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• Current practice still relies on PD-L1 testing to iden-
tify patients likely to respond to immune checkpoint 
inhibitor (ICI) therapy.

  
• Serum tumor markers (STMs) are known to reflect 
tumor activity and might therefore be useful in re-
sponse prediction.

Introduction:

To compare several methods in their ability to 
accurately predict non-response in NSCLC pa-
tients receiving ICI therapy by combining multi-
ple sequentially measured STMs.

Aim:

• 412 NSCLC patients assigned to a training (75%) 
and validation (25%) cohort.

• Bi-weekly measurements of CYFRA, CEA, CA125, 
NSE, and SCC.

• 9 prediction methods: Logistic regression (LR), qua-
dratic discriminant analysis (QDA), LASSO, random 
forest (RF), bagging, boosting, neural network (NN), 
support vector machines (SVM), recurrent neural 
network (RNN-GRU). 

• 95% specificity in model training to assure a low 
false positive rate.

 
• 1000 bootstrap samples to assess diagnostic accu-
racy.

Methods:

Best performance: Sensitivity & Specificity 
• Training data:
Sensitivity: 79.5% / Specificity: 95.5%
Method: Boosting - CYFRA, CEA, CA125, NSE.

• Validation data: 
Sensitivity: 68.8% / Specificity: 45.5%. 
Method: QDA - CYFRA, CEA, CA125, NSE, SCC.

•  Bootstrap average: 
Sensitivity: 75.8% / Specificity: 92.7%
Method: Boosting - CYFRA, CEA, CA125, NSE.

 
Best performance: ROC curve

• Training data
AUC: 0.960
Method: Boosting – CYFRA, CEA, CA125, NSE.

• Validation data
AUC: 0.895
Method: Bagging – CYFRA, CEA, CA125, NSE, SCC.

Results: 
Training set Validation set

Patients (n (%)) 307 (74.5%) 105 (25.5%)

Mean age (years (SD)) 63.7 (91.6%) 62.7 (10.1%)

Male sex (n (%)) 159 (51.8%) 65 (61.9%)

Nivolumab (n (%)) 272 (88.6%) 100 (95.2%)

Pembrolizumab (n (%)) 35 (11.4%) 5 (4.8%)

Number of patients with PD at 6 
months (n (%))

210 (68.4%) 71 (67.7%)

Mean survival after treatment start 
(days (SD))

232 (198) 255 (225)

Patients with biomarker measurements 

CYFRA (n (%)) 306 (99.7%) 103 (98.1%)

CEA (n (%)) 299 (97.4%) 101 (96.2%)

CA-125 (n (%)) 305 (99.3%) 102 (97.1%)

NSE (n (%)) 305 (99.3%) 102 (97.1%)

SCC (n (%)) 258 (84.4%) 80 (76.2%

Table 1: Description of the patient cohort used in this study. Progressive disease: PD, standard 
deviation: SD. 

Figure 1: Sensitivity and specificity results found for model training, validation, and the bootstrap analysis. 

Figure 2: ROC curves for model training and validation on the STM combination of CYFRA, CEA, CA125, and NSE. The pAUC is calculated for the specificity range of 0,9 to 1. 

• Increasing the number of STMs in the model leads to marginal gains 
and might result in a decrease in the specificity of the model.

• Sensitivity results are based on a 95% specificity during model 
training, thus narrowing the ROC curve to a single point. While the 
pAUC results indicate that multiple methods provide a good predic-
tive performance. 

Discussion:

• Multiple sequentially measured STMs can be combined in a predic-
tion model to predict ICI non-response in NSCLC patients. 

• Boosting provided the best performance across all STM combina-
tions included in this study. 

• The Boosting model based on CYFRA, and CEA measurements 
should be subject of further evaluation. 

Conclusion: 


