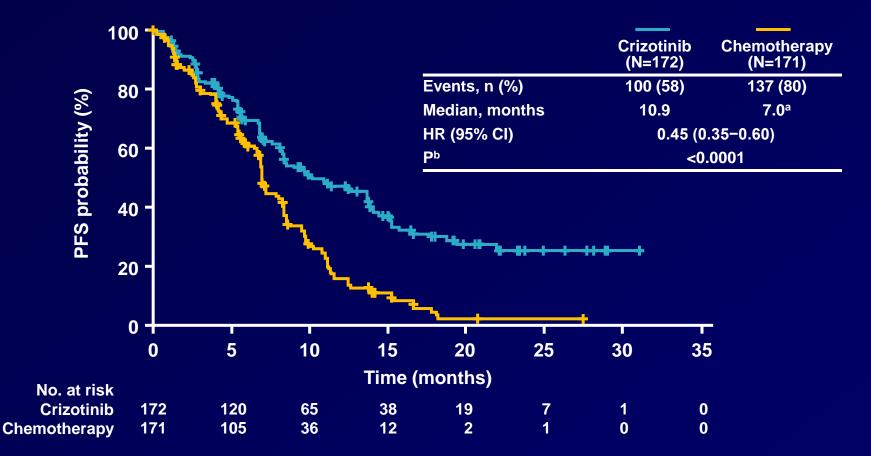

Targeting ALK: Clinical Trials with novel agents

ELCC 2016


Ben Solomon Peter MacCallum Cancer Centre

Responses in ALK+NSCLC patients treated on the crizotinib phase I study

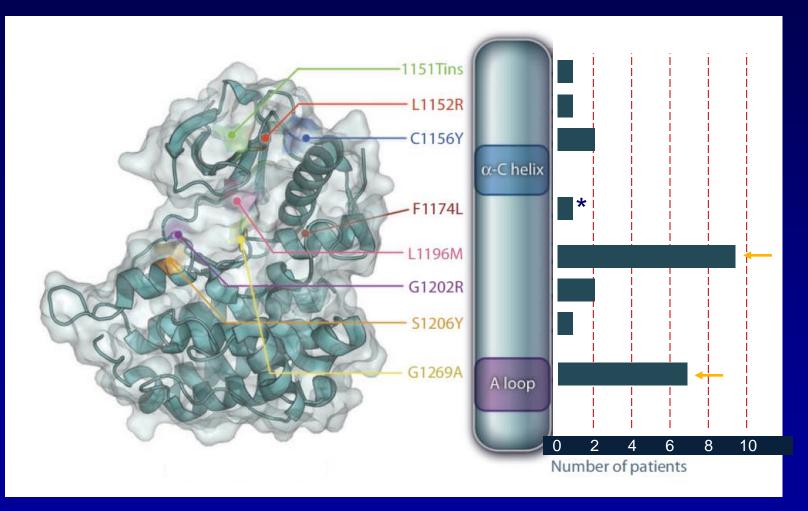
Kwak NEJM 2010; Camidge Lancet Oncology 2012

PROFILE 1014: First-line Crizotinib vs Platinum-Pemetrexed in ALK+ NSCLC

ORR: Crizotinib 74% vs Chemotherapy 45% P<001

Solomon, Mok et al. NEJM 2014

Acquired resistance to ALK inhibitors

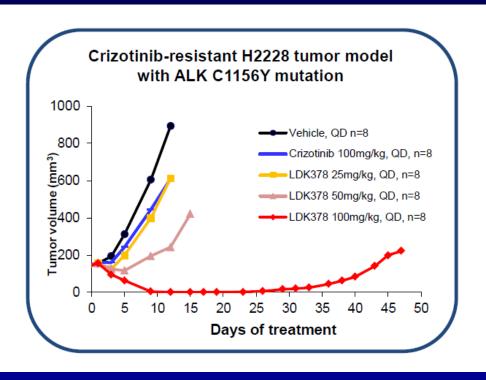


April 2009

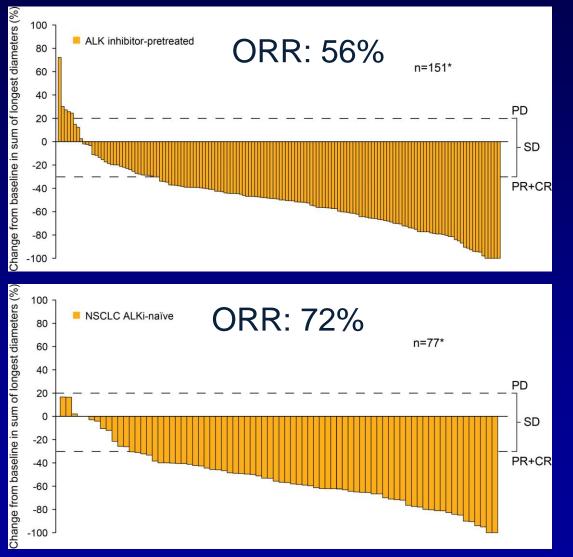
September 2010

September 2011

Crizotinib-resistance mutations in ALK+ NSCLC


Adapted from Lovly CM, Pao W. Sci Transl Med 2012;4:120ps2.

