

learning to care

ESO OBSERVATORY

3RD ESO **LUNG CANCER OBSERVATORY:**

Innovation and care in the next 12 months

15 April 2016 Geneva, Switzerland

Chairs: M.S. Aapro, CH - E. Felip, ES

The Observatory will be held during the ELCC 2016 European Lung Cancer Conference

16:45 - 18:15 Palexpo, Room W

For information on other ESO events visit www.eso.net

PANELLISTS

European

Oncology

M.S. Aapro

E. Felip Vall d'Hebron University Hospital, Barcelona, ES

K. Kerr

F. Mornex

U. Pastorino

Chairs: M.S. Aapro, CH - E. Felip, ES

TOPICS

Screening and surgery advances U. Pastorino IT

Therapeutic management of unresectable stage III NSCLC: an update F. Mornex, FR

Anti-PD1 and anti-PDL1 strategies in NSCLC: Their potential role in NSCLC treatment E. Felip, ES

Predictive markers in NSCLC K. Kerr, UK

Long-term lung cancer survivors: Patient needs F. Johansson, SE

Attendance is granted to all participants registered to the ELCC 2016 European Lung Cancer Conference.

The conclusion of the Observatory will be made available on the ESO website www.eso.net

Detailed information available at: www.eso.net

2015-2016 Predictions

- More effective systemic therapies are needed to improve outcomes of patients diagnosed with small cell lung cancer.
- The in 2016 expected results of the NELSON trial will hopefully open the way for low-dose CT lung cancer screening in Europe.
- Immunotherapy is a new standard of care in advanced NCSLC
- The time that you and I live in, is truly the IT-boom of drug development and early diagnostics. The fast, impressive, science gives lots of hope to all people affected. The challenge is for administrators to let efficiently new drugs reach the many in need.

3rd ESO Lung Cancer Observatory: Innovation and care in the next 12 months Friday 15th April 2016, 16.45 – 18.15 Panellists:

> Ugo Pastorino, IT Françoise Mornex, FR Enriqueta Felip, ES Keith Kerr, UK Fredrik Johansson, SE

Chair: M.S. Aapro, CH – E. Felip, ES

3rd ESO Lung Cancer Observatory: Innovation and care in the next 12 months

Ugo Pastorino

Istituto Nazionale per la Cura e lo Studio del Tumori Milan, Italy

View of a Surgical Oncologist

EUROPEAN LUNG CANCER CONFERENCE 2016

3rd ESO Lung Cancer Observatory: Innovation and Care in the next 12 months

SCREENING AND SURGERY ADVANCES

Ugo Pastorino

Thoracic Surgery, Istituto Nazionale Tumori, Milan

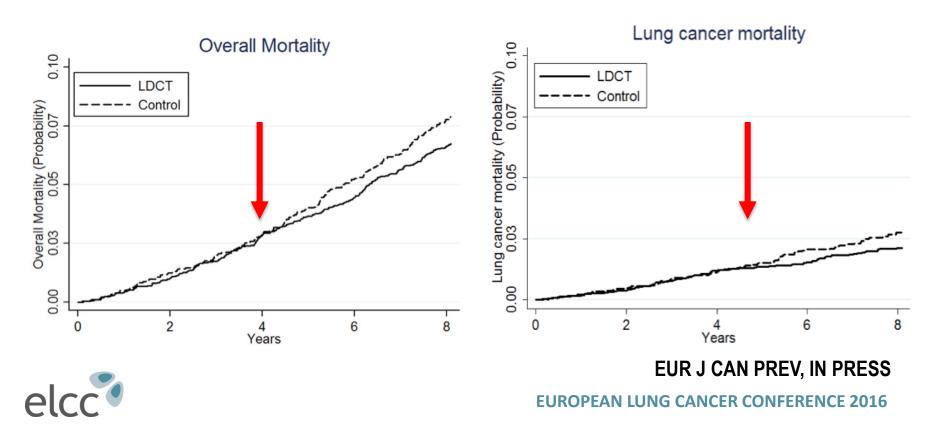
elcc2016.org

15 YEARS OF LDCT SCREENI		CONSISTENT DETECTION RATES HIGH FREQUENCY OF STAGE I			
	screene	d positive C1	Г LC	stage I	
non RCT 1	6 71,935	5 21%	1.0%	78%	
all RCTs 8	44,629	23%	1.1%	62%	
NLST alone	26,309	25%	1%	63%	
SIGNIFICANT MORTALITY REDUCTION: - 1% / YEAR					

LARGE SCALE SCREENING: WHICH IS THE BEST DESIGN ?

