Translational Studies in Small Cell Lung Cancer

Martin J.Edelman, MD University of Maryland Greenebaum Cancer Center

A Cancer Center Designated by the National Cancer Institut

Disclosures

- Research Funding
 - Lilly Oncology
 - Oncomed
- Stock
 - Andarix
- "Borrowed Slides"
 - Charlie Rudin
 - Lee Krug

- DNA damage repair
 - PARP
 - Chk 1
- Notch
- Immunotherapy
 - Checkpoint inhibitors
 - Vaccines
 - CAR-T

DNA DAMAGE

Rouleau et al. Nature Reviews Cancer 2010

UNIVERSITY of MARYLAND MARLENE AND STEWART GREENEBAUM CANCER CENTER

DNA Repair: PARP Inhibitors

Eastern Cooperative Oncology Group

E2511 Version Date: October 1, 2013 NCI Update Date: November 7, 2012

IV doses are based on actual weight

1. On days of chemotherapy, the morning veliparib/placebo dose is to be administered AFTER premedications for etoposide, prior to etoposide IV.

2. Recommended Phase II Dose (RP2D) - dose for Phase II was determined in Phase I portion of the study.

Temozolamide and PARP inhibitor for relapsed SCLC

DNA Repair: CHK1 Inhibition

NCI·CC

Biomolecules 2015, 5(3), 1912-1937; doi: 10.3390/biom5031912

UNIVERSITY of MARYLAND MARLENE AND STEWART GREENEBAUM CANCER CENTER

Nothing new under the sun...

A Cancer Center Designated by the National Cancer Institute

LY2606368 in SCLC

Objectives: Pt sensitive H0 = 20%, H1 = 35%Pt refractory H0 = 5%, H1= 15%

UNIVERSITY of MARYLAND MARLENE AND STEWART GREENEBAUM CANCER CENTER

NOTCH

Notch

- Complicated, multifaceted pathway. Involved in multiple aspects of differentiation and cellular function, including neuronal development.
- Notch receptors modified by addition of sugars. "fringe effect" : lunatic, manic and radical.
- Ligands: Delta (DLL1,3,4); Jagged
- Target:
 - Function
 - expression

Tarextumab: Anti-Notch2/3

- Tarextumab (TRXT, OMP-59R5, anti-Notch2/3) is a fully human IgG2 that was originally identified by binding to Notch2.
- Inhibits the signaling of both Notch2 and Notch3 receptors
- Excellent preclinical activity in combination with platinum

Notch 2/3 targeting

Phase I reported at ASCO 2015

- Longer survival in pts with elevated Notch 3 expresson
- Randomised Phase II trial in progress.

* EP: Etoposide + cisplatin or carboplatin (physician choice in Ph2: Cis or Carbo)

Antibody-Drug Conjugate: Targeting DLL3

Norm development Jagged1 Jagged2 Aber tumo Jagged2 Aber tumo Dil1 Inter Noto Inter Noto May down Cyteine-rich domain

- Aberrantly expressed in SCLC tumor-initiating cells
- Interacts with and inhibits Notch1 in *cis*
- May mediate Notch inhibition downstream of ASCL1

Kume et al., J Angiogen Res 2009

DLL3 is a dominant inhibitor of Notch signaling

Rovalpituzumab Tesirine (Rova-T; SC16LD6.5)

Drug-to-Antibody Ratio (DAR) = 2

A Cancer Center Designated by the National Cancer Institute

Rudin WCLC 2015

RovaT: Phase I/II Trial

Phase 1b Expansion Cohorts (7/6/15 cutoff)

# Patients Enrolled	25		40	
Dose/Schedule	0.2 Q3W		0.3 Q6W	
	All	Gr 3/4	All	Gr 3/4
Fatigue	24%	4%	28%	5%
Thrombocytopenia	4%	0%	23%	15%
Decreased Appetite	0%	4%	18%	0%
Rash Maculo-Papular	12%	0%	13%	5%
Oedema Peripheral	16%	0%	13%	3%
Anaemia	12%	0%	13%	0%
Erythema	8%	4%	13%	0%
Serosal Effusions	16%	12%	10%	0%
Nausea	20%	0%	10%	0%
Vomiting	8%	0%	5%	0%