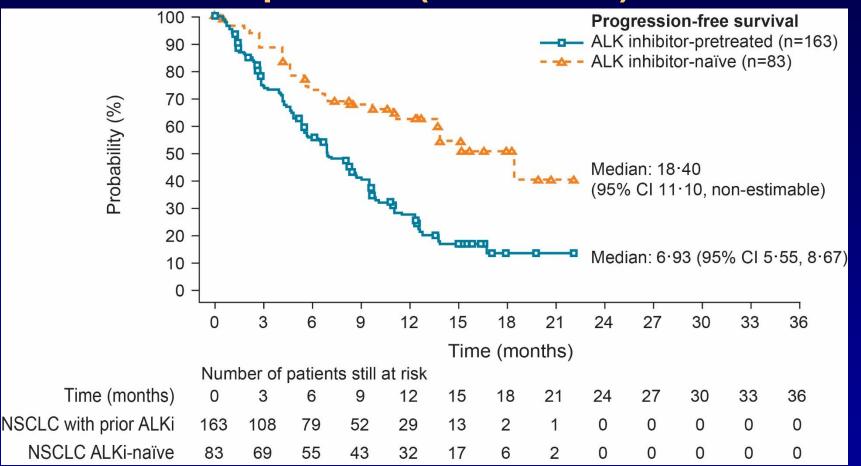
Next Generation ALK Inhibitors


ALK TKI	Manufacturer	Status	Ongoing studies
Ceritinib	Novartis	FDA approved EMA approved (post crizotinib)	Phase 3 (vs chemo)
Alectinib	Chugai Roche/Genentech	FDA approved (post crizotinib)	Phase 3 (vs Crizotinib)
Brigatinib (AP26113)	Ariad	FDA breakthrough therapy	Phase 2 (90 vs 180 mg)
X-396	Xcovery	Investigational	Phase 1/2
TSR-011	Tesaro	Investigational	Phase 1/2a
RXDX-101	Ignyta	Investigational	Phase 1/2a
CEP-37440	Teva	Investigational	Phase 1
Lorlatinib (PF-06463922)	Pfizer	Investigational	Phase 1/2a

Ceritinib (LDK378) is a potent oral ALK inhibitor with activity against (some) mutations that confer resistance to crizotinib

Assay	LDK378 IC ₅₀ (nM)	Crizotinib IC ₅₀ (nM)
Enzymatic ALK IGF-1R c-Met	0.15 8 3200	3 400 8
Cell-based EML4-ALK - L1196M - G1269S - G1202R - C1156Y	20 60 140 490 130	120 810 1600 1020 350

Activity of ceritinib (LDK378) in crizotinib naïve and crizotinib refractory ALK+ NSCLC in ASCEND-1



Crizotinib refractory patients: ORR: 56%

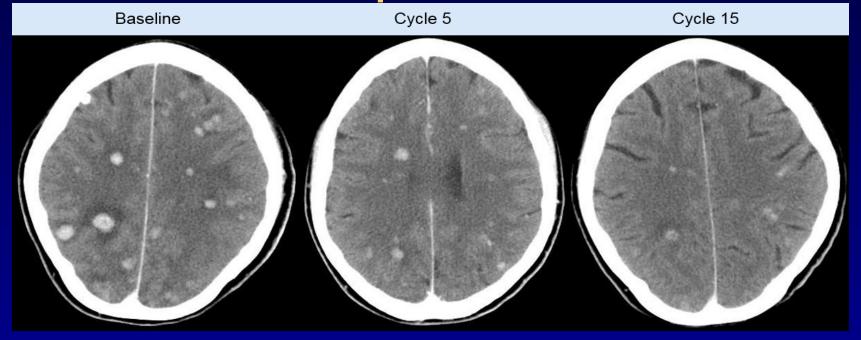
ALK TKI naïve patients: ORR: 72%

Kim DW et al. Lancet Oncol. 2016

Ceritinib shows durable responses in both pretreated and previously ALK inhibitor naïve patients (ASCEND-1)

