N. Koutsouleris, Germany

LMU München Department of Psychiatry and Psychotherapy
Personal Information Name: Nikolaos Koutsouleris, MD Positions: Professor for Neurodiagnostic Applications in Psychiatry  Managing consultant and Head of the outpatient service “Early Detection and Rehabilitation of Psychoses”  Head of the Section for Neurodiagnostic Applications  Coordinator EU-FP7 Project PRONIA (www.pronia.eu)  Faculty member at the International Max-Planck Research School for Transla-tional Psychiatry (https://www.imprs-tp.mpg.de/) at the Max-Planck Institute of Psychiatry (MPIP), Munich  Fellow of the Max-Planck Society and Head of the Max Planck Fellowship group for Precision Psychiatry at the MPIP  Visiting Professor at the Institute of Psychiatry, Psychology and Neuroscience, King’s College London Main address: Department of Psychiatry and Psychotherapy, Nussbaumstr. 7, 80336 Munich Phone: +49 89 4400 55885 Email: nikolaos.koutsouleris@med.uni-muenchen.de Date of birth: 24/07/1976 Place of birth: Athens, Greece Nationality: German / Greek Statement on Research Profile My research aims at developing and validating prognostic, diagnostic, theranostic, normative mod-elling and subtyping tools for the personalized management of psychiatric disorders. Such compu-tational tools have the great potential to enable the quantitative individualized ascertainment of risk for poor outcomes in vulnerable patient populations. At the same time, they allow us to con-duct targeted mechanistic research, giving us profound insight into the neurobiological mechanisms of risk and resilience, and thus facilitating the development of novel modes of action, which coun-teract pathogenetic and enhance salutogenic processes in the given patient. To identify disease patterns that constitute highly predictive tools for precision medicine in psychiatry, I have implemented and applied advanced machine learning methods (NeuroMiner) to databases comprising neuroimaging, neurocognitive, genetic, clinical, and environmental data. As clinician scientist, I have built up such databases by conducting cross-sectional and longitudinal deep-phenotyping studies of patients in all stages of affective and non-affective psychoses. To this end, I have implemented an Early Recognition Service at the Department of Psychiatry and Psycho-therapy at LMU. Since its inception in 2013, the Service has collected high-quality multi-modal data of nearly 700 patients in at-risk and first-episode stages of psychosis and depression as part of the international PRONIA study and other parallel national projects. In collaboration with the Max-Planck Institute of Brain and Cognitive Sciences (Prof. M. Schroeter), I have recently extended my research profile toward the investigation of clinical and neurobiological overlaps between fronto-temporal dementia, Alzheimer’s disease, schizophrenia and major depression. This broader ap-proach will allow me to study possible links between neurodevelopmental and neurodegenerative disease pathologies across the life span. Equally important, I implemented two educational tracks in the Section for Neurodiagnostic Applications. In the first track, young investigators at the MSc, PhD and post-doctoral levels develop profound knowledge in multivariate analysis methods and their application to complex and high-dimensional representations of mental disorders; in the second track, clinician scientists are trained to ascertain the complex patterns of psychopathology typically present in adolescents and young adults who present at our specialized ward for adolescent/transitional age psychiatry. Career 1996 Finished university entrance diploma with “excellent” (1.2; range: 1.0 – 3.5) 1996 – 2003 Scholar of the German National Academic Foundation. Medical studies at the Ludwig-Maximilian-University (LMU) of Munich, Germany 2002 3–months internship at World-Health Organization, European Office, Depart-ment of Communicable Disease, Copenhagen. Focus: Building up an internation-al antimicrobial resistance surveillance system for Eastern Europe and the States of the Former Soviet Union. 2004 Start working as registrar at the Clinic of Psychiatry and Psychotherapy of the LMU. 2005 Finished medical thesis (doctorate degree) in the field of Neurophysiology with “magna cum laude”. The thesis investigated the neural processes involved in the adaptation and coordination of autonomous functions (breathing) to postural disturbances affecting stance and gait. For this purpose, patients with cerebellar ataxias were compared to matched control subjects using posturography, EMG and respiration recordings. Since 2005 Post-doctoral research fellow at the Neuroimaging Lab (Head: Prof. Dr. Eva Meisenzahl) with main focus on studying the structural correlates of at-risk men-tal states of psychosis, schizophrenia and depression using structural MRI data. Extensive and in-depth experience with state-of-the-art neuroimaging tech-niques, including voxel-based, deformation-based and surface-based mor-phometry (SPM, FSL, Freesurfer). Since 2007 Reviewer for general, neuropsychiatric and neuroimaging journals, including Nature Medicine, JAMA Psychiatry, Lancet Psychiatry, Molecular Psychiatry, Bio-logical Psychiatry, Schizophrenia Bulletin, Neuropsychopharmacology, Neu-roimage, Schizophrenia Research, Neurobiology of Ageing, BMC Psychiatry, Eu-ropean Archives of Psychiatry and Clinical Neurosciences, and others Since 2008 Main focus on the development and use of multivariate analysis techniques and in particular advanced machine learning methods (SVM, RVM, Bayesian Net-works, Ensemble Learning) for the purpose of identifying diagnostic biomarker signatures of the high-risk and the prodromal states of psychosis that operate on the single-subject level. Development & Implementation of the versatile and flexible machine learning platform NeuroMiner 2011 Completed all requirements for submitting the cumulative “Habilitation” thesis at the Medical School of the LMU. Visiting scholarship at the Section for Biomedical Image Analysis (Head Prof. Christos Davatzikos, PhD), University of Pennsylvania, funded by the DGPPN Neuroimaging Prize as well as by a DFG Research Fellowship. 2012 Head of the Workgroup for “Neurodiagnostic Applications” and Head of Early Psychosis Studies at the Department of Psychiatry and Psychotherapy. 2013 Successful defence of the Habilitation thesis. Successful EU-FP7 grant application PRONIA (see below). 2014 Official teaching licence for Psychiatry and Psychotherapy at the LMU (Status: Privatdozent) 2015 Board Certification for Psychiatry and Psychotherapy Since 2016 Full Professorship (W2) for Neurodiagnostic Applications in Psychiatry at LMU Head of the new clinical section for “Early Recognition and Rehabilitation of Psy-chiatric Disorders”, Consultant for Transitional Youth Mental Health Since 2018 Mentor for early career clinician scientists at the medical faculty of LMU (MO-MENTE programme: https://www.med.uni-muenchen.de/forschung/foerderprogramme/momente/index.html). Since 10/2019 Fellow of the Max Planck Society and Head of the Fellowship group Precision Psychiatry (https://www.psych.mpg.de/2575913/precision-psychiatry) at the Max-Planck Institute of Psychiatry, Munich. 11/2019 Offer for a Professorship in Clinical Psychiatry and Translational Neuroimaging at the University of Nottingham. 05/2020 Offer for a Professorial Chair at the Institute of Psychiatry, Psychology and Neu-roscience at King’s College London. Prizes / Awards / Scholarships 2010 European Psychiatric Association: Research Prize (2,500€): http://www.europsy.net/awards/research-prizes/previous-winners/ 2010 German Psychiatric Association: Neuroimaging Prize (12,500€): https://www.aerztezeitung.de/medizin/krankheiten/neuro-psychiatrische_krankheiten/article/632521/preis-bildgebung-psychiatrie-verliehen.html 2011 European Psychiatric Association: BMS Prevention Award (10,000€): http://www.europsy.net/awards/bms/ 2011 German Science Foundation (DFG): Research Scholarship for 6 months at the Section for Biomedical Image Analysis, UPENN, USA (~15,000€) 2011 German Schizophrenia Network: Aretaeus-Award (2,500€) 2015 Hans-Jörg-Weitbrecht Prize for Clinical Neurosciences (3,300€): http://www.fair-news.de/pressemitteilung-1062472.html 2016 Max Hamilton Memorial Prize of the Collegium Internationale Neuropsycho-pharmacologicum (10,000$): http://cinp.org/2016-award-winners/ 2017 German Psychiatric Association: Research Prize for Predictive, Preventive, and Personalized Medicine in Psychiatry and Neurology (10,000€): http://www.med.uni-muenchen.de/forschung/aktuell/dgppn/index.html Executive Experience Since 2014 Vice chair of the new section ‘Predictive Psychiatry’ of the German Psychiatric Association (DGPPN) Since 2016 Co-chair of the ECNP Neuroimaging Network (https://www.ecnp.eu/research-innovation/ECNP-networks/List-ECNP-Networks/¬Neuroimaging/¬Members) Since 2019 Executive Committee Member and Treasurer of the European Scientific Associa-tion on Schizophrenia and other Psychoses (ESAS) Since 2020 Chair of the ECNP Neuroimaging Network Grants (in chronological order) 2004 Successful LMU young investigator grant application: “Cross-sectional and longitudinal study of depressive patients and healthy control subjects using structural MRI, Diffusion-Tensor-Imaging and clinical evaluations” €28,000 2005 Successful LMU young investigator grant application: “Four-years follow-up examination of individuals at-risk of developing psychosis using MRI and clinical evaluations” €30,000 2007 Successful “Friedrich-Baur-Institut” grant application: „10-years follow-up examination of schizophrenic patients by means of structural MRI and