RP2D

80 pts enrolled

- 73 (91%) SCLC, 7 (9%) LCNEC
- 41 (51%) 2nd line, 39 (49%) 3rd line
- 1st line response: 45 (58%) sensitive, 33 (42%) resistant *
- Mean age 62 yr; 59% male/41% female; ECOG 0/1: 27%/73% *
- 50 (63%) provided archived tumor sample; 70% with "high" DLL3
- 68 (85%) pts in expansion cohorts
 - 0.3 mg/kg q6w
 - 0.2 mg/kg q3w

* Information unavailable for 2 Pts

A Cancer Center Designated by the National Cancer Institut

RovaT: Response

Rova-T: best response data in evaluable patients 0.2 mg/kg q3w and 0.3 mg/kg q6w cohorts (n=60)

Rova-T swimmer plots for DLL3+ patients

Duration of response by dosing cohort

Dose & Regimen	Objective Responses	# Remaining Progression Free	Mean DOR (Range)	# Alive	Mean OS (Range)
0.2q3w	5	0	88 (68-130)	1	184+ (113-255)
0.3q6w	7	6	182+ (50-332) [†]	7	227+ (104-367) [†]
0.4q3w	2	0	164 [‡]	1	437+
Total	14	6		9	

+DOR and OS excluding 3 new responses observed within last 30 days that have not yet been confirmed [‡]1 patient censored due to subsequent chemo prior to signs of progression

Overall response rate

		Rova-T; SC16LD6.5	
	Topotecan ⁺	All Pts & dose levels	DLL3+ Ph 1b Cohorts
2 nd Line	17%	22%	40%
3 rd Line	No Approved Drug	17%	38%
Sensitive to C/E	23%	24%	62%
Resistant to C/E	9%	14%	20%

Durability of Response at RP2D (0.3 mg/kg q6w): 182+ days

Rudin, WCLC 2015

IMMUNOTHERAPY

Regulation of immune response

Global Mutational Spectrum of SCLC

A Cancer Center Designated by the National Cancer Institu

Rudin C, et al. *Nature Genetics*. 2012;44:1111. Peifer M, et al. *Nature Genetics*. 2012;44:1104. Lawrence MS, et al. *Nature*. 2013;499:214. UNIVERSITY of MARYLAND MARLENE AND STEWART GREENEBAUM CANCER CENTER

CTLA-4 Inhibitor: Ipilimumab

- Ipilimumab is a humanized IgG1 monoclonal antibody against CTLA-4
- By blocking the inhibitory signal provided by CTLA-4, this class of antibodies can prolong the activation and proliferation of tumordirected cytotoxic T cells, thus promoting an anti-tumor immune response

Pardoll DM. *Nat Rev Ca.* 2012; 12:252. Spigel DR & Socinski MA. *JTO*. 2013;8:587.

Phase II Study of Ipilimumab in Lung Cancer

Phase II Study of Ipilimumab in SCLC

- Phased schedule:
 - Significantly improved irPFS
 - Trend for improved OS
- No trend for concurrent schedule

Phase III Study of Ipilimumab in SCLC (NCT01450761)

Chemo = Etoposide & cisplatin <u>or</u> carboplatin (Investigator choice) Legend: R = Randomizati Ipi = Ipilimumab

PBO = Placebo PCI = Prophylactic Cranial Irradiation

Primary end-point: OS

Study population:

- ED SCLC
- Brain mets allowed if stable
- Measurable disease not required

Approximately 210 sites 33 countries 1100 subjects

Sponsored by BMS.

Programmed Cell Death Protein (PD-1)

- Inhibitory receptor induced when T cells are activated
- Limits activity of T cells in peripheral tissue during an inflammatory response to infection
- Limits autoimmunity
- Ligands are PDL-1 and PDL-2
- Blocking PD-1 prevents interaction with PD-L1 and PD-L2, restoring antitumor T-cell function

Pardoll DM. Nature Rev Ca. 2012;12:252.

Analysis of PD-L1 Expression

- · Samples: archival or newly obtained core or excisional biopsy of a nonirradiated lesion
- Immunohistochemistry: performed at a central laboratory using a prototype assay and the 22C3 antibody clone (Merck)
- Positivity: membranous PD-L1 expression in ≥1% of tumor and associated inflammatory cells or positive staining in stroma
- SCLC cohort: of 147 evaluable samples, 42 PD-L1 positive (28.6%)

Examples of PD-L1 Staining in SCLC Specimens from KEYNOTE-028

Baseline Characteristics

Characteristic, n (%)	N = 24		Characteristic, n (%)	
Median age, years (range)	60.5 (41–80)		Histology Small cell	
Male	14 (58.3)		Neuroendocrine	
Race White Asian Not specified	13 (54.2) 3 (12.5) 8 (33.3)		Type of prior therapy ^a Chemotherapy Radiotherapy Investigational TKI Other investigational TKI	
COG performance status 0 1	7 (29.2) 17 (70.8)		Other investigational therapy Specific prior therapies ^{a,b} Cisplatin/carboplatin + etoposide	
Stable brain metastases	3 (12.5)	1	Irinotecan or topotecan Taxane	

Antitumor Activity^a (RECIST v1.1, Investigator Review)

Best Overall Response	n	%	95% CI
Complete response	0	0	0.0-14.2
Partial response	7	29.2	12.6-51.1
Stable disease	1	4.2	0.1-21.1
Progressive disease	10	41.7	22.1-63.4
No assessment ^b	6	25.0	9.8-46.7

Objective response rate: 29.2% (95% Cl, 12.6–51.1) Disease control rate^c: 33.3% (95% Cl, 15.6–55.3)

Change From Baseline in Tumor Size Over Time^a

Level of PD-L1 Expression and Response

- Using prototype IHC assay, no relationship between level of PD-L1 expression on tumor and immune cells within tumor nests and frequency of response
 - One-sided P = 0.235 by logistic regression

Comments

 Anti-PD-1/L1 therapies have clear activity in SCLC. Other trials reported at ASCO with nivolumab +/-Ipilumumab.

*No relationship between PD-L1 and response (at least In this small series and with this assay).

A Cancer Center Designated by the National Cancer Institu

Checkpoint Inhibition Studies in SCLC

- A Phase 1/2, Open-label Study of Nivolumab Monotherapy or Nivolumab Combined with Ipilimumab in Subjects with Advanced or Metastatic Solid Tumors [NCT01928394]
- A Phase I/2 Study to Evaluate MEDI4736 [NCT01693562]
- A Phase I Study of MEDI4736 (Anti-PD-L1 Antibody) in Combination With Tremelimumab (Anti-CTLA-4 Antibody) in Subjects With Advanced Solid Tumors [NCT02261220]
- Phase I Trial of MK-3475 and Concurrent Chemo/Radiation for the Elimination of Small Cell Lung Cancer [NCT02402920]
- Pembrolizumab in Treating Patients With Extensive Stage Small Cell Lung Cancer After Completion of Combination Chemotherapy [NCT02359019]

VACCINES

A Cancer Center Designated by the National Cancer Institute

Gangliosides in SCLC Past Failures: SILVA Trial

Gangliosides in SCLC Fucosyl-GM1: Background

- Ganglioside isolated from bovine thyroid gland.
- Identified by immunofluorescence using the monoclonal antibody F12 in 19/21 human SCLC tumors.
- Detected in culture media from SCLC cell lines, and in tumor extracts and serum of nude mouse xenografts.
- Detected in the serum of 6/20 patients with extensive stage SCLC but not in NSCLC patients or volunteers.