POOLED ANALYSIS OF ALL EUROPEAN RCTs IS ESSENTIAL

Lung cancer screening: European randomised LDCT trials


Study	Country	Year started	Subjects enrolled	Recruitment	Age	# CT	Years screening
DANTE NELSON ITALUNG DLCST MILD LUSI UKLS	IT NL-B IT DK IT D UK	2001 2003 2004 2004 2005 2007 2011	2,811 15,822 3,206 4,104 4,099 4,052 4,055	volunteers registry GPs volunteers volunteers population registry	60-74 50-74 55-69 50-70 49-75 50-69 50-75	5 3 4 5 4-8 5 1	5 4 4 5 8 5 1
Total			38,149				

POOLED ANALYSIS OF DANTE & MILD TRIALS

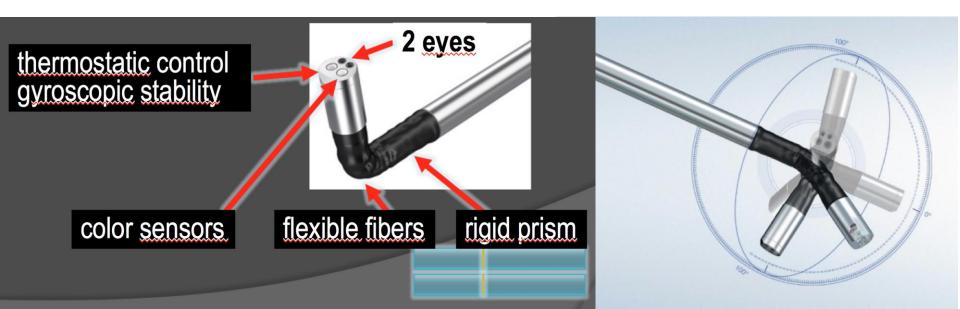
6,549 PARTICIPANTS, 52,637 PY, 520 DEATHS

non-significant 11% reduction of overall mortality in LDCT arm as compared to control arm, HR = 0.89 (95% CI: 0.74-1.06)

LDCT SCREENING IN 2016: SUMMARY

- good prospects for targeted screening
- pooled analysis of European RCTs essential

to improve individual selection (biologic)


and define best diagnostic algorithm

- biomarkers validation on-going
- action for quitting can improve outcome

LDCT & LUNG CANCER SURGERY

- minimally invasive approach is the standard
- VATS lobectomy feasible in > 90% of cases
- 3N1 + 3N2 stations must be excised
- new 3D technology has improved performance

2016-2017 Predictions

3rd ESO Lung Cancer Observatory: Innovation and care in the next 12 months

Françoise Mornex, MD, PhD Université Claude Bernard Centre Hospitalier Sud Lyon, France

View of a Radiation Oncologist

Therapeutic management of unresectable Stage III NSCLC

Françoise Mornex, MD, PhD Université Claude Bernard, LYON. Centre Hospitalier Lyon Sud, LYON, France, EMR 3738.