Median PFS in ALK inhibitor pre-treated patients 6.9 months

Median PFS in ALK inhibitor naïve patients was 18.4 months


Kim DW et al. Lancet Oncol. 2016

Response rates and PFS in crizotinib refractory and crizotinib naïve patients confirmed in phase 2 studies (ASCEND-2 and ASCEND3)

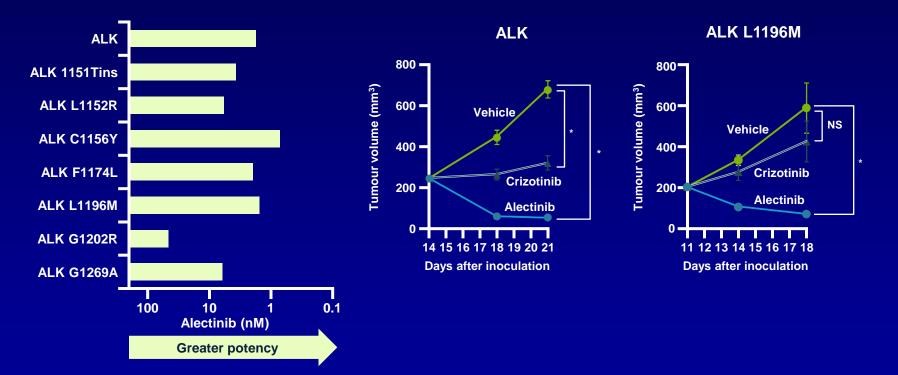
	ALKi-naïve		ALKi pre-treated	
	ASCEND -1 ¹	ASCEND-3 ²	ASCEND-1 ¹	ASCEND-2 ³
patients	83	124	163	140
Overall Response rate (ORR)	72%	64%	56%	50%
Median PFS (M)	18.4	NE*	6.9	7.2

Kim et al Lancet Oncology 2016
Felip et al ASCO 2015
Mok et al ASCO 2015

CNS activity of Ceritinib in crizotinib pretreated patients

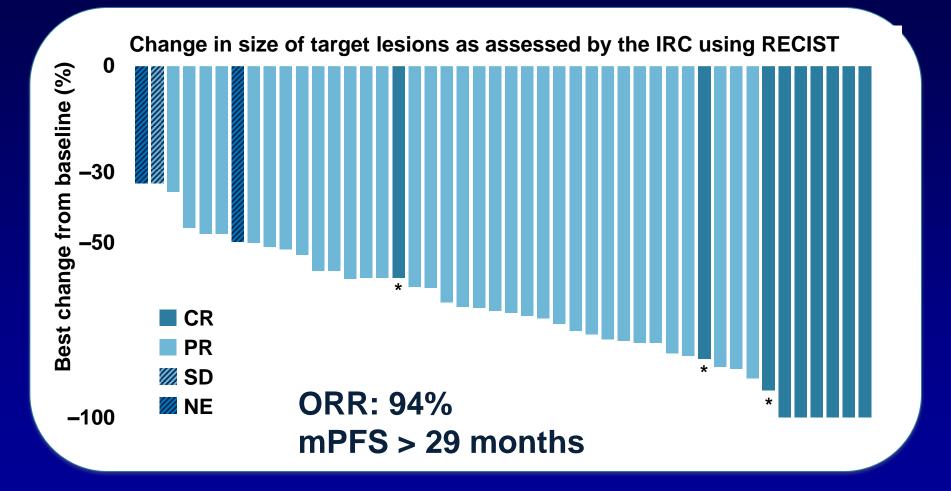
Ceritinib achieved durable intracranial responses in ALK+ NSCLC patients with BM at baseline in both crizotinib-pretreated and ALKi-naïve patients

OIRR (95% CI): 13/33 - 39.4% (22.9, 57.9) in crizotinib-pretreated; 10/17 - 58.8% (32.9, 81.6) in ALKi-naïve patients

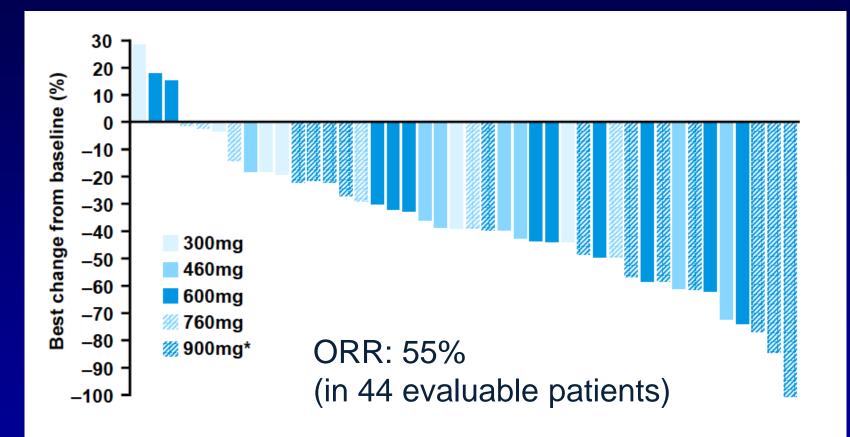

(DATA from ASCEND -2 and ASCEND -3)

Park K et al, ESMO-Asia 2015.