psychometric evaluations“. €10,000 2013 Coordinator of successful EU-FP7 grant application “PRONIA: Personalised Prognostic Tools for Early Psychosis Management”. Project involves academic partners (Universities of Munich, Basel, Cologne, Birmingham, Turku and Udine), industrial partners (GE Global Research and GE Healthcare) and SME partners (Imaging Services and ARTTIC). Homepage: www.pronia.eu €6,000,000 2014 Successful DFG (German Science Foundation)-PsyCourse grant proposal: WP1 “Complex clinical, neurobiological, and molecular signatures of the longitudinal course of psychosis: leveraging comprehensive phenotyping, novel machine learning, and (epi)genomic approaches” (machine learning subproject in WP1). Homepage: www.psycourse.de €239,200 2015 Successful NIH grant proposal HARMONY as Co-PI for establishing an international collaboration between NAPLS 3, PRONIA, PsyScan and the Philadelphia Neurodevelopmental Cohort: http://grantome.com/grant/NIH/U01-MH081928-07S1. €304,696 2015 Successful DFG grant application with Prof. U. Ettinger (University of Bonn) for evaluating the risk and resilience factors in schizotypy compared to schizophrenia using structural and functional MRI: https://gepris.dfg.de/gepris/projekt/278205181 €367,282 2016 Co-Applicant in the successful Else-Kröner-Fresenius-Foundation application for a Research College “Translational Psychiatry” implementing a structured residency/PhD programme for clinician scientists at the Department of Psychiatry and Psychotherapy and the Max-Planck-Institute of Psychiatry (€1,000,000). As part of the programme, two clinician scientist positions were funded by the EKF Foundation for 4 person years in the Section for Neurodiagnostic Applications: https://www.psych.mpg.de/2181025/¬pm1601-ekfs €230,000 2017 Successful NIH grant proposal PHENOM as Co-PI for conducting an international analysis of neuroanatomical and clinical heterogeneity of first-episode psychosis and chronic schizophrenia: http://grantome.com/grant/NIH/R01-MH112070-01A1 €200,000 2018 Successful ERA-PerMed grant proposal (IMPLEMENT) as Co-PI for developing and validating heterogeneity-analytic tools aiming at better predicting response to repetitive transcranial magnetic stimulation in patients with schizophrenia. €200,000 2019 Successful BMBF Systems Medicine proposal (COMMITMENT) as PI of SP5 “Multi-scale, multimodal stratification and comorbidity analysis”. €660,000 2019 Successful application for a Max-Planck Fellowship Group in the Max-Planck Society with a five-years funding of … €500,000 2019 Successful Welcome Trust Application (STEP) as Co-PI together with Prof Philip McGuire (King’s College London) for an RCT of Cannabidiol Add-on Therapy in Patients with clinical high-risk states of psychosis and first-episode psychosis. ~£600,000 Total third-party funding gained so far: €9,445,846 (~£8,400,000)   Publications Publication Overview Authorships Count First 16 Last 19 Other 64 Sum 99 Congress abstracts 122 Biobliographical performance (Google Scholar): # refs 235 # cites 5978 h index 44 List of publications First & Last Authorships: a) IF > 15: 1. Koutsouleris N, Kambeitz-Ilankovic L, Ruhrmann S, …, Borgwardt S, and the PRONIA Consortium Individualized Prediction of Functional Outcomes in the Clinical High-Risk State for Psychosis and in Recent-Onset Depression: A Multi-modal, Multi-Site Machine Learning Analysis. JAMA Psy-chiatry. 2018; 75(11):1156-1172. doi: 10.1001/jamapsychiatry.2018.2165. 2. Koutsouleris N, Upthegrove R, Wood S. Importance of Variable Selection in Multimodal Predic-tion Models in Patients at Clinical High Risk for Psychosis and Recent Onset Depression—Reply. JAMA Psychiatry; 76(3):339-340. doi: 10.1001/jamapsychiatry.2018.4237. 3. Koutsouleris N, Meisenzahl EM, Davatzikos C, …, Gaser C. Use of neuroanatomical pattern clas-sification to identify subjects in at-risk mental states of psychosis and predict disease transition. Archives of General Psychiatry. 2009; 66(7):700-12. doi: 10.1001/archgenpsychiatry.2009.62. 4. Dwyer DB, Kalman JL, Budde M, …, Koutsouleris N. An Investigation of Psychosis Subgroups With Prognostic Validation and Exploration of Genetic Underpinnings: The PsyCourse Study. JAMA Psychiatry, 2020; in press: e194910. doi: 10.1001/jamapsychiatry.2019.4910 b) IF > 10: 5. Popovic D, Rued A, Dwyer DB, … , Koutsouleris N. Traces of trauma – a multivariate pattern analysis of childhood trauma, brain structure and clinical phenotypes. Biological Psychiatry, 2020; in press. doi: 10.1016/j.biopsych.2020.05.020. 