Courtesty of L. Krug

Macher, Biochim Biophys Acta, 1979 Brezicka, Cancer Res, 1989 Vangsted, Cancer Res, 1991

Gangliosides in SCLC Fucosyl GM1 Trial IHC Results

Prevalence of fucosyl GM1 by IHC (BMS analyses)

~50% (12 positive/24 total samples)

Prevalence of fucosyl GM1 in SCLC in the literature ~ 70% (89 positive/124 total samples)

Gangliosides in SCLC Anti-FucGM1 mAB BMS-986012

- First-in-class fully human IgG1 mAb
- High affinity and dosedependent saturable binding to FucGM1 --No binding to GM1
- Optimized for enhanced ADCC by elimination of fucosylation on Fc domain

DMS79 SCLC Xenograft Model

Gangliosides in SCLC Phase I/II Trial with BMS-986012

Phase I Dose Escalation

Eligibility: Ext or limited SCLC At least 1 prior chemo regimen

Primary endpoint: Safety

Dose level	BMS- 986012 IV Q3W
1	70
2	160
3	400
4	1000

NCICC Supported by Bristol-Myers Squibb

Phase II Expansion

Eligibility: Relapsed SCLC One prior chemo regimen

Primary Endpoint: Response rate

Coho rt	Group	Ν
А	Refractory, MTD	22
В	Refractory, dose below MTD	22
С	Sensitive, MTD	28
D	Sensitive, dose below MTD	28

Participating sites: MSKCC, Duke, Cross Cancer Institute, Monash Cancer Centre UNIVERSITY of MARYLAND

CAR-T CELLS

CAR Rationale

If endogenous T cell elicitation is difficult to due immunosuppressive microenvironment, then ex vivo T cell culture expansion should be considered

Chimeric antigen receptor T cells provide advantages:

- HLA-independent
- Does not require stimulation by host immune system
- Targets SCLC antigens

Adapted from J. Heymach

Potential CARs for SCLC

- 50% of patients detectable auto-antibodies to at least 1 target (e.g. p53, NY-ESO-1,CD56, SOX-2 etc).
- CD56 (NCAM) selected as initial candidate for CARs
 - highly expressed in SCLC and other malignancies
 - also expressed in neuronal tissue, lower expression in skeletal muscle, NK cells, and Tcells (potential fratricide)
 - ADCs have been tested with CD56

Malignoma	% NCAM positive
Neuroblastoma	$\approx 100\%$
Rhabdomyosarkoma	$\approx 100\%$
Glioma	$\approx 100\%$
Astrocytoma	$\approx 100\%$
Small cell lung cancer	$\approx 100\%$
Multiple myeloma	78%
Acute myeloid leukemia	53%

Distribution of NCAM in malignant tissues

CD56R-CAR T cells control SCLC growth *in vivo*

Days post CAR administration

Early experiments (low dose CARs, 1 CAR: 20 tumor cells) indicate CAR T cells may control even well established tumors

Concerns

CD56 is expressed on WT tissues (on target, off tissue) Damage to the brain and other neural tissue possible similar to autoimmune already displayed in some SCLC patients.

Natural Killer cells loss

Would patient become more susceptible to viral infections or NK cells act as a "decoy" reducing CD56R-CAR killing at tumor site.

Antigen loss

Intense selection by CAR T cells may allow rapid generation of tumor escape variants most likely due to antigen loss

General Comments: Clinical Trial Design Issues

- Traditional designs
 - Combination with existing regimens: PE vs.
 PE + X (front line)
 - Second line in combination or against: Topo vs. Topo + X or Topo vs. X
- Problems
 - Requires excellent PS
 - Fails to recognize the real world presentation (very sick)
 - Fails to exploit the value of current therapy (high RR)
- Suggest
 - Consolidaton design:
 - PE -> X vs. PE

Conclusions

- Improved understanding of SCLC biology has led to the identification of new targets/strategies.
- Notch targeting and immunotherapy are most advanced.
- Clinical trial design should be optimized for this disease