1-IASLC Staging project: the proposed eighth Edition

45

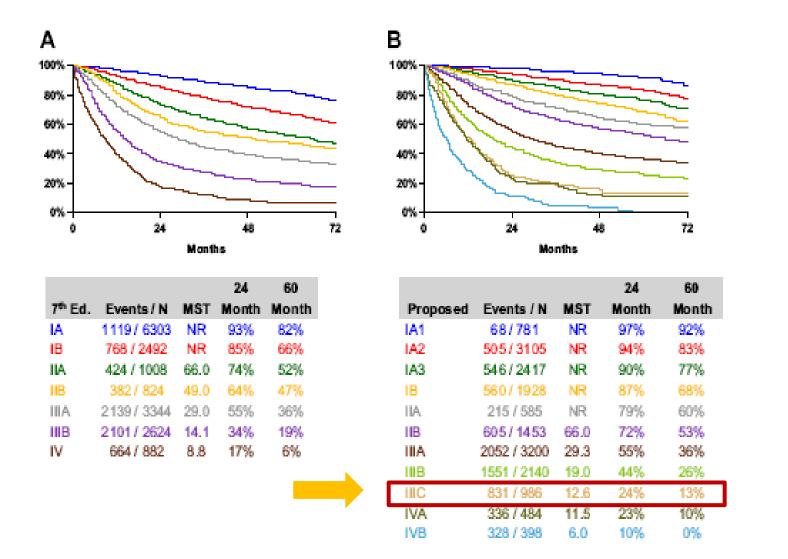
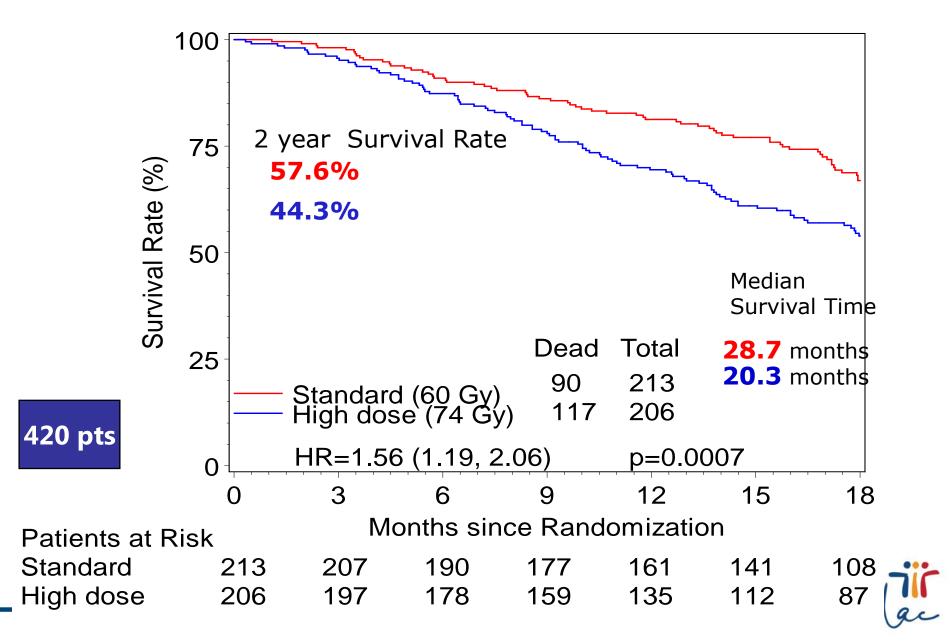


Figure 2. Overall survival by clinical stage according to the seventh edition (A) and the proposed eighth edition (B) groupings using the entire database available for the eighth edition. MST, median survival time. Survival is weighted by type of database submission: registry versus other.

2-IMRT as a tool to improve heart tolerance to high dose radiation

RTOG 0617

A Randomized Phase III Comparison of Standard-Dose (60 Gy) Versus High-Dose (74 Gy) Conformal Radiotherapy with Concurrent and Consolidation Carboplatin/Paclitaxel +/-Cetuximab In Patients with Stage IIIA/IIIB Non-Small Cell Lung Cancer (NSCLC)


Presenting Author: Jeffrey D. Bradley, MD

NCI Sponsored Cooperative Groups: RTOG, NCCTG, CALGB

Jeffrey D Bradley, Rebecca Paulus, Ritsuko Komaki, Gregory A. Masters, Kenneth Forster, Steven E. Schild, Jeffrey Bogart, Yolanda I. Garces, Samir Narayan, Vivek Kavadi, Lucien A Nedzi, Jeff M. Michalski, Douglas Johnson, Robert M MacRae, Walter J Curran, and Hak Choy

RