
<th>OS Benefit</th>
<th>No. of Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>1 year</td>
<td>Favoring trastuzumab</td>
<td>127 vs 220, p<0.0001</td>
<td>2005</td>
<td>1 year</td>
</tr>
<tr>
<td></td>
<td>2 years</td>
<td>Favoring trastuzumab</td>
<td>218 vs 321, p<0.0001</td>
<td>2006</td>
<td>2 years</td>
</tr>
<tr>
<td></td>
<td>4 years</td>
<td>Favoring trastuzumab</td>
<td>369 vs 458, p<0.0001</td>
<td>2008</td>
<td>4 years</td>
</tr>
</tbody>
</table>

Favours trastuzumab
Favours no trastuzumab

HR

Median follow-up (% follow-up time after selective crossover)

Courtesy L. Gianni
Premature Termination/ Early Release
Consequences

- A full understanding of the circumstances at the time of stopping is important.
- Between the moment of making the decision to stop/release and locking the database, substantial and corrected data may become available.
- Such data cleaning may justify a pause before any final decision.
Early vs Late Results: Remarks

- Can a trial be stopped on the basis of secondary end points?
- Probably not, unless
 - the secondary end point is safety (no harm to the patients)
 - the secondary end point results provide convincing evidence of great public health importance
It is important in clinical trials that a well-informed Independent Data Monitoring Committee review interim results.

This approach helps to protect patients by having the interim results carefully evaluated by an experienced group of individuals.

The study from the damage that ensues from misinterpretation of interim results.
The primary responsibility of the IDMC is to monitor the risk/benefit ratio for patients participating in the trial.

The IDMC will operate independently of the Sponsor and participating investigators. Members of the IDMC should disclose any potential conflict of interest for the trial they are asked to monitor.
Independent Data Monitoring Committee (IDMC)

Members of the IDMC should make any of the following recommendations:

- Continuation of the trial without modification
- Continuation with modification (considering any interim safety and/or efficacy data or other general issues related to the trial)
- Discontinuation (or temporary suspension) of recruitment
Early vs Late Results

- For trials with well-designed interim monitoring plans the ability of early stopping/release because of positive results is an important component of the trial.
- This will allow the scientific community and the patients to benefit as soon as possible from study conclusions.
- However, it is imperative that early release be followed by updated and detailed information on DFS, OS and late adverse events.
Essentials of a Clinical Trial

- **Design**
 - Important clinical end point(s), scientific and ethical issues
 - Accurate and detailed statistical plan including accurate, appropriate and detailed rules for interim analyses
Essentials of a Clinical Trial

- **Reporting**
 - Critical details of
 - when
 - why
 - under what guidelines
 - by whom
 the trial was stopped or early released