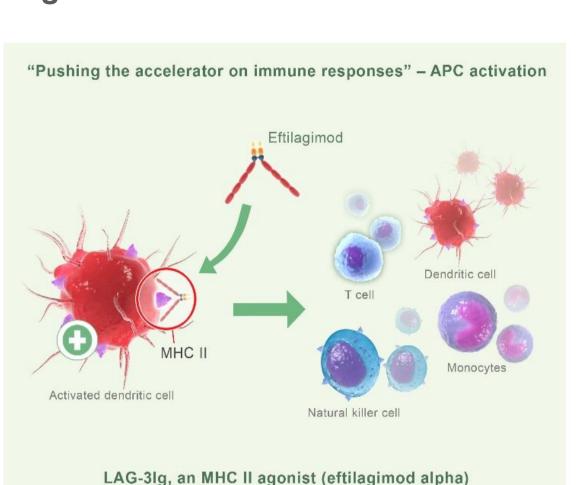
11P


Krebs M.G ¹; Majem M²; Forster M³; Peguero J ⁴; Clay T⁵; Felip E⁶; lams W⁷; Roxburgh P⁸; Dodger B⁹; Bajaj P¹⁰; Mueller C¹¹; Triebel F¹²

¹Krebs: Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation, London, UK; ⁴Peguero: Oncology Consultants, P.A., Houston, USA; ⁵Clay: St John of God Subiaco Hospital, Perth, Australia; ⁶Felip: Vall d'Hebron University Hospital, Barcelona, Spain; ⁷lams: Vanderbilt Ingram Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow and Beatson West of Scotland Cancer Centre, Scotland Development, Immutep GmbH, Berlin, Germany; 12 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 12 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 12 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 12 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 12 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 12 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 12 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 12 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 13 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 14 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 15 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 16 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 18 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 19 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 19 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 19 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 19 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 19 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 19 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 19 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 19 Triebel: Research & Development, Immutep GmbH, Berlin, Germany; 19 Triebel: Research & Development, Germany; 19 Trieb Immutep S.A.S., Orsay, France

BACKGROUND

Figure 1. efti's mechanism of action

Eftilagimod alpha (efti) is a soluble LAG-3 protein binding to a subset of MHC class II molecules, thus mediating antigen presenting cell (APC) and CD8 T-cell activation (Figure 1). Such stimulation of the dendritic cell network and resulting T cell recruitment may lead to stronger anti-tumor responses in combination with pembrolizumab than observed with pembrolizumab alone. We report results from the 2nd line PD-X refractory metastatic nonsmall cell lung carcinoma (NSCLC) cohort (Part B) of the TACTI-002 study (NCT03625323).

METHODS

Study Design and Patients

- Non-randomized, multinational, open-label, phase II trial.
- 2nd line, PD-X refractory metastatic PD-L1 all-comer NSCLC patients.
- Simon's two stage design.
- Efti is administered as a 30 mg subcutaneous injection every 2 weeks for the first 8 cycles and every 3 weeks for the following 9 cycles (total 1 year). Pembrolizumab is administered at a standard dose of 200 mg intravenous infusion every 3 weeks for maximum of 2 years (Figure 2).

Figure 2. Study design

		Treatment Phase Follow		Follow-up Phase	
Com		-Treatment	Monotherapy		
Screening	Cycle 1-8 pembrolizumab q3w and eftilagimod alpha q2w	Cycle 9-18 pembrolizumab and eftilagimod alpha both q3w	Cycle 19-35 pembrolizumab q3w	PFS and/or OS dependent on patient status	
3 weeks	24 weeks	• 30 weeks•	51 weeks	every 12 weeks	
Assig	gnment	End of Combo	(EoC) End of tr	reatment (EoT)	

Legend: 1 cycle = 3 weeks; q2w - every 2 weeks, q3w every 3 weeks

Assessments and Statistical Analyses:

- Primary Endpoint: Objective response rate (ORR), as per iRECIST.
- Secondary Endpoints: Progression free survival (PFS) and other efficacy parameter, safety and tolerability, and exploratory biomarkers.
- Central assessment of tumor cell PD-L1 expression (by Dako PD-L1 IHC 22C3 pharmDx) after enrolment.
- Imaging performed every 9 weeks and reported according to iRECIST and RECIST 1.1.
- Safety and efficacy was analyzed following intent to treat principle (all patients) who received at least one dose of study medication).
- Database cut-off date was January 21, 2022 (min. follow up of 5+ months).

the authors"

"Copies of this Poster obtained through QR AR and/or text key 😰 codes are for personal use only and may not be reproduced without written permission of

First Author COI: Matthew Krebs, natthew.krebs@nhs.net Honoraria – Roche, Jassen; Consulting or Advisory Role - Janssen; Roche, Bayer, Seattle Genetics; Research Funding — Roche (Inst); Travel, Accommodation, Expenses - AstraZeneca; BerGenBio: Immutep Corresponding author: Frederic Triebel, frederic.triebel@immutep.com

Sponsored by: Immutep S.A Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA provided pembrolizumab for the study.

BASELINE CHARACTERISTICS

- A total of 36 patients were enrolled and treated into this part of the study. Baseline characteristics are reported in Table 1.
- Majority of patients presented with PD-L1 TPS <50% (69.4%) and received prior chemotherapy in combination with PD-1/PD-L1 therapy (72.2%).

Table 1 Reseline characteristics (N=36)

Table 1. Baseline characteristics (N=36)				
Baseline parameters, n (%)				
Age (years), median (range)	67 (46-84)			
Female Male	14 (38.9) 22 (61.1)			
ECOG 0 ECOG 1	12 (33.3) 24 (66.7)			
Current or Ex-smoker Non-smoker	31 (86.1) 5 (13.9)			
Squamous Non-squamous pathology Unknown	7 (19.4) 28 (77.8) 1 (2.8)			
Prior PD-1/PD-L1 therapy with chemotherapy	36 (100) 26 (72.2)			
Liver metastasis	4 (11.1)			
Tumor resistance* Primary resistance Secondary resistance	11 (30.6) 24 (66.7)			
PD-L1 (TPS) <1% 1-49% ≥50% Not evaluable/not yet	13 (36.1) 12 (33.3) 7 (19.4) 4 (11.1)			

*... Tumor resistance defined according to SITC Immunotherapy Resistance Taskforce consensus¹

References:

¹ Kluger HM et al, J Immunotherapy Cancer. 2020 Mar;8(1):e000398. doi: 10.1136/jitc-2019-000398

EXPOSURE AND SAFETY

thereof related to efti/pembro

thereof related to efti/pembro

thereof related to efti /pembro

Patients with TEAEs leading to discontinuation of any study

*... metastatic neoplasm; dyspnea, acute respiratory failure (each occurring once)