6. Sanfelici R, Dwyer DB, Antonucci L, Koutsouleris N. Individualized diagnostic and prognostic models for patients with psychosis risk syndromes: A meta-analytic view on the state-of-the-art. In: Special Issue “Psychosis Risk Syndrome”, Editor: T. Cannon, Biological Psychiatry, 2020; in press; doi: https://doi.org/10.1016/j.biopsych.2020.02.009 7. Koutsouleris N, Meisenzahl EM, Borgwardt S, …, Davatzikos C. Individualized differential diag-nosis of schizophrenia and mood disorders using neuroanatomical biomarkers. Brain, 2015; 138(Pt 7): 2059-73. doi: 10.1093/brain/awv111 8. Hasan A, Wobrock T, Guse B, …, Koutsouleris N. Structural brain changes are associated with response of negative symptoms to prefrontal repetitive transcranial magnetic stimulation in pa-tients with schizophrenia. Molecular Psychiatry, 2016; 22(6):857-864. doi: 10.1038/mp.2016.161 9. Koutsouleris N, Kahn RS, Chekroud AM, …, Hasan A. Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: a machine learning ap-proach. Lancet Psychiatry, 2016; 3(10):935-946. doi: 10.1016/S2215-0366(16)30171-7. 10. Kambeitz J, Cabral C, Sacchet MD, …, Koutsouleris N. Detecting Neuroimaging Biomarkers for Depression: A Meta-analysis of Multivariate Pattern Recognition Studies. Biological Psychiatry, 2017;82(5):330-338. doi: 10.1016/j.biopsych.2016¬.10.028 11. Chekroud A and Koutsouleris N. The perilous path from publication to practice. Molecular Psy-chiatry, 2018; 23(1):24-25. doi: 10.1038/mp.2017.227 12. Dwyer D, Falkai P, Koutsouleris N. Machine Learning Approaches for Clinical Psychology and Psychiatry. Annual Reviews of Clinical Psychology, 2018; 14: 91-118; doi: 10.1146/annurev-clinpsy-032816-045037. 13. Kambeitz J, Cabral C, Sacchet MD…, Koutsouleris N. Reply to: Sample Size, Model Robustness, and Classification Accuracy in Diagnostic Multivariate Neuroimaging Analyses. Biological Psychi-atry. 2018; 84(11):e83-e84; doi: 10.1016/j.biopsych.¬2018.01.023 c) IF > 5: 14. Antonucci L, Penzel N, Pergola G, Kambeitz-Ilankovic L, Dwyer D, Kambeitz J, Haas S, Passiatore R, Fazio L, Caforio G, Falkai P, Blasi G, Bertolino A, Koutsouleris N. Multivariate classification of schizophrenia and its familial risk based on load-dependent attentional control brain functional connectivity. Neuropsychopharmacology, 2020; 45(4): 613-621; doi: 10.1038/s41386-019-0532-3. 15. Baldinger-Melich P, Urquijo Castro MF, Seiger R, … Koutsouleris N. Sex Matters: A Multivariate Pattern Analysis of Sex- and Gender-Related Neuroanatomical Differences in Cis- and Transgender Individuals Using Structural Magnetic Resonance Imaging. Cerebral Cortex, 2019; in press: bhz170. doi:10.1093/cercor/bhz170. 16. Dwyer D, Cabral C, Sanfelici R, …, Koutsouleris N. Brain subtyping enhances the Neuroanatomi-cal Discrimination of Schizophrenia. Schizophrenia Bulletin, 2018; 44(5): 1060-1069; doi: 10.1093/schbul/sby008. 17. Koutsouleris N, Wobrock T, Guse B, …, Hasan A. Predicting Response to Repetitive Transcranial Magnetic Stimulation in Patients With Schizophrenia Using Structural Magnetic Resonance Im-aging: A Multisite Machine Learning Analysis, Schizophrenia Bulletin, 2018; 44(5): 1021-1034; https://doi.org/10.1093/schbul/sbx114. 18. Cabral C, Kambeitz-Ilankovic L, Kambeitz J, …, Koutsouleris N. Classifying Schizophrenia Using Multimodal Multivariate Pattern Recognition Analysis: Evaluating the Impact of Individual Clini-cal Profiles on the Neurodiagnostic Performance. Schizophrenia Bulletin, 2016; 42 Suppl 1: S110-7; doi: 10.1093/schbul/sbw053. 19. Koutsouleris N, Borgwardt S, Meisenzahl EM, …, Riecher-Rössler A. Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy-study. Schizophrenia Bulletin, 2012; 38(6):1234-46 20. Koutsouleris N, Davatzikos C, Bottlender R, …, Meisenzahl E. Early recognition and disease pre-diction in the at-risk mental states for psychosis using neurocognitive pattern classification. Schizophrenia Bulletin, 2012; 38(6): 1200-15. 21. Zhang T, Koutsouleris N (eq. contr.), Meisenzahl E, Davatzikos C. Heterogeneity of Structural Brain Changes in Subtypes of Schizophrenia revealed using MRI Pattern Analysis. Schizophrenia Bulletin, 2014; doi: 10.1093/schbul/sbu136 22. Koutsouleris N, Riecher-Rössler A, Meisenzahl E, …, Borgwardt S. Detecting the psychosis pro-drome across high-risk populations using neuroanatomical biomarkers. Schizophrenia Bulletin, 2014; 41(2): 471-82. 23. Koutsouleris N, Davatzikos C, Borgwardt S, …, Meisenzahl E. Accelerated Brain Aging in Schizo-phrenia and Beyond: A Neuroanatomical Marker of Psychiatric Disorders. Schizophrenia Bulle-tin, 2014; 40(5): 1140-53. 24. Kambeitz J, Kambeitz-Ilankovic L, Leucht S, …, Koutsouleris N. Detecting neuroimaging bi-omarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies. Neuro-psychopharmacology, 2015; 40(7): 1742-51. 25. Koutsouleris N, Gaser C, Jäger M, …, Meisenzahl EM. Structural correlates of psychopathologi-cal symptom dimensions in schizophrenia: a voxel-based morphometric study. Neuroimage, 2008; 39(4): 1600-1612; doi: 10.1016/j.neuroimage.2007.10.029. 