New molecular targets of interest: FGFR1

D. Ross Camidge, MD PhD Professor of Medicine/Oncology Joyce Zeff Chair in Lung Cancer Research University of Colorado Cancer Center

ELCC, Geneva, April 2016

Disclosures (DRC)

- Employment or leadership Position: None
- Advisory Role: Ad Hoc Advisory Boards/Consultations (most recent contact last 3 years):
 - 2016: G1 Therapeutics, Orion, Clovis
 - 2015: Ariad, Array, Eli Lilly, Novartis, Celgene, Abbvie, Clovis
 - 2014: Eli Lilly, Immunogen, Novartis, Genentech/Roche, Biodesix, AstraZeneca
- Stock Ownership: None
- Honoraria: Seminar/Talks to Industry (most recent contact last 3 years).
 - 2015: AstraZeneca, Clovis
- Research Funding:
 - 2013 (ongoing): Ariad
- Speakers Bureau/Talks for Industry: None
- Expert Testimony: None
- Other Remuneration: None

FGFR1 as a targetable driver oncogene in lung cancer

- Problems with the predictive markers in lung cancer
- Problems with the drugs

FGF family

- 22 FGFs, of which 18 considered biologically active, 6 subfamilies
 - Secreted
 - Heparin sulfate proteoglycan bound (stabilization, protease protection)
 - Endocrine Factors
 - FGF19, 21 and 23
 - Involved in bile acid, cholesterol, glucose, vit D and phosphate homeostasis
 - Dependent on klotho proteins (klotho or $\beta\text{--klotho}$) in target tissue
 - Paracrine/Autocrine Factors

University of Colorado Anschutz Medical Campus

Dientsmann et al, Annals Onc 2013 Kelleher et al, Carcinogenesis 2013

FGFR family

- 4 cell surface receptors FGFR1-4
- Ligand specificity affected by splice variants of FGFR1-3 (may limit autocrine effects in normal physiology)

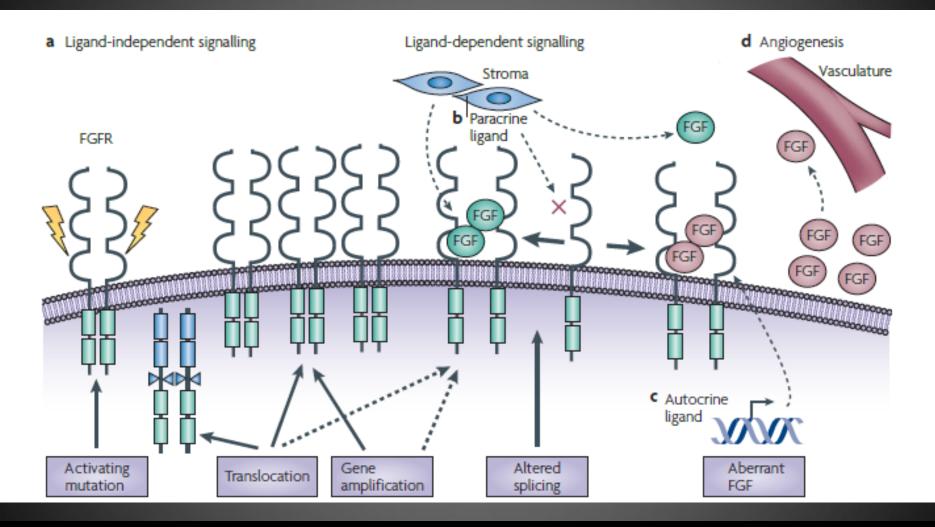
Dientsmann et al, Annals Onc 2013 Kelleher et al, Carcinogenesis 2013

Normal physiology (other than endocrine)

- Angiogenesis (VEGFR, PDGFR interaction)
- Musculoskeletal development

Gene	Genetic alteration	Syndrome
FGFRI	P252R mutation G48S and L245P mutations	Pfeiffer syndrome (46) Idiopathic hypo-gonadotropic hypo-gonadism (48)
	Heterozygous loss of function mutations	Kallmann syndrome type 2 (10%) (50)
FGFR2	Y372C mutation C342R mutation	Osteoglophonic dysplasia (52) Jackson-Weiss syndrome (53)
	W290G and C342W mutations	Crouzon syndrome (53)
	S252W and P253R mutations W290C, Y340C mutations Y375C	Apert syndrome(56) Pfeiffer syndrome (58) Beare-Stevenson cutis gyrata
	K526E mutation	syndrome (60) Familial scaphocephaly syndrome (62)
	1156R LADD mutation	Lacrimo-auriculo-dento- digital syndrome (64)
FGFR3	G1138A	Achondroplasia (66)
	Ala391Glu substitution	Crouzon syndrome with acan- thosis nigricans (68)
	C742T mutation	Thanatophoric dysplasia type I and type II (33)
FGFR4	Asn540Lys substitution	Hypochondroplasia (71)