Patients with any grade ≥3 TEAE

Patients with any TEAE

Patients with any SAE

Patients with fatal TEAEs*

treatment

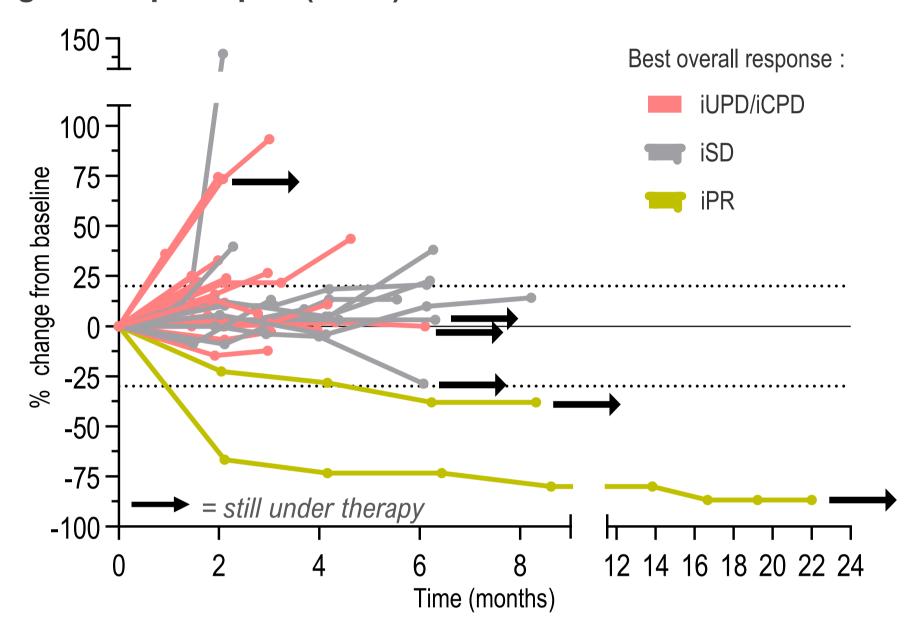

² Saâda-Bouzid E et al, Ann Oncol. 2017 Jul 1;28(7):1605-1611. doi: 10.1093/annonc/mdx178

Table 4. General overview of adverse events (N=36)

EFFICACY

- ORR (iRECIST) of 6% in the intent to treat population(Table 2).
- responses (Figure 3). 36 % disease control rate and 26% being progression free at 6
- 6 patients still under therapy (Figure 3) and 73% alive at 6

Figure 3. Spider plot (N=34)**

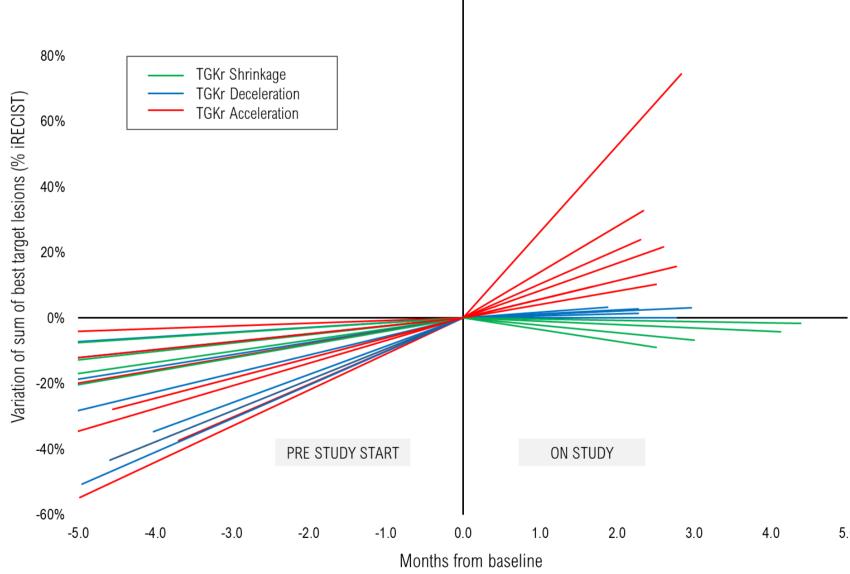
**: ≥1 treatment and ≥1 post-baseline tumor staging + measurable target lesion post baseline

Figure 5. Tumor growth kinetics (N=19)*

n (%)

35 (97.2)

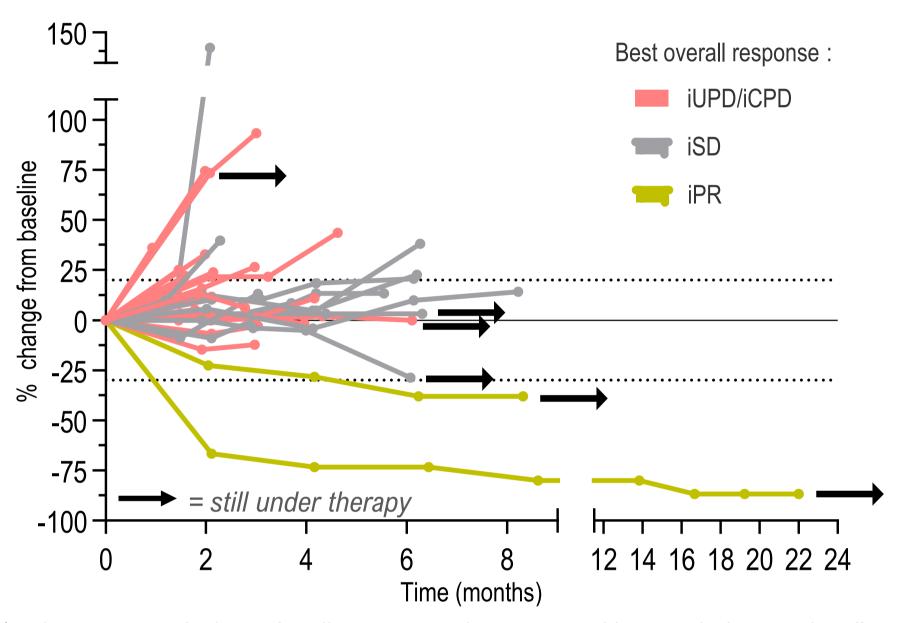
8 (22.2)

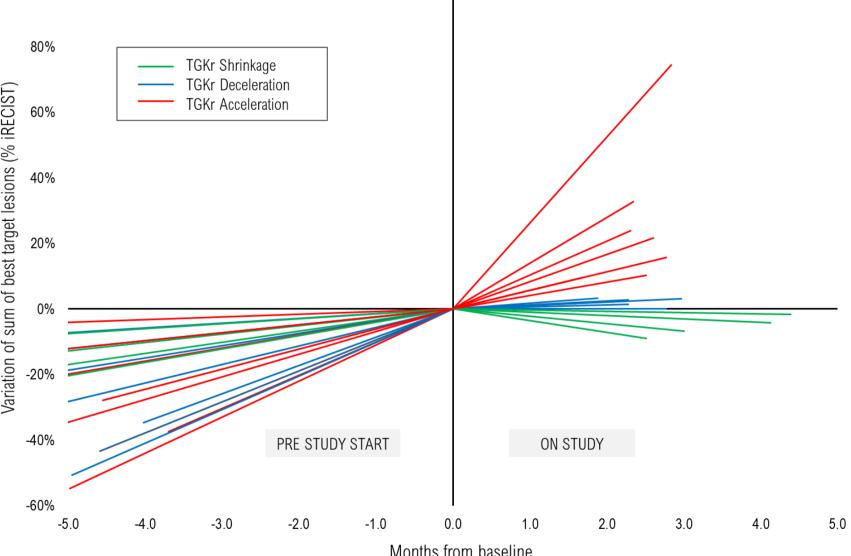

1 (2.8)/1 (2.8)

13 (36.1)

1 (2.8)/3 (8.3)

3 (8.3)*


3 (8.3)