26. Koutsouleris N, Gaser C, Patschurek-Kliche K, …, Meisenzahl EM. Multivariate patterns of brain–cognition associations relating to vulnerability and clinical outcome in the at-risk mental states for psychosis. Human Brain Mapping, 2012; 33(9): 2104-2124; doi: 10.1002/hbm.21342. 27. Ettinger U, Meyhöfer I, Steffens M, …, Koutsouleris N. Genetics, Cognition, and Neurobiology of Schizotypal Personality: A Review of the Overlap with Schizophrenia. Frontiers in Psychiatry, 2014; 5:18. doi:10.3389/fpsyt.2014.00018. 28. Koutsouleris N, Schmitt GJ, Gaser C, …, Meisenzahl EM. Neuroanatomical correlates of differ-ent vulnerability states for psychosis and their clinical outcomes. British Journal of Psychiatry, 2009; 195(3): 218-26. d) IF < 5: 29. Falkai P, Schmitt A, Koutsouleris N. Impaired recovery in affective disorders and schizophrenia: sharing a common pathophysiology? Eur Arch Psychiatry Clin Neurosci. 2018 Dec;268(8):739-740. doi: 10.1007/s00406-018-0951- 30. Kambeitz-Ilankovic L, Haas SS, Meisenzahl E…, Koutsouleris N. Neurocognitive and neuroana-tomical maturation in the clinical high-risk states for psychosis: A pattern recognition study. Neuroimage Clin. 2018 Dec 3. pii: S2213-1582(18)30372-3. doi: 10.1016/j.nicl.2018.101624. 31. Koutsouleris N, Gaser C, Bottlender R, …, Meisenzahl EM. Use of Neuroanatomical Pattern Re-gression to Predict the Structural Brain Dynamics of Vulnerability and Transition to Psychosis. Schizophrenia Research. 2010;123(2-3):175-187 32. Koutsouleris N, Patschurek-Kliche K, Scheuerecker J, …, Meisenzahl EM. Neuroanatomical cor-relates of executive dysfunction in the at-risk mental state for psychosis. Schizophrenia Re-search 2010; 123(2-3):160-174 33. Kambeitz-Ilankovic L, Meisenzahl EM, Cabral C, …, Koutsouleris N. Prediction of outcome in the psychosis prodrome using neuroanatomical pattern classification. Schizophrenia Research. 2015;173(3):159-65. 34. Ettinger U, Williams S, Meisenzahl EM, …, Koutsouleris N. Association between brain structure and psychometric schizotypy in healthy individuals. The World Journal of Biological Psychiatry. 2012; 13(7):544-549 35. Koutsouleris N, Ruhrmann S, Falkai P, Maier W. [Personalised medicine in psychiatry and psy-chotherapy. A review of the current state-of-the-art in the biomarker-based early recognition of psychoses]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2013; 56(11):1522-30 36. Kambeitz J, Koutsouleris N. [Neuroimaging in der Psychiatrie]. Der Nervenarzt; Jun;85(6):714-719 Second authorships (data analysis) 37. Franzmeier N, Koutsouleris N, Benzinger T, et al. Predicting sporadic Alzheimer's disease pro-gression via inherited Alzheimer's disease-informed machine-learning. Alzheimers Dementia. 2020; 16(3):501–511. doi:10.1002/alz.12032 38. Borgwardt SJ, Koutsouleris N, Aston J, Studerus E, Smieskova R, Riecher-Rössler A, Meisenzahl EM. Distinguishing prodromal from first-episode psychosis using neuroanatomical pattern recognition: Evidence from single-subject structural MRI. Schizophrenia Bulletin. 2013; 39(5):1105-14. doi: 10.1093/schbul/sbs095 39. Frodl T, Koutsouleris N, Bottlender R, Born C, Jäger M, Mörgenthaler M, Scheuerecker J, Zill P, Baghai T, Schüle C, Rupprecht R, Bondy B, Reiser M, Möller HJ, Meisenzahl EM. Reduced gray matter brain volumes are associated with variants of the serotonin transporter gene in major depression. Molecular Psychiatry. 2008; 13(12):1093-101 40. Frodl TS, Koutsouleris N, Bottlender R, Born C, Jäger M, Scupin I, Reiser M, Möller HJ, Meisen-zahl EM. Depression-related variation in brain morphology over 3 years: effects of stress? Ar-chives of General Psychiatry. 2008; 65(10):1156-1165 41. Meisenzahl EM, Koutsouleris N, Bottlender R, Scheuerecker J, Jäger M, Teipel SJ, Holzinger S, Frodl T, Preuss U, Schmitt G, Burgermeister B, Reiser M, Born C, Möller HJ. Structural brain al-terations at different stages of schizophrenia: a voxel-based morphometric study. Schizophre-nia Research. 2008; 104(1-3):44-60 42. Meisenzahl EM, Koutsouleris N, Gaser C, Bottlender R, Schmitt GJ, McGuire P, Decker P, Bur-germeister B, Born C, Reiser M, Möller HJ. Structural brain alterations in subjects at high-risk of psychosis: a voxel-based morphometric study. Schizophrenia Research. 2008; 102(1-3):150-162 43. Tordesillas-Gutierrez D, Koutsouleris N, Roiz-Santiañez R, Meisenzahl E, Ayesa-Arriola R, Marco de Lucas E, Soriano-Mas C, Suarez-Pinilla P, Crespo-Facorro B. Grey matter volume differences in non-affective psychosis and the effects of age of onset on grey matter volumes: A voxelwise study. Schizophrenia Resarch. 2015; in press: doi: 10.1016/j.schres.2015.01.032 Further co-authorships 44. Chand GB, Dwyer DB, Erus G, … Koutsouleris N et al. Two distinct neuroanatomical subtypes of schizophrenia revealed using machine learning. Brain, 2020; 143(3): 1027–1038. doi:10.1093/brain/awaa025 45. Fusar-Poli P, Salazar de Pablo G, Correll CU, … Koutsouleris N et al. Prevention of Psychosis: Advances in Detection, Prognosis, and Intervention. JAMA Psychiatry, 2020; in press. 10.1001/jamapsychiatry.2019.4779. doi:10.1001/jamapsychiatry.2019.4779 46. Fusar-Poli P, Bauer M, Borgwardt S, … Koutsouleris N et al. European college of neuropsycho-pharmacology network on the prevention of mental disorders and mental health promotion (ECNP PMD-MHP). Eur Neuropsychopharmacol, 2019; 29(12):1301–1311. doi:10.1016/j.euroneuro.2019.09.006 47. Kambeitz J, Goerigk S, Gattaz W, … Koutsouleris N et al. Clinical patterns differentially predict response to transcranial direct current stimulation (tDCS) and escitalopram in major depression: A machine learning analysis of the ELECT-TDCS study. J Affect Disord, 2020; 265:460–467. doi:10.1016/j.jad.2020.01.118 48. Polner B, Faiola E, Urquijo MF, … Koutsouleris N et al. The network structure of schizotypy in the general population [published online ahead of print, 2019 Oct 23]. Eur Arch Psychiatry Clin Neurosci, 2019; 10.1007/s00406-019-01078-x. doi:10.1007/s00406-019-01078-x 49. Armio RL, Laurikainen H, Ilonen T, et al. Amygdala subnucleus volumes in psychosis high-risk state and first-episode psychosis. Schizophr Res, 2020; 215:284–292. doi:10.1016/j.schres.2019.10.014 50. Karow A, Holtmann M, Koutsouleris N, Pfennig A, Resch F. Früherkennung und Frühinterven-tion bei psychotischen Störungen in der Transitionsphase [Psychotic disorders in the transition phase: early detection and early intervention]. Fortschr Neurol Psychiatr, 2019; 87(11):629–633. doi:10.1055/a-1025-1994 51. Kambeitz-Ilankovic L, Betz LT, Dominke C, … Koutsouleris N et al. Multi-outcome meta-analysis (MOMA) of cognitive remediation in schizophrenia: Revisiting the relevance of human coaching and elucidating interplay between multiple outcomes. Neurosci Biobehav Rev, 2019; 107:828–845. doi:10.1016/j.neubiorev.2019.09.031 52. Pomponio R, Erus G, Habes M, … Koutsouleris N et al. Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. Neuroimage, 2020; 208:116450. doi:10.1016/j.neuroimage.2019.116450 53. Truelove-Hill M, Erus G, Bashyam V, Koutsouleris N et al. A Multidimensional Neural Maturation Index Reveals Reproducible Developmental Patterns in Children and Adolescents. J Neurosci, 2020; 40(6):1265–1275. doi:10.1523/JNEUROSCI.2092-19.2019 54. Meisenzahl E, Walger P, Schmidt SJ, Koutsouleris N, Schultze-Lutter F. Früherkennung und Prä-vention von Schizophrenie und anderen Psychosen [Early recognition and prevention of schi-zophrenia and other psychoses]. Nervenarzt, 2020; 91(1):10–17. doi:10.1007/s00115-019-00836-5 55. Schmidt SJ, Hurlemann R, Schultz J, Koutsouleris N et al. Multimodal prevention of first psy-chotic episode through N-acetyl-l-cysteine and integrated preventive psychological interven-tion in individuals clinically at high risk for psychosis: Protocol of a randomized, placebo-controlled, parallel-group trial. Early Interv Psychiatry, 2019; 13(6):1404–1415. doi:10.1111/eip.12781 56. Popovic D, Schmitt A, Kaurani L, … Koutsouleris N, Falkai P. Childhood Trauma in Schizophrenia: Current Findings and Research Perspectives. Frontiers in Neuroscience, 2019; 13:274. doi:10.3389/fnins.2019.00274 57. Antonucci LA, Pergola G, Pigoni A, … Koutsouleris N, Bertolino A. A Pattern of Cognitive Deficits Stratified for Genetic and Environmental Risk Reliably Classifies Patients With Schizophrenia From Healthy Control Subjects. Biological Psychiatry, 2020; 87(8): 697–707. doi:10.1016/j.biopsych.2019.11.007 58. Shang J, Fisher P, Bäuml JG, …, Koutsouleris N, Dwyer DB. A machine learning investigation of volumetric and functional MRI abnormalities in adults born preterm. Human Brain Mapping. 2019. doi: 10.1002/hbm.24698. 59. Popovic D, Schmitt A, Kaurani L, S…, Koutsouleris N, Falkai P. Childhood Trauma in Schizophre-nia: Current Findings and Research Perspectives. Frontiers in Neuroscience, 2019 Mar 21;13:274. doi: 10.3389/fnins.2019.00274. 60. Brandl F, Avram M, Weise B, …, Koutsouleris N, Leucht S, Sorg C. Specific Substantial Dyscon-nectivity in Schizophrenia: A Transdiagnostic Multimodal Meta-analysis of Resting-State Func-tional and Structural Magnetic Resonance Imaging Studies. Biologicak Psychiatry, 2019; 85(7):573-583. doi: 10.1016/j.biopsych.2018.12.003. 61. Walter M, Alizadeh S, Jamalabadi H, …, Koutsouleris N, Hahn T, Dwyer DB. Translational ma-chine learning for psychiatric neuroimaging. Prog Neuropsychopharmacol Biol Psychiatry, 2019;91:113-121. doi: 10.1016/j.pnpbp.2018.09.014. 62. Betz LT, Brambilla P, Ilankovic A, …, Koutsouleris N, Kambeitz J. Deciphering reward-based deci-sion-making in schizophrenia: A meta-analysis and behavioral modeling of the Iowa Gambling Task. Schizophrenia Research, 2019 Feb;204:7-15. doi: 10.1016/j.schres.2018.09.009. 63. Shang J, Bäuml JG, Koutsouleris N, …, Sorg C. Decreased BOLD fluctuations in lateral temporal cortices of premature born adults. Human Brain Mapping, 2018;39(12): 4903-4912. doi: 10.1002/hbm.24332. 