Pfeiffer syndrome



Achondroplasia

Kelleher et al, Carcinogenesis 2013

FGFR pathway: Oncogenesis by implication

Turner and Grose, Nat Rev Cancer 2010

Primary aberrations in lung cancer: FGFR1 amplification

Table 1. Common FGFR genomic deregulations in solid tumors

Aberration		Tumor	Prevalence (%)
FGFR1	Amplification	Breast (hormone receptor positive)	10
		Lung (squamous cell carcinoma)	10-20
		Lung (small cell)	6
		Head and neck (squamous cell carcinoma)	10-17
		Esophageal (squamous cell carcinoma)	9
		Ovarian	5
		Osteosarcoma	5
FGFR2	Amplification	Breast (triple-negative)	4
		Gastric	5-10
	Mutation	Endometrial	12
FGFR3	Mutation	Bladder (nonmuscle invasive)	50-60
		Bladder (muscle-invasive)	10-15
	Translocation	Bladder (muscle-invasive)	6
		Glioblastoma	3-7
FGFR4	Amplification	Colorectal	5
	Mutation	Rhabdomyosarcoma	8

University of Colorado Anschutz Medical Campus

Dientsmann et al, Annals Onc 2013

Continuous variables

- Clarification of relevance of 'positivity' cutpoint and resulting frequency of 'positives' depends on associated endpoint
 - Presence above background
 - Prognosis in resection series
 - Predictive of 'benefit' from specific therapy in advanced disease (response, PFS, other)
- For 'amplification' additional methodology issues re distinguishing importance of specific region vs associated regions (high polysomy, amplicon, etc)

Sq NSCLC: Weiss et al

- 155 Sq NSCLC. SNP array analysis. GISTIC algorithm.
- <u>9.7% (15/155) 133Kb region 8p12 (at least 4 copies = amplification). Region includes FGFR1.</u>
- 8p12 probe FISH <u>22%</u> (34/153) Sq NSCLC (at least 9 copies = amplification)

Weiss et al. Sci Transl Med. 2010 Dec 15;2(62):62ra93.

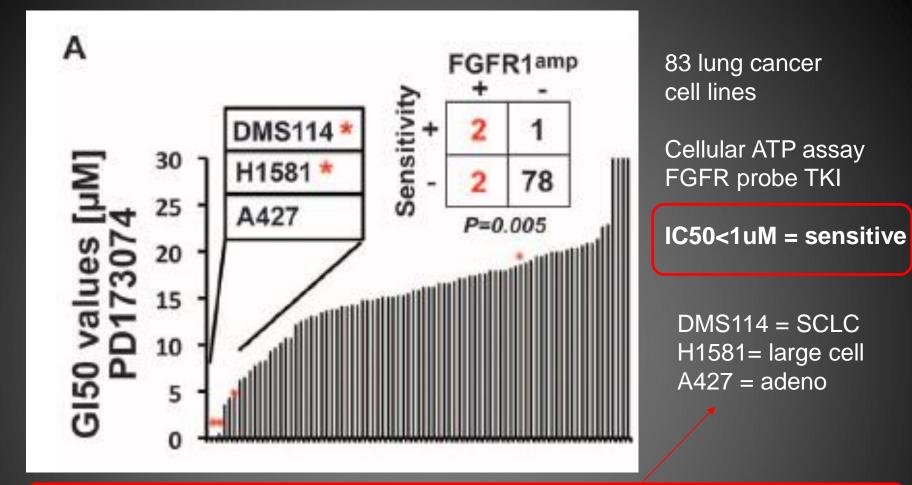
TCGA: FGFR1 And 11q Amplification Seen Commonly In NSCLC

Tumor type	FGFR1 amp freq	FGFR1 and/or 11q amp freq	n
Lung squamous cell carcinoma	16.9%	34.3%	178
Lung adenocarcinoma *	3.5%	14.3%	230

*Provisional TCGA data.

Amplification determined by Genomic Identification of Significant Targets in Cancer analysis of array CGH and SNP array data in TCGA studies

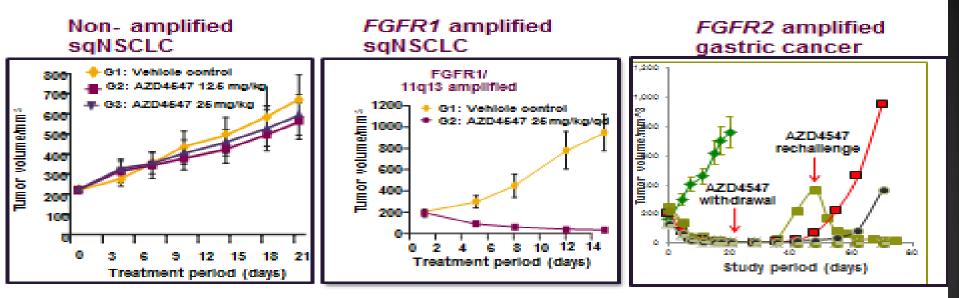
Kinase activity of FGFR inhibitors


Ponatinib

"	FGFR	inhibi	itors"	"VEG	FR in	nibitors"
			Ninten danib*	Axiti nib [#]	Pazop anib*	
FGFR1	0.3	<1	58	69	218	140
FGFR2	0.2	<1	186	37		
FGFR3	1	1	253	117		130
FGFR4	7	<1	1000	610		800
VEGFR1	87		162	34	1	13
VEGFR2	55		9	21	0.3	12
VEGFR3	35		34	13	0.3	47

* Literature data from EPAR or FDA Pharmacology review # Published data (poster or article)

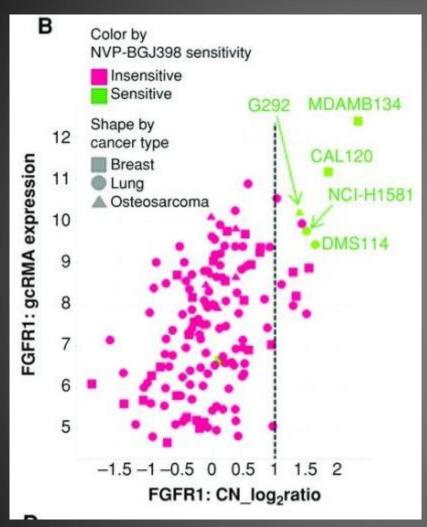
	F Ulla		
IC ₅₀ < 10 nM		IC ₅₀ < 50 nM	
Kinase	IC ₅₀ (nM)	Kinase	IC ₅₀ (nM)
ABL	0.37	BMX	47.2
ABL	0.44	CSK	12.7
ABL ^{Y253F}	0.3	DDR2	16.1
ABL ^{T315I}	2	EPHB4	10.2
ABL ^{M351T}	0.3	FGFR3	18.2
ABL ^{H396P}	0.34	FLT3	12.6
ARG	0.76	JAK1	32.2
BLK	6.1	c-KIT	12.5
EPHA2	2.1		16
EPHA3	6.7	PDGFRa ^{D842V}	15.6
EPHA4	1.1	PYK2	35.1
EPHA5	0.69	TIE2	14.3
EPHA7	8.5	TRKA	11.4
EPHA8	2.5	TRKB	15.1
EPHB1	1.2	TRKC	13.2
EPHB2	0.63		
EPHB3	1.1		
FGFR1	2.23		
FGFR1 ^{V561M}	7.3		
FGFR2	1.6		
FGFR2 ^{N549H}	0.45		
EGFR4	7.7		
FGR	0.45		
FMS	8.6		
FRK	1.3		
FYN	0.36		
HCK	0.11		
KIT ^{V560G}	0.41		
LCK	0.28		
LYN	0.24		
LYNB	0.21		
PDGFRα	1.1		
	0.84		
PDGFRa ^{T674I}	3		
PDGFRß	7.7		
RET	0.16		
RET ^{V804L} RET ^{V804M}	3.7		
	1.4		
c-SRC VEGFR1	5.4		
VEGFR1	3.7 1.5		
VEGFR2 VEGFR3	1.5		
YES	0.89		
100	0.09		


2/3 FGFR inhibitor sensitive lung cancer cell lines 'FGFR1 amp' – 1 of which was squamous (8p12 amp by SNP array = at least 4 copies)

2/4 (50%) 'FGFR1 amp' cell lines sensitive to FGFR inhibition

Weiss et al. Sci Transl Med. 2010 Dec 15;2(62):62ra93.

FGFR amplified patient derived explants are sensitive to AZD4547



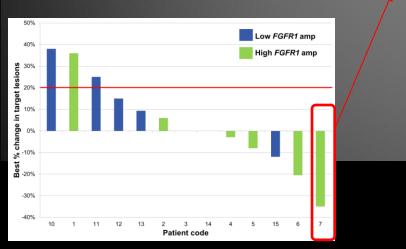
- Patient derived explant models
- Tumor regressions in FGFR amplified models at 12.5 and 25 mg/kg qd
- No efficacy in non-amplified sqNSCLC model

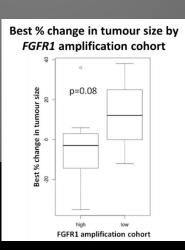
Zhang J et al. Clin Cancer Res 2012;18:6658–67 Xie L et al. Clin Cancer Res. 2013; 19:1-12

FGFR1 amplification in breast, lung, and osteosarcoma cancer cells is associated with response to NVP-BGJ398.

- FGFR1 copy number gain defined as log₂ ratio ≥1 (equal to ≥4 normalized DNA copies)
- IC₅₀ less than 500 nmol/L were classified as sensitive
- 2/7 lung ca AMP sensitive (28%)
- 2/5 breast ca AMP sensitive (40%)
- 1/1 osteosarcoma AMP sensitive (100%)

Guagnano V et al. Cancer Discovery 2012;2:1118-1133


Challenges of moving preclinical data to clinical trial design


- Frequency of 'amplification' positivity varies by methodology and cutpoint used – highest rates in squamous cancer
- 'Positivity' in small cell line series associated with 28-50% 'sensitivity'
 - at relatively high IC50s
 - Most preclinical data is growth inhibition. ?best support for ORR as relevant clinical endpoint?
 - Even if shrinkage results not all sensitivity = objective responses (eg ALK rearranged – 61% ORR to crizotinib even though 90% tumors shrink)

AZD4547 Efficacy in FGFR1 amp Sq NSCLC cohort

- 15 patients treated.
 - 8 patients FISH ratios 2-2.8 (low amplification)
 - 7 patients FISH ratios > 2.8 (high amplification)
- Grade 3 related AEs in 3/15 (20%) (central serous retinopathy, hyponatremia, dehydration) and 3 AE related discontinuations
- 1/14 (7%) evaluable had PR ('high level amp')

Paik et al, AACR 2014 Paik et al, ASCO 2014

BGJ398 Efficacy

AMP = FGFR1 to chromosome enumeration probe [CEP] 8 [FGFR1] \geq 2.2 or an average FGFR copy number \geq 6 signals/nucleus

Nogova et al, submitted

Most common AEs (≥20%) and other clinically relevant events

AZD4547 Adverse event			rt A s n=43 (%)		Part B&C 80 mg bid n=26 (%)			
	Grade 1	Grade 2	Grade 3	Grade 4	Grade 1	Grade 2	Grade 3	Grade 4
Constipation	17 (40)	6 (14)	1 (2)	-	9 (35)	2 (8)	-	-
Alopecia	15 (35)	6 (14)	-	-	6 (23)	3 (12)	-	-
Dry mouth	16 (37)	2 (5)	-	-	12 (46)	2 (8)	-	-
Stomatitis	13 (30)	3 (7)	2 (5)	-	4 (15)	3 (12)	1 (4)	-
Hyperphosphatemia*	12 (28)	7 (16)	1 (2)	-	2 (8)	3 (12)	-	-
Nail disorder	9 (21)	8 (19)	2 (5)	-	7 (27)	3 (12)	1 (4)	-
Dry skin	17 (40)	1 (2)	-	-	3 (12)	2 (8)	-	-
Diarrhea	12 (28)	2 (5)	-	-	6 (23)	3 (12)	-	-
Decreased appetite	10 (23)	3 (7)	-	-	7 (27)	3 (12)	-	-
Back pain	9 (21)	3 (7)	1 (2)	-	2 (8)	-	-	-
Vomiting	10 (23)	2 (5)	-	-	6 (23)	2 (8)	-	-
Nausea	10 (23)	1 (2)	-	-	7 (27)	2 (8)	-	-
Fatigue	6 (14)	2 (5)	2 (5)	-	4 (15)	6 (23)	1 (4)	-
Cough	8 (19)	1 (2)	1 (2)	-	-	-	-	-
Asthenia	6 (14)	2 (5)	1 (2)	-	2 (8)	2 (8)	-	-
Retinal pigment epithelial detachment	3 (7)	1 (2.3)	-	-	3 (12)	-	-	-
Other posterior eye signs	-	-	-	-	3 (12)	2 (8)	-	-
Keratitis	1 (2)	3 (7)	-	-		1(4)		_

*Reported as an AE

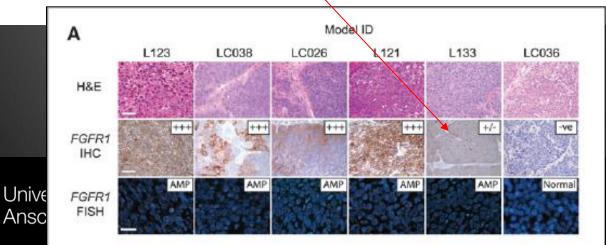
8

Tolerability in Sq NSCLC pts?