Alectinib a potent, selective ALK inhbitor active against various ALK mutations


Activity of alectinib against various ALK kinases *in vitro*¹

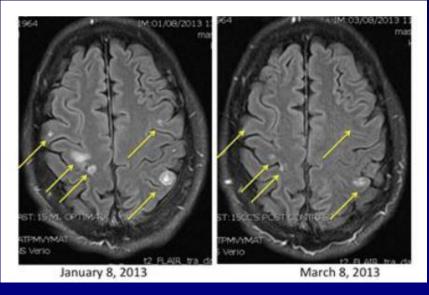
Alectinib maintains efficacy against the gatekeeper mutation ALK L1196M^{§ 2}



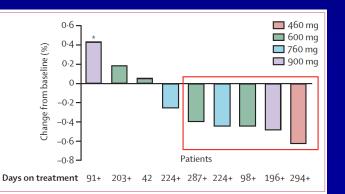
1. Kodama, et al. Cancer Lett 2014 2. Sakamoto, et al. Cancer Cell 2011

Alectinib in crizotinib naïve ALK rearranged NSCLC; Japanese phase 1/2 study(AF001JP) – 300mg bid

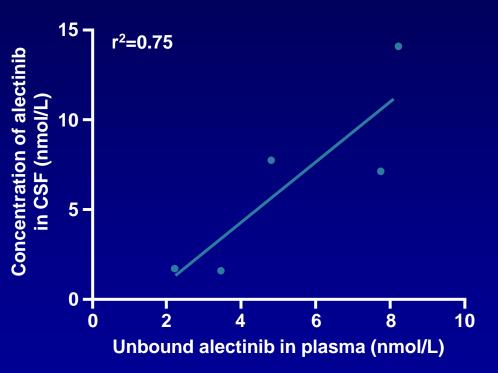
Alectinib in crizotinib refractory ALK rearranged NSCLC: AF-002JG/NP28761 – RP2D 600mg bid


Gadgeel, et al. Lancet Oncol 2014

Alectinib in Crizotinib-refractory ALK positive NSCLC (600mg bid)


	AF-002JG (phase I)	NP28761 (phase 2)	NP28673 (phase 2)
patients	47	87	138
Countries	N. America	N. America	Global
Response rate	55%	52%	51%
Median PFS (M)	NR	8.1	8.9

Gadgeel, et al. Lancet Oncol 2014 Shaw et al. Lancet Oncology 2015 Ou et al. JCO 2015

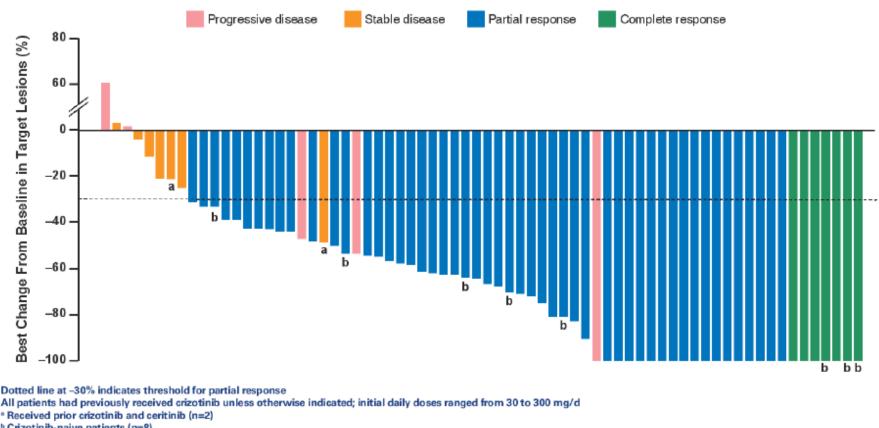

CNS Responses with Alectinib in Crizotinib-Resistant Patients (AF-002JG Study)

IRR: 52% (confirmed and unconfirmed responses)

