

- < 25% of NSCLC patients don't respond to anti-PD-(L)1 immunotherapy
- Myeloid cells
 - Abundantly present in the lung tumor microenvironment (TME)
 - Linked to tumor progression and resistance to therapy
 - Can be PD-1⁺, PD-L1⁺ and $Fc\gamma R^+$

Methods

In vivo set-up

In vivo BLI and 3D whole tissue imaging To follow tumor progression

Multiplex flow cytometry to characterize 11 myeloid subsets

Use in T cell killing assay

Jur		
	Labo	
!	Imm	1
	Live	
	Labo	
	Ray	ľ
;	Labo	

- produce and respond to increased **TNF-**α levels
- increase their levels of LAG-3, TIM-3, SIRP-α and VISTA
- **2.** TNF- α is involved in anti-PD-L1 therapy-mediated checkpoints
- . Monocytes are crucial for T cell stimulation via the combination of

Characterization of the lung tumor microenvironment upon anti-PD-L1 therapy reveals an ambiguous role for TNF- α

Kirsten De Ridder¹, Hanne Locy¹, Elisa Piccioni¹, Miren Ibarra Zuazo², Robin Maximilian Awad¹, Stefaan Verhulst³, Mathias Van Bulck⁴, Yannick De Vlaeminck¹, Quentin Lecocq¹, Eva Reijmen¹, Wout De Mey¹, Lien De Beck¹, Thomas Ertveldt¹, Isabel Pintelon⁶, Jean-Pierre Timmermans⁶, David Escors^{2,5}, Marleen Keyaerts⁷, Karine Breckpot¹ and Cleo Goyvaerts¹

- oratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Belgium nunomodulation Group, Navarrabiomed, Navarrabiomed-UPNA-IdISNA, Pamplona, Spain
- r Cell Biology Research Group, VUB, Belgium

oratory of Molecular and Medical Oncology, Department of Biomedical Sciences, VUB, Belgium

ne Institute, Division of Infection and Immunity, University College London, London, United Kingdom

oratory of Cell Biology & Histology, Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Belgium 7 In vivo Cellular and Molecular Imaging laboratory, VUB, Belgium

Hypothesis

Do PD-(L)1⁺ myeloid cells hamper effective anti-PD-L1 therapy?

Conclusions

1. Upon anti-PD-L1 therapy, only the **lung TME infiltrated monocytes**:

3. TNF- α and PD-L1 co-blockade has no increased therapeutic benefit in vivo

anti-PD-L1 with anti-SIRP- α or anti-LAG3

Results

2. Anti-PD-L1 therapy abolishes the rise in MHC-II^{low} TAMs and monocytes upon LLC progression

3. Anti-PD-L1 therapy results in a monocyte-specific TNF-α response

5. TNF-α fortifies the upregulation of checkpoint molecules on anti-PD-L1 treated monocytes

6. Monocytes play a key role in the CTL-stimulating potential of ICB combination therapy

4. TNF- α - PD-L1 co-blockade has no increased therapeutical benefit

Combined therapies