Treatment-Emergent Adverse Events Occurring in > 30% of All Patients by Treatment

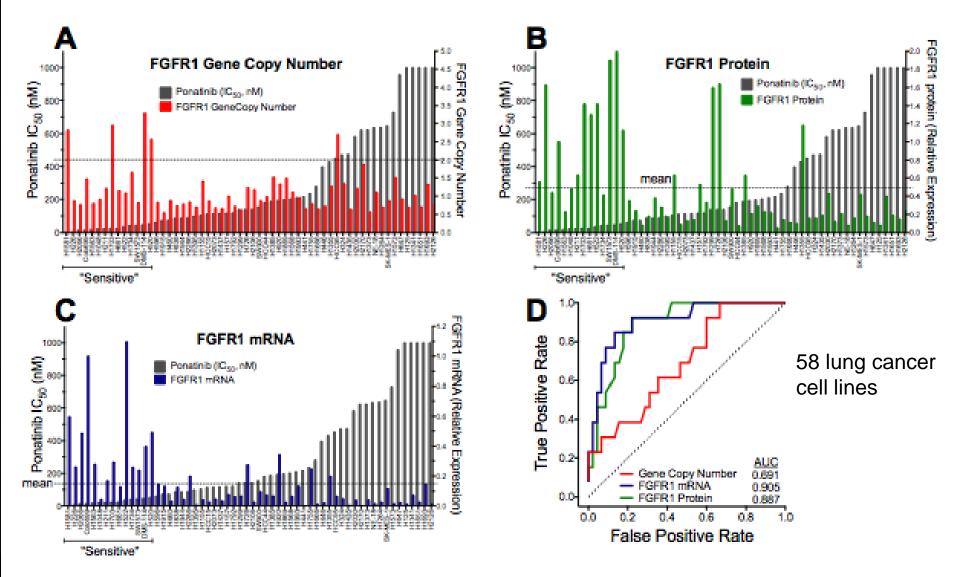
				BGJ398			All Pa	tients
			BGJ398	125 mg	BGJ398		N =	132
	BGJ398	BGJ398	125 mg	3 Weeks on QD/	150 mg	BGJ398		
	5-60 mg QD	100 mg QD	Continuous QD	1 Week off	QD	50 mg BID	All Grades	Grade 3/4
Adverse Event, n (%)	n = 19	n = 6	n = 57	n = 40	n = 6	n = 4		
Hyperphosphatemia	5 (26.3)	6 (100)	47 (82.5)	31 (77.5)	5 (83.3)	4 (100)	98 (74.2)	7 (5.3)
Constipation	1 (5.3)	3 (50.0)	29 (50.9)	18 (45.0)	0	2 (50.0)	53 (40.2)	1 (0.8)
Appetite decreased	2 (10.5)	3 (50.0)	26 (45.6)	17 (42.5)	3 (50.0)	2 (50.0)	53 (40.2)	5 (3.8)
Stomatitis	0	4 (66.7)	26 (45.6)	15 (37.5)	2 (33.3)	1 (25.0)	48 (36.4)	3 (2.3)
Diarrhea	7 (36.8)	5 (83.3)	16 (28.1)	14 (35.0)	1 (16.7)	3 (75.0)	46 (34.8)	0
Nausea	6 (31.6)	4 (66.7)	16 (28.1)	13 (32.5)	3 (50.0)	3 (75.0)	45 (34.1)	2 (1.5)
Fatigue	6 (31.6)	0	16 (28.1)	18 (45.0)	1 (16.7)	2 (50.0)	43 (32.6)	4 (3.0)

Nogova et al, submitted


Predictive biomarker performance

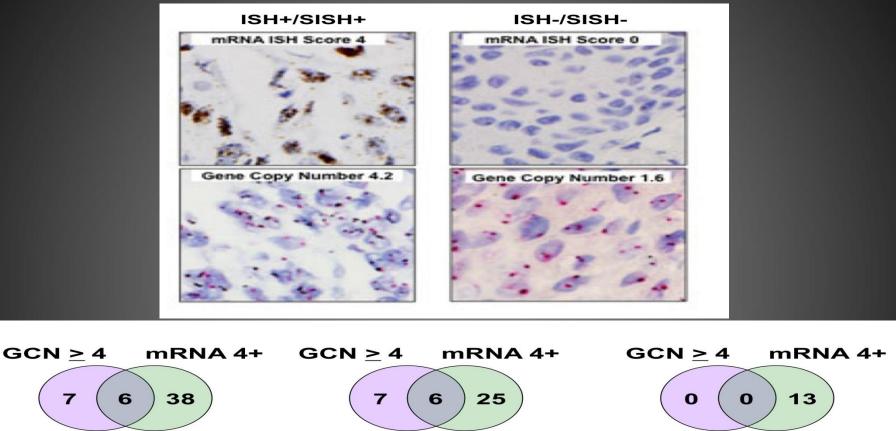
IS AMPLIFCATION ALWAYS FUNCTIONAL?: Sq NSCLC PDTX?