Alectinib penetrates into the CNS where it is able to exceed the in-vitro concentration required for ALK inhibition

Ou et al., ESMO 2013; Gadgeel et al., Lancet Onc 15(10):1119-28, 2014

Pooled CNS analysis from phase 2 studies (NP28761 and NP28673)

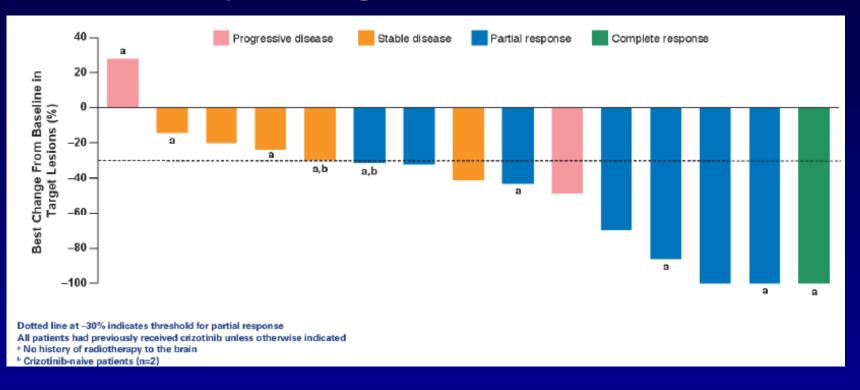

Alectinib 600ma BID

Measurable CNS disease (n=50)*	Measurable and non- measurable CNS disease (n=136)*		
64	43		
22	27		
42	15		
26	43		
6	9		
90	85		
10.8	11.1		
	Measurable CNS disease (n=50)* 64 22 42 26 6 90		

Median duration of follow-up was 12.4 months (range: 4.1–85.7)

CNS CR in 27% of patients with measurable and non-measurable disease at baseline

Brigatinib (AP26113) in ALK positive NSCLC

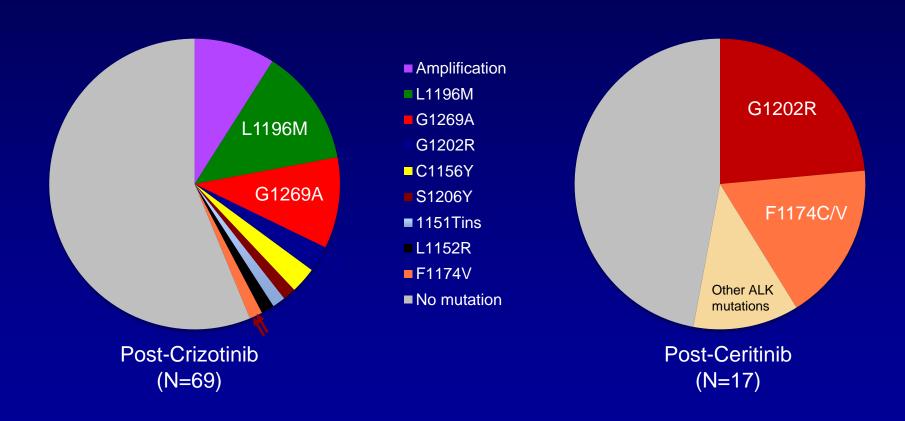


^b Crizotinib-naive patients (n=8)

ORR: 50/70 (71%) in pts with prior crizotinib with mPFS 13.4 M ORR: 8/8 in crizotinib naïve NSCLC

Camidge et al. ASCO 2015

Activity of Brigatinib in CNS disease


8/15 (53%) of patients with measurable intracranial disease had a partial response

Camidge et al. ASCO 2015

Role for Multiple Sequential ALK Inhibitors

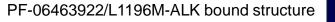
Shifting profile of ALK resistance mutations depending on the ALK inhibitor

Alice Shaw, MGH

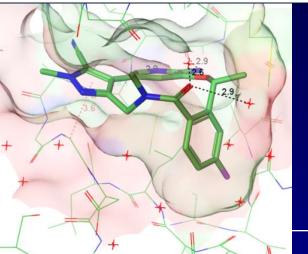
Lorlatinib is active against all known ALK resistance mutations, including G1202R