64. Kamp F, Proebstl L, Penzel N, …, Koutsouleris N, Kambeitz J. Effects of sedative drug use on the dopamine system: a systematic review and meta-analysis of in vivo neuroimaging studies. Neu-ropsychopharmacology, 2019; 44(4):660-667. doi: 10.1038/s41386-018-0191-9. 65. Chekroud AM, Foster D, Zheutlin AB, …, Koutsouleris N, …, Krystal JH. Predicting Barriers to Treatment for Depression in a U.S. National Sample: A Cross-Sectional, Proof-of-Concept Study. Psychiatric Services, 2018; 69(8): 927-934. doi: 10.1176/appi.ps.201800094. 66. Rozycki M, Satterthwaite TD, Koutsouleris N, …, Davatzikos C. Multisite Machine Learning Anal-ysis Provides a Robust Structural Imaging Signature of Schizophrenia Detectable Across Diverse Patient Populations and Within Individuals. Schizophrenia Bulletin, 2018; 44(5): 1035-1044. doi: 10.1093/schbul/sbx137 67. Opel N, Redlich R, Kaehler C, …, Koutsouleris N, …, Dannlowski U. Prefrontal gray matter vol-ume mediates genetic risks for obesity. Molecular Psychiatry, 2017; 22(5): 703-710. doi: 10.1038/mp.2017.51. 68. Kambeitz J, Kambeitz-Ilankovic L, Cabral C, …, Koutsouleris N, Malchow B. Aberrant Functional Whole-Brain Network Architecture in Patients With Schizophrenia: A Meta-analysis. Schizo-phrenia Bulletin, 2016; 42 Suppl 1: S13-21. doi: 10.1093/schbul/sbv174 69. Reniers RL, Lin A, Yung AR, Koutsouleris N, Nelson B, Cropley VL, Velakoulis D, McGorry PD, Pantelis C, Wood SJ. Neuroanatomical Predictors of Functional Outcome in Individuals at Ultra-High Risk for Psychosis. Schizophrenia Bulletin, 2017; 43(2):449-458. doi: 10.1093/schbul/sbw086. 70. Schmitt A, Rujescu D, Gawlik M, …, Koutsouleris N, …, Falkai P; WFSBP Task Force on Biological Markers. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for bi-omarkers and endophenotypes of schizophrenia part II: Cognition, neuroimaging and genetics. World J Biol Psychiatry, 2016; 17(6):406-28. doi: 10.1080/15622975.2016.1183043. 71. Palm U, Segmiller FM, Epple AN, …, Koutsouleris N, Schulte-Körne G, Padberg F. Transcranial direct current stimulation in children and adolescents: a comprehensive review. J Neural Transm (Vienna), 2016; 123(10):1219-34. doi: 10.1007/s00702-016-1572-z. 72. Gifford G, Crossley N, Fusar-Poli P, …, Koutsouleris N, Cannon TD, McGuire P. Using neuroimag-ing to help predict the onset of psychosis. Neuroimage. 2017; 145(Pt B):209-217. doi: 10.1016/j.neuroimage.2016.03.075. 73. Bendfeldt K, Smieskova R, Koutsouleris N, …, Borgwardt S. Classifying individuals at high-risk for psychosis based on functional brain activity during working memory processing. Neuroimage Clinical, 2015; 9: 555-63. doi: 10.1016/j.nicl.2015.09.015. 74. Gaser C, Franke K, Klöppel S, Koutsouleris N, Sauer H; Alzheimer's Disease Neuroimaging Initia-tive. BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer's Disease. PLoS One, 2013; 8(6):e67346 75. Engl C, Schmidt P, Arsic M, …, Koutsouleris N, Reiser M, Meisenzahl EM, Mühlau M. Brain size and white matter content of cerebrospinal tracts determine the upper cervical cord area: evi-dence from structural brain MRI. Neuroradiology, 2013; 55(8):963-70. doi: 10.1007/s00234-013-1204-3 76. Riecher-Rössler A, Aston J, Borgwardt S, …, Koutsouleris N, …, Zimmermann R. [Prediction of Psychosis by Stepwise Multilevel Assessment - The Basel FePsy (Early Recognition of Psycho-sis)-Project]. Fortschr Neurol Psychiatr, 2013; 81(5):265-75. doi: 10.1055/s-0033-1335017 77. Tognin S, Riecher-Rössler A, Meisenzahl EM, …, Koutsouleris N, …, Mechelli A. Reduced para-hippocampal cortical thickness in subjects at ultra-high risk for psychosis. Psychological Medi-cine, 2013 :1-10 78. Mühlau M, Winkelmann J, Rujescu D, Giegling I, Koutsouleris N, Gaser C, Arsic M, Weindl A, Reiser M, Meisenzahl EM. Variation within the Huntington's disease gene influences normal brain structure. PLoS One, 2012; 7(1):e29809 79. Mechelli A, Riecher-Rössler A, Meisenzahl EM, Tognin S, Wood SJ, Borgwardt SJ, Koutsouleris N, Yung AR, Stone JM, Phillips LJ, McGorry PD, Valli I, Velakoulis D, Woolley J, Pantelis C, McGuire P. Neuroanatomical abnormalities that predate the onset of psychosis: a multicenter study. Archives of General Psychiatry, 2011; 68(5):489-495 80. Amico F, Meisenzahl E, Koutsouleris N, Reiser M, Möller HJ, Frodl T. Structural MRI correlates for vulnerability and resilience to major depressive disorder. Journal of Psychiatry & Neurosci-ence. 2011; 36(1):15-22 81. Amico F, Stauber J, Koutsouleris N, Frodl T. Anterior cingulate cortex gray matter abnormalities in adults with attention deficit hyperactivity disorder: a voxel-based morphometry study. Psy-chiatry Research, 2011; 191(1):31-35 82. Frodl T, Scheuerecker J, Schoepf V, Linn J, Koutsouleris N, Bokde AL, Hampel H, Möller HJ, Brückmann H, Wiesmann M, Meisenzahl E. Different