			Squamous cell lung primary model ID							
			LC036	LC011	L133	LC022	LC038	LC026	L121	L123
FGFR1 FISH Score (1-6)			1	4	6	5	6	6	6	6
FGFR1 Gene Cop (GCN)		1.86	2.58	6	3.94	10	30	10	>10	
FGFR1 IHC Score (0-3+)			0	2+	0-1	2+	3+	3+	3+	3+
FGFR1 (WB)	kDa	170 130 95		=				-		
GAPDH (WB)		43	-	-	-	-		-	-	-
AZD4547 Efficacy at 25mg/kg/qd (% TGI)		/qd	18 (P=0.25)	45 (P=0.02)	55 (P=0.01)	69 (P≤0.0001)	94 (N≤0.0001)	134 (P ≤ 0.0001)	190* (P≤0.0001)	199 (P≤0.000


Figure 4. AZD4547 antitumor efficacy correlates well with FGFR1 gene and protein expression levels. Model summary table displaying FGFR1 FISH score, gene copy number (GCN), IHC score, protein expression by Western blotting, and antitumor efficacy in response to 2 to 3 weeks, once daily oral AZD4547 treatment (25 or 12 mg/kg). Western blot data were obtained using FGFR1 and GAPDH antisera on fresh tumor fragment lysates. P values were calculated using a one-tailed t test.*. AZD4547 dosed at 12.5 mg/kg/gd.

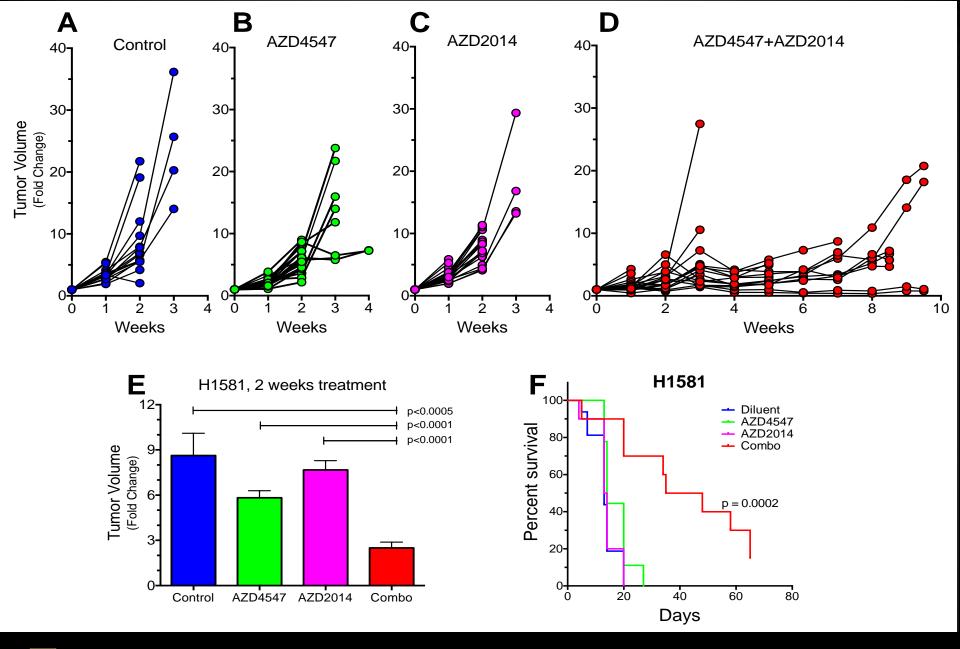
4/5 AMP PDTX models sensitive

Zhang et al, CCR 2012


Copy number associates with driver state, but is it the driver?

Wynes et al, CCR 2014

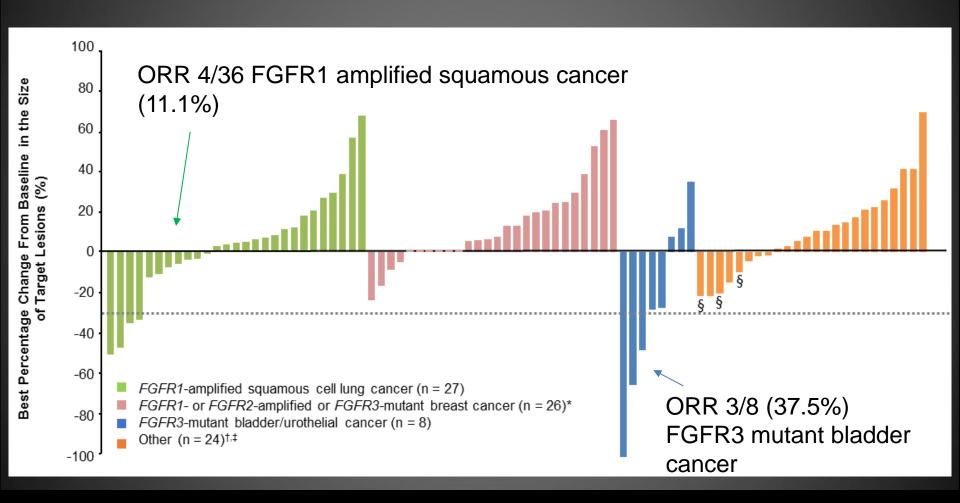
Message vs gene?


Entire Cohort n=151 SCC/mixed/NOS n=103

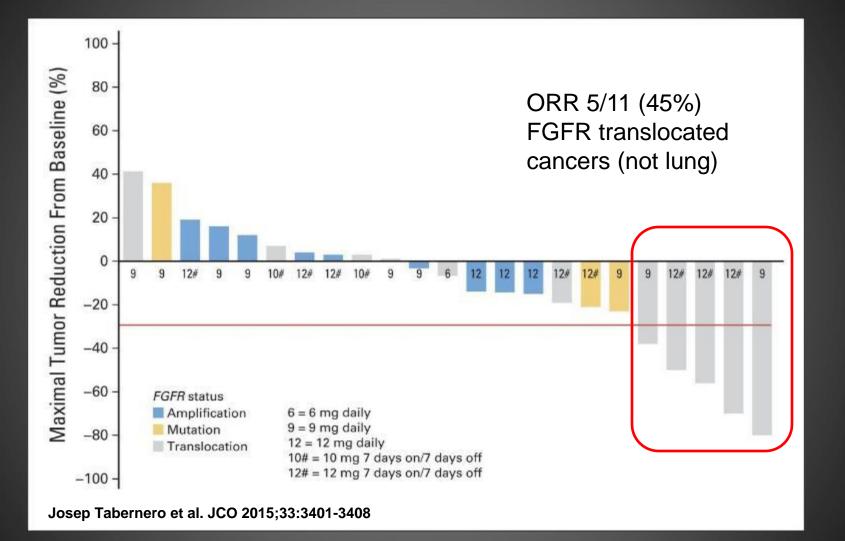
Adenocarcinoma and large cell carcinoma n=48

Cutpoints from cell line TMA and clinically achievable IC50 for FGFR inhibitor

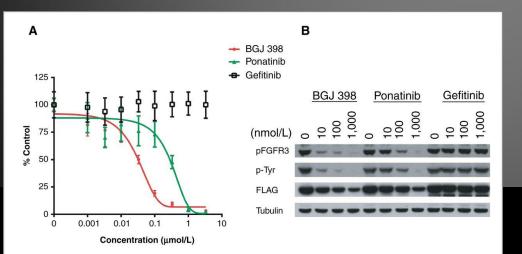
Wynes et al, CCR 2014


Singleton et al CCR 2015

BGJ398 Efficacy


AMP = FGFR1 to chromosome enumeration probe [CEP] 8 [FGFR1] \geq 2.2 or an average FGFR copy number \geq 6 signals/nucleus

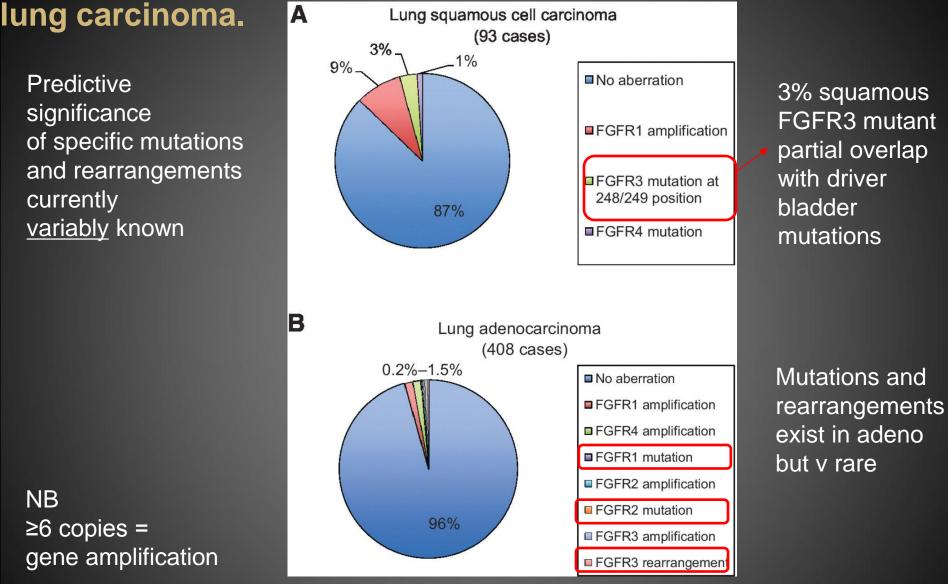
Nogova et al, submitted


JNJ42756493 Relative change from baseline in target lesion size (at best tumor response).

FGFR3 fusions

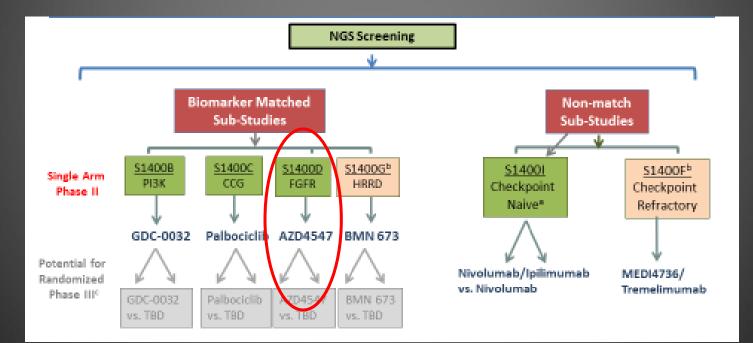
- 24 lung adenocarcinomas with no known oncogene. NGS
- FGFR3-TACC fusion in 1 patient
- Screen larger cohort and 3 total cases found = 0.3% prevalence adeno
- Sensitive to FGFR TKI in BAF3 model

Marzia Capelletti et al. Clin Cancer Res 2014;20:6551-6558


FGFR2 mutations in lung cancer

- 37 year old male never smoker
- NSCLC with prominent glandular differentiation positive staining by IHC for CD56 and TTF-1 and negative for synaptophysin and chromogranin
- Insertion mutation: A266_S267insSTVVGGD
- 21 bp duplication in ECD of FGFR2
- Sensitizing to FGFR TKI in vitro
- V rare example? (0/96 NSCLC screened)

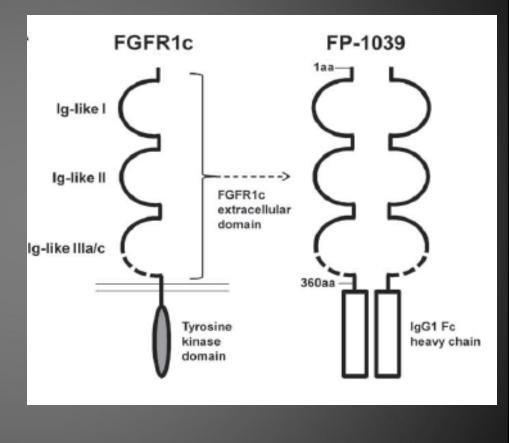
Tanizaki et al, Cancer Research 2015


Relative frequencies of FGFR aberrations in non-small cell

AZD4547: Clinical Development in NSCLC

 AZD4547 is being investigated in a phase II/III trial as part of the Master Lung Protocol in FGFR amplified, mut+, gene fusion+ setting.

New approaches?


Ongoing directions for FGFR pathway inhibition

 Improved tolerability (drug/dosing/schedule) in tumors with proven drivers (eg FGFR mutations, gene fusions)

FP-1039/GSK3052230 "GSK230"

- FP-1039, also known as HGS1036 or GSK3052230 "GSK230"
- Soluble decoy receptor
- ECD of FGFR1c linked to the hinge and Fc regions of human lgG1
- Binds to certain FGF ligands and prevents the activation of their cognate receptors (potential for ligand dependent cancers)
- Little or no affinity to hormonal FGF (potential for better therapeutic window)

Harding TC Sci Transl Med 2013; 5: 178ra39

Ongoing directions for FGFR pathway inhibition

- Improved tolerability (drug/dosing/schedule) in tumors with proven drivers (eg FGFR mutations, gene fusions)
- Improved identification of FGFR dependent cases responsible for rare responses in nonmutated/gene fused tumors

Ongoing Ponatinib IITs in FGFR NSCLC

A Phase II Study of Ponatinib in Cohorts of Patients With Lung Cancer Preselected Using Different Candidate Predictive Biomarkers (RET and FGFR)

<u>Clinical Trial</u> <u>Schema:</u>

Acquire tumor block/slides – confirm histology, confirm not EGFR Mt or ALK+ (if adenocarcinoma), confirm adequate for molecular testing

Prospectively screen *FGFR1* mRNA ISH and *FGFR1* copy number SISH all patients

- Trial uses initial FGFR1 entry cutpoints set by cell line TMA, IC50 and predicted achievable Cmin with ponatinib at 45mg
- Iterative design, adding new cohorts with modified entry cutpoints as data emerge

Summary

- Clinical responses to FGFR inhibitors have been seen in lung cancer
- Preclinical and clinical data suggest FGFR1 amplification inadequate as predictive biomarker
- Mutations and translocations may be highly predictive but are rare in NSCLC
- True basis of sensitivity in FGFR1 amplified cases remains under exploration
- Drug tolerability will need to be addressed for chronic dosing in sensitive cases

Questions?

Ross.Camidge@ucdenver.edu

