Introduction

Monocytes are crucial for T cell stimulation via the PD-L1 pathway, revealing an ambiguous role for TNF-α and PD-L1 with anti-PD-L1 therapy, only the lung TME infiltrated monocytes: produce and respond to increased TNF-α levels, increase their levels of LAG-3, TIM-3, SIRP-α and VISTA.

Hypothesis

Do PD-(L)1+ myeloid cells hamper effective anti-PD-L1 therapy?

Conclusions

1. Upon anti-PD-L1 therapy, only the lung TME infiltrated monocytes:
 - produce and respond to increased TNF-α levels
 - increase their levels of LAG-3, TIM-3, SIRP-α and VISTA
2. TNF-α is involved in anti-PD-L1 therapy-mediated checkpoints
3. TNF-α and PD-L1 co-blockade has no increased therapeutic benefit
4. Monocytes are crucial for T cell stimulation via the combination of anti-PD-L1 with anti-SIRP-α or anti-LAG3

Results

1. Anti-PD-L1 therapy has no therapeutic benefit despite elevated PD-L1 expression levels in lungTME

Characterization of the lung tumor microenvironment upon anti-PD-L1 therapy reveals an ambiguous role for TNF-α

Kirsten De Ridder1, Harrie Lucy1, Elisa Picciotto1, Miren Bama Zuzuar1, Robin Maximilian Awad1, Stefan Verheul1, Mathias Van Buik1, Yannick Lecocq1, Quentin Lecocq1, Eva Reymen1, Wout De Mey1, Lien De Beck1, Thomas Erveldt1, Isabel Pintelon1, Jean-Pierre Fimmevand1, David Escors1,2, Marleen Keyzers1, Karine Brecheck1 and Ciscy Goyvaerts1

1 Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Belgium
2 Immunomodulation Group, Nanotheranostics, Nanomedicine UIP-MSTHAM, Pamplona, Spain
3 Laboratory of Molecular and Medical Oncology, Department of Biomedical Sciences, VUB, Belgium
4 ERTVeldt Laboratory of Cell Biology & Histology, Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Belgium
5 In vivo Cellular and Molecular Imaging laboratory, VUB, Belgium

Methods

- In vivo set-up
 - In vivo BLI and 3D whole tissue imaging
 - To follow tumor progression

- Multiplex flow cytometry
 - To characterize 11 myeloid subsets
 - PACS
 - To isolate macrophages and monocytes

- Use in T cell killing assay
 - Monitor immune profile via flow cytometry
 - Use in T cell killing assay

5. TNF-α fortifies the upregulation of checkpoint molecules on anti-PD-L1 treated monocytes

- Anti-PD-L1 therapy abolishes the rise in MHC-IIP+ TAMs and monocytes upon LLC progression
- Anti-PD-L1 therapy results in a monocyte-specific TNF-α response
- Anti-PD-L1 - PD-L1 co-blockade has no increased therapeutic benefit
- TNF-α + PD-L1 + anti-PD-L1 - anti-TIM3

6. Monocytes play a key role in the CTL-stimulating potential of ICB combination therapy

- Anti-PD-L1 - anti-TIM3
- Combined therapies
 - No T cells
 - anti-PD-L1
 - anti-VISTA
 - anti-PD-L1 + anti-VISTA
 - anti-LAG-3
 - anti-PD-L1 + anti-LAG-3
 - anti-SIRPA
 - anti-PD-L1 + anti-SIRPA
 - anti-TIM3
 - anti-PD-L1 + anti-TIM3