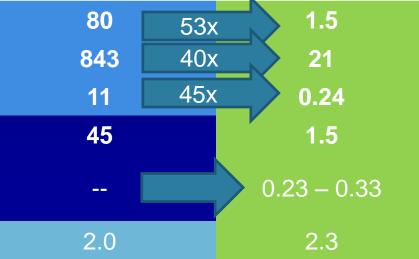
		Cellular ALK phosphorylation mean IC ₅₀ (nM)			
Mutation status	Cell line	Lorlatinib (PF-06463922)	Crizotinib	Ceritinib (LDK-378)	Alectinib (CH-5424802)
EML4-ALK	NIH3T3	1.3	80	NA	62
v1	BaF3	3.6	90	41	24
EML4-ALK	NIH3T3	21	843	NA	250
L1196M	BaF3	43	1154	70	113
EML4-ALK	NIH3T3	15	605	NA	NA
G1269A	BaF3	80	689	134	112
EML4-ALK	NIH3T3	77	1003	>1000	>10,000
G1202R	BaF3	113	562	549	362
EML4-ALK	NIH3T3	38	1268	1066	1770
I1151Tins	BaF3	50	902	296	126
EML4-ALK	NIH3T3	4.2	626	NA	NA
S1206Y	BaF3	3.2	152	60	29
EML4-ALK	NIH3T3	1.6	478	NA	NA
C1156Y	BaF3	15	406	177	21
EML4-ALK	NIH3T3	0.2	165	NA	NA
F1174L	BaF3	1.0	150	161	26

IC₅₀ < 100 nM

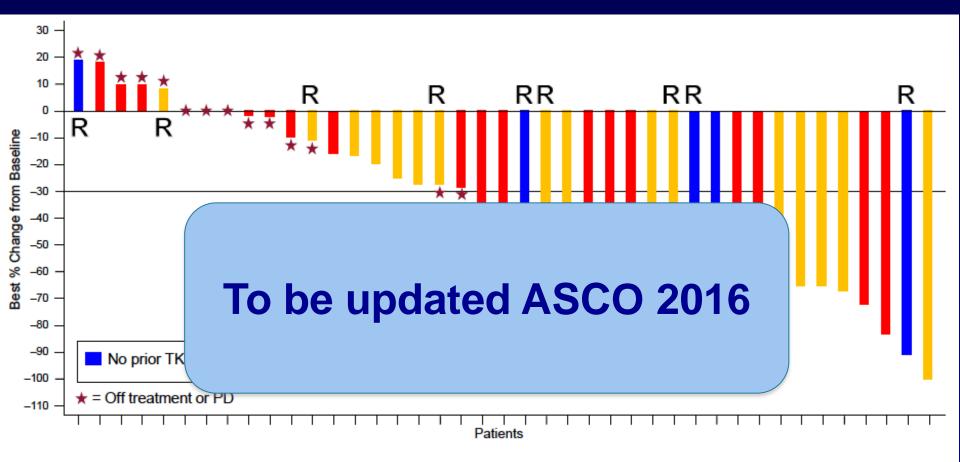

IC₅₀ ≥ 100 < 200 nM

IC₅₀ ≥ 200 nM

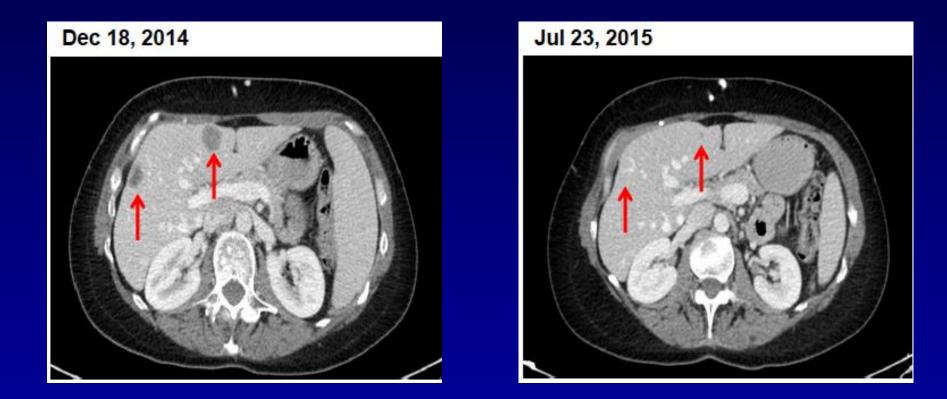

Zou HY, et al. *Proc Natl Acad Sci U S A* 2015;112:3493–3498.


Lorlatinib (PF-06463922) is a potent and CNS penetrant ALK/ROS1 TKI

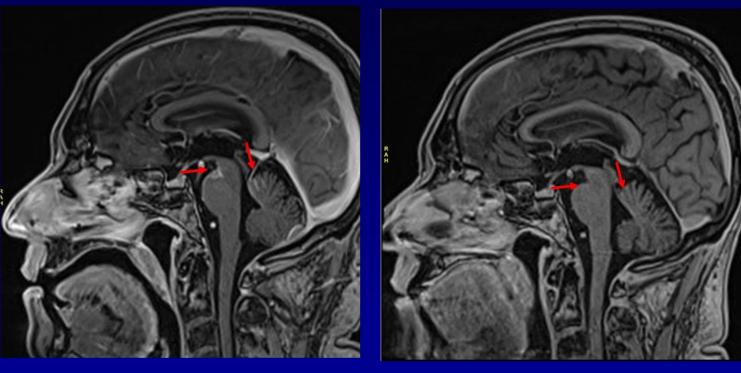
Log D



ALK WT NIH3T3 IC₅₀ (nM) ALK L1196M NIH3T3 IC₅₀ (nM) ROS1-CD74 IC₅₀ (nM) MDR BA/AB CSF or free brain:free plasma (rodent)


Zou HY, et al. *Proc Natl Acad Sci U S A* 2015;112:3493–3498.

Clinical activity of Lorlatinib in advanced ALK+ (and ROS1+) NSCLC

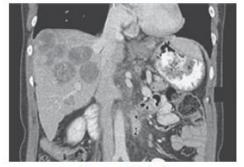

Bauer WCLC 2015

Activity of Lorlatinib in a patient with ALK G1202R mutation

Partial Response to Lorlatinib in a 40 y.o. woman with ALK+ NSCLC (G1202R+) with prior crizotinib and Alectinib treatment

Resolution of leptomeningeal disease arising after 3 prior ALK TKIs

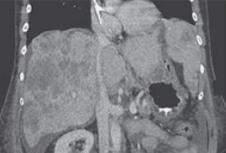
ALK+ NSCLC Post-Crizotinib, Ceritinib, Alectinib


Start Lorlatinib (PF-06463922) at 100 mg QD on June 18 2015

June 10, 2015

July 26, 2015

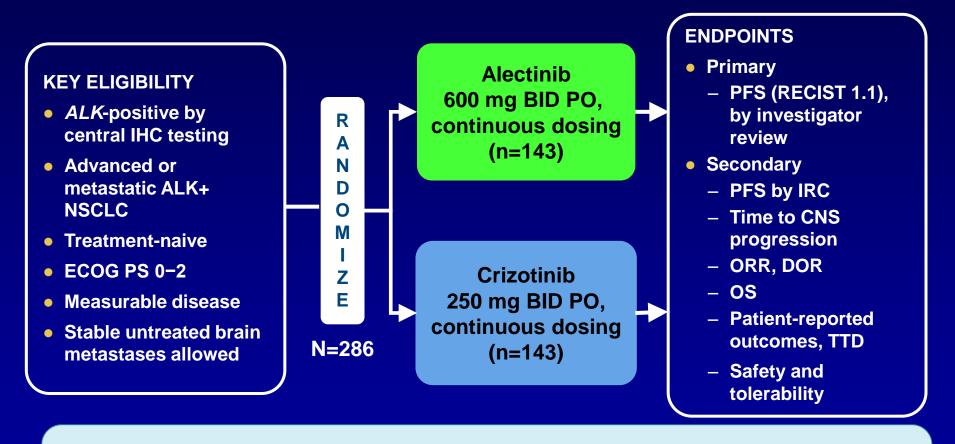
Resistance to Lorlatinib by the ALK mutation L1198F can result in resensitisation to crizotinib


Acquired Resistance to crizotinib mediated by C1156Y mutation Acquired Resistance to Loratinib with C1156Y mutation and L1198F mutations

Before Lorlatinib

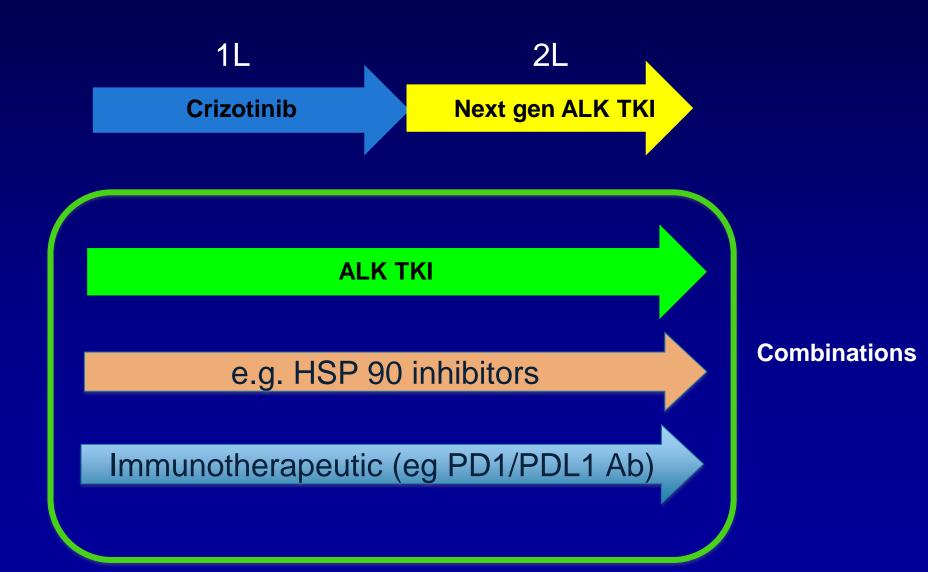
Response to Lorlatinib

Resistance to Lorlatinib


Response to Crizotinib

Shaw NEJM 2016

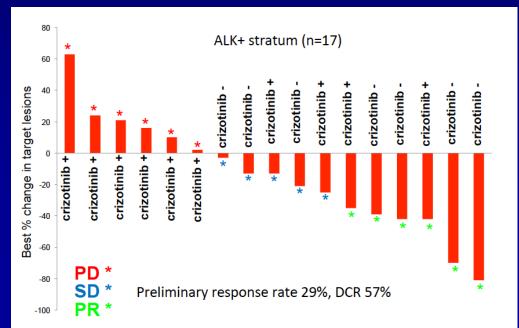
What is Optimal Therapeutic strategy for Advanced ALK+ NSCLC?



First-Line Phase 3 Studies: ALEX: Alectinib vs Crizotinib

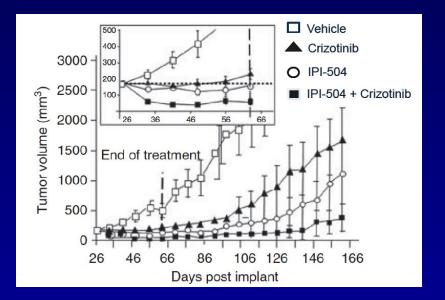
First-Line phase 3 studies: Ceritinib vs. Chemotherapy Brigatinib vs. crizotinib

What is Optimal Therapeutic strategy for Advanced ALK+ NSCLC?



HSP 90 inhibitors in ALK + NSCLC

NPM-ALK and EML4ALK are client proteins for HSP90


Preclinical treatment with HSP90 inhibitors results in rapid degradation of ALK protein and antitumour activity in ALK driven tumor models

Modest activity has been observed in phase II studies of single agents ganatespib, IPI-504 and AUY-922 in ALK+ NSCLC

AUY922 in ALK+ NSCLC

Combinations of ALK inhibitors with HSP90 inhibitors

ALK inhibitor	HSP90 inhibitor	Trial number
Crizotinib	Ganatespib	NCT01579994
Crizotinib	AT13387	NCT01712217
Ceritinib	AUY922	NCT01772797

Activity of IPI-504 and crizotinib alone and in combination in H3122 xenografts

Normant E, et al. Oncogene. 2011;30:2581-2586

Combinations of ALK TKIs with Immunotherapy: PDL1 + TIL expression in ALK+NSCLC

	ALK-Rearranged		
	Pre-Crizotinib (N=21)	Post-Crizotinib (N=14)	<i>P</i> -value ^a
PD-L1 ≥ 50% ^b	7 (33%)	2 (14%)	0.552
PD-L1 ≥ 5%	11 (52%)	3 (21%)	0.284
CD8+ TILs ^b 0 1+ 2+ 3+	3 (21%) 3 (21%) 7 (50%) 1 (7%)	3 (25%) 8 (67%) 1 (8%) 0 (0%)	0.500
PD-L1 ≥ 50% and High CD8+ TILs (gr 2-3+)	1/14 (7%)	0/12 (0%)	ND°
PD-L1 \ge 5% and High CD8+ TILs (gr 2-3+)	4/14 (29%)	0/12 (0%)	ND°

Gainor ASCO 2015

Combinations of ALK TKIs with Immunotherapy

ALK Inhibitor	PD1/PDL1 inhibitor
Ceritinib	Nivolumab
Alectinib	Atezolizumab
Crizotinib	Pembrolizumab
Lorlatinib	Avelumab

www.clinicaltrials.gov

Conclusions

Clinical trials with newer Generation ALK inhibitors e.g. Ceritinib, Alectinib, and Brigatinib show significant activity and allow sequential therapy in crizotinibrefractory patients in whom many tumours remain ALK dependent.

Optimal sequencing of ALK inhibitors; how to chose between drugs; and how to combine these agents with other agents e.g. immunotherapy remain to be established.