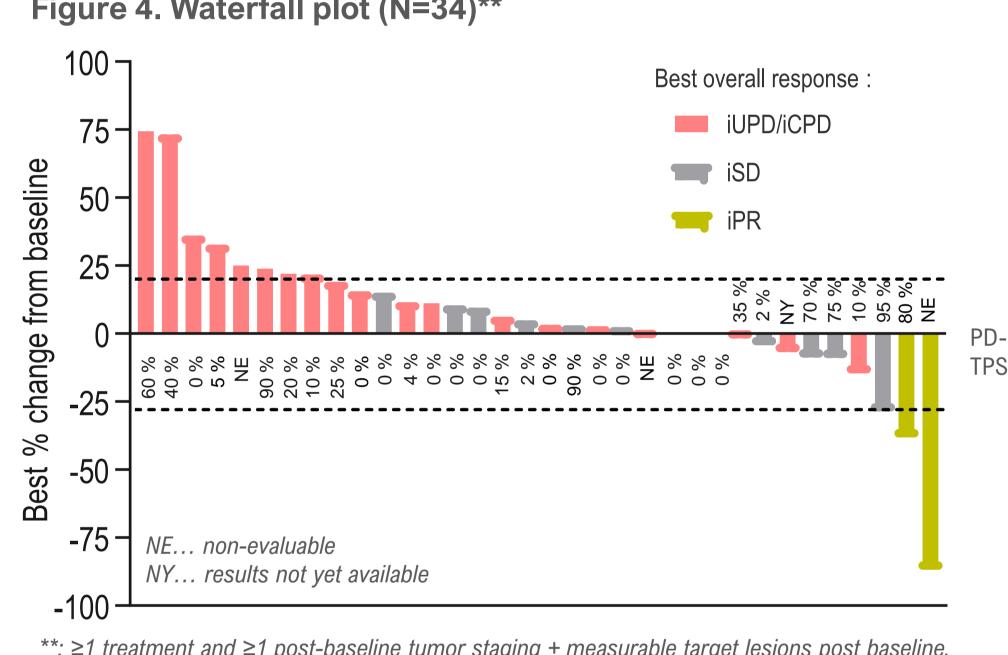
 Tumour growth kinetics (TGK) obtained as a comparative ratio of the difference of the sum of the largest diameters of target lesions in the pre- and post-baseline setting (Figure 5)².

• 73.7% of evaluable patients had post-treatment TGK shrinkage or deceleration (**Table 3**).

- Both responders showed deep (Figure 4) and durable partial
- Comparable results using RECIST 1.1.

• Pts received a median of 5 (range 2–31) pembrolizumab and 7 (range 2-22) efti administrations

• The most common TEAEs were dyspnea (33.3%), decreased appetite (33.3%), and cough (25%) (Table 5). No treatment-related deaths occurred (Table 4).


Table 5. Frequent treatment-emergent adverse events occurring ≥15% (N=36)

•	3		•	
Adverse event (PT)	Any grade N (%)	Grade 3 N (%)	Grade 4/5	N (%)
Dyspnoea	12 (33.3)	2 (5.6)	-	
Decreased appetite	12 (33.3)	-	-	
Cough	9 (25.0)	-	-	
Asthenia	8 (22.2)	1 (2.8)	-	
Fatigue	6 (16.7)	1 (2.8)	-	
Weight decreased	6 (16.7)	-	-	

Table 2. Best overall response (iRECIST), N=36

Tumor response (iRE	CIST)*	Overall n (%)
Complete Response		0 (0)
Partial Response		2 (5.6)
Stable Disease		11 (30.6)
Progression		22 (61.1)
Not Evaluable**		1 (2.8)
	Overall Response Rate (ITT)	2/36 (5.6)
	Disease Control Rate (ITT)	13/36 (36.1)
	Overall Response Rate (evaluable pts)	2/35 (5.7)
	Disease Control Rate (evaluable pts)	13/35 (37.1)

Figure 4. Waterfall plot (N=34)**

**: ≥1 treatment and ≥1 post-baseline tumor staging + measurable target lesions post baseline.

Table 3. Tumor growth kinetics, N=19#

9	
Tumor dynamics	n (%)
Shrinkage	4 (21.1)
Deceleration	10 (52.6)
Acceleration 5 (26.3)	
#evaluable set (N=19): ≥1 pre- and post-base	eline scan following the same tumors

CONCLUSION

ALK...Anaplastic Lymphoma Kinase

ECOG...Eastern Cooperative Oncology Group

iRECIST...Immune Response Evaluation Criteria In Solid Tumors

EGFR...Epidermal growth factor receptor

APC...antigen-presenting cell

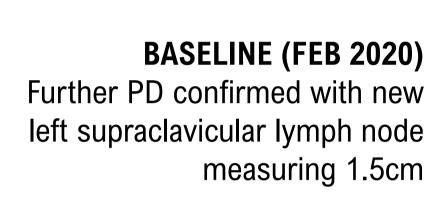

ITT...Intent to treat population

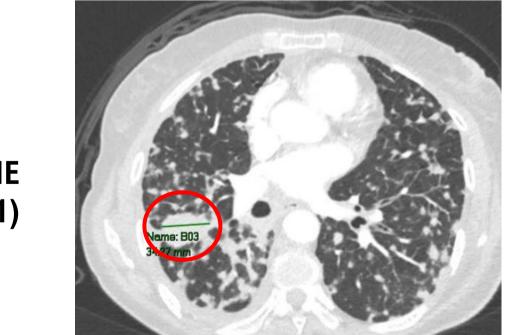
Figure 6. Single case #1

- 71-year-old female diagnosed with metastatic NSCLC (NSQ) in Sep 2016.
- Received 1st line carboplatin + pemetrexed + pembrolizumab for 18 months → stopped due to PD.
- At study entry: ECOG 1, non-evaluable PD-L1 TPS, EGFR/ALK negative, ex-smoker
- Started TACTI-002 in Feb 2020 and is still on therapy (Jan 2022) with confirmed ongoing partial response (-87%)

Lymph Node Lesion

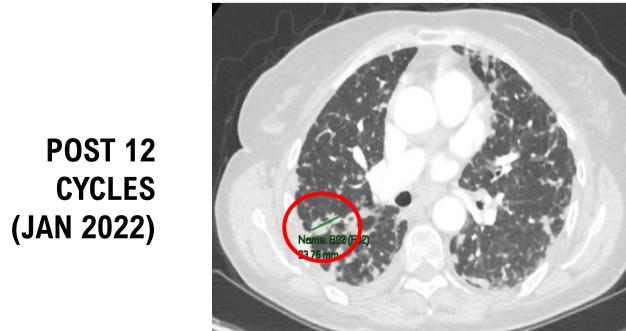
PRE-STUDY (DEC 2019) PD on basis of skeletal metastases No supraclavicular lymphadenopathy seen at this point

POST 3 CYCLES (APR 2020) Left supraclavicular node shrunk to 5mm (-67%)


Figure 7. Single case #2

- 67-year-old female diagnosed with metastatic NSCLC (NSQ) in Aug 2019.
- Received 1st line cisplatin + pemetrexed + pembrolizumab for 8 months. discontinuing after progression.
- At study entry: ECOG 0, PD-L1 80 %, EGFR/ALK negative, non-smoker, several metastatic sites (lung, lymph nodes).
- Started TACTI-002 in Apr 2021 and is still on therapy (Jan 2022) with confirmed partial response (-38 %).

BASELINE (APR 2021)


PRE-STUDY

(Feb 2020)

Lung Lesion

POST 12 CYCLES

73 % survival rate.

 The combination of an APC activator (efti) plus PD-1 antagonist (pembrolizumab) is well-tolerated and shows signs of antitumor activity in PD-X refractory 2nd line NSCLC patients.

difficult to treat (PD-X refractory NSCLC) patient population.

Two confirmed partial responses (5.6%), 36 % disease control rate

leading to 26% with long-term (6+ months) disease control in very

Encouraging early OS data with 6-months landmark analysis showed

This combination warrants further clinical investigation in this setting.

LAG-3...Lymphocyte Activation gene-3 MHC...Major Histocompatibility Complex NSCLC...non-small cell lung cancer PD-L1...Programmed Death ligand-1 PD-X...PD-1 or PD-L1 targeted therapy PFS...progression-free survival

PT...preferred term ORR...objective response rate SAE...serious adverse event TEAE...treatment-emergent adverse event TPS...Tumor Proportion Score TGK...tumor growth kinetics