effects of mirtazapine and venlafaxine on brain activation: an open randomized controlled fMRI study. Journal of Clinical Psychiatry, 2011; 72(4):448-457 83. Scheuerecker J, Meisenzahl EM, Koutsouleris N, Roesner M, Schöpf V, Linn J, Wiesmann M, Brückmann H, Möller HJ, Frodl T. Orbitofrontal volume reductions during emotion recognition in patients with major depression. Journal of Psychiatry & Neuroscience, 2010; 35(5):311-320 84. Frodl T, Reinhold E, Koutsouleris N, …, Meisenzahl EM. Childhood stress, serotonin transporter gene and brain structures in major depression. Neuropsychopharmacology, 2010; 35(6):1383-1390 85. Klöppel S, Abdulkadir A, Jack CR Jr, Koutsouleris N, Mourão-Miranda J, Vemuri P. Diagnostic neuroimaging across diseases. Neuroimage, 2012; 61(2):457-463 86. Meisenzahl EM, Seifert D, Bottlender R, …, Koutsouleris N, …, Frodl T. Differences in hippocam-pal volume between major depression and schizophrenia: a comparative neuroimaging study. European Archives of Psychiatry Clinical Neuroscience, 2009; 260(2): 127-137. 87. Frodl T, Stauber J, Schaaff N, Koutsouleris N, …, Meisenzahl E. Amygdala reduction in patients with ADHD compared with major depression and healthy volunteers. Acta Psychiatrica Scandi-navica, 2010; 121(2):111-8 88. Frodl T, Reinhold E, Koutsouleris N, Reiser M, Meisenzahl EM. Interaction of childhood stress with hippocampus and prefrontal cortex volume reduction in major depression. Journal of Psy-chiatric Research, 2010; 44(13): 799-807; doi: 10.1016/j.jpsychires.2010.01.006 89. Scheuerecker J, Ufer S, Käpernick M, …, Koutsouleris N, Möller HJ, Meisenzahl EM. Cerebral network deficits in post-acute catatonic schizophrenic patients measured by fMRI. Journal of Psychiatric Research, 2009; 43(6):607-14 90. Frodl T, Scheuerecker J, Albrecht J, …, Koutsouleris N, …, Meisenzahl E. Neuronal correlates of emotional processing in patients with major depression. World Journal of Biological Psychiatry, 2007; 26:1-7 91. Scheuerecker J, Ufer S, Zipse M, …, Koutsouleris N, …, Meisenzahl EM. Cerebral changes and cognitive dysfunctions in medication-free schizophrenia – an fMRI study. Journal of Psychiatric Research, 2008; 42(6):469-76 92. Zetzsche T, Preuss UW, Bondy B, …, Koutsouleris N, …, Meisenzahl EM. 5-HT1A receptor gene C-1019 G polymorphism and amygdala volume in borderline personality disorder. Genes Brain Behavior, 2008; 7(3):306-313 93. Zetzsche T, Preuss U, Frodl T, …, Koutsouleris N, …, Meisenzahl EM. In-vivo topography of structural alterations of the anterior cingulate in patients with schizophrenia: new findings and comparison with the literature. Schizophrenia Research, 2007; 96(1-3):34-45 94. Scheuerecker J, Frodl T, Koutsouleris N, Zetzsche T, Wiesmann M, Kleemann AM, Brückmann H, Schmitt G, Möller HJ, Meisenzahl EM. Cerebral differences in explicit and implicit emotional processing--an fMRI study. Neuropsychobiology, 2007; 56(1):32-9 95. Meisenzahl EM, Scheuerecker J, Zipse M, …, Koutsouleris N, …, Möller HJ. Effects of treatment with the atypical neuroleptic quetiapine on working memory function: a functional MRI follow-up investigation. European Archives of Psychiatry Clinicial Neuroscience, 2006; 256(8):522-31 96. Schmitt GJ, Frodl T, Dresel S, …, Koutsouleris N, …, Meisenzahl EM. Striatal dopamine trans-porter availability is associated with the productive psychotic state in first episode, drug-naïve schizophrenic patients. European Archives of Psychiatry Clinicial Neuroscience, 2006; 256(2):115-21

Presenter Of 5 Presentations

Tuesday, 13 April: Morning Interviews (ID 1182) No Topic Needed

Morning Interviews

Session Icon
Live TV
Date
Tue, 13.04.2021
Session Time
11:30 - 12:00
Room
EPA TV
Lecture Time
11:30 - 12:00
LIVE - Symposium: Improving Real-life Functioning in People with Schizophrenia: From Assessment to Integrated Treatment Plans (ID 294) No Topic Needed
LIVE - State of the Art: Personalised Psychiatry and Predictive Modelling: Translational Gimmick or Realistic Way Forward? (ID 597) No Topic Needed

Live Q&A

Session Icon
Live
Date
Tue, 13.04.2021
Session Time
16:15 - 17:00
Room
Channel 1
Lecture Time
16:40 - 17:00
LIVE - Symposium: Improving Real-life Functioning in People with Schizophrenia: From Assessment to Integrated Treatment Plans (ID 294) No Topic Needed

S0143 - Personalized Treatment in Subjects with Schizophrenia-spectrum Disorders

Session Icon
Live, Section
Date
Tue, 13.04.2021
Session Time
08:00 - 09:30
Room
Channel 3
Lecture Time
08:34 - 08:51
LIVE - State of the Art: Personalised Psychiatry and Predictive Modelling: Translational Gimmick or Realistic Way Forward? (ID 597) No Topic Needed

SOA0006 - Personalised Psychiatry and Predictive Modelling: Translational Gimmick or Realistic Way Forward?

Session Icon
Live
Date
Tue, 13.04.2021
Session Time
16:15 - 17:00
Room
Channel 1
Lecture Time
16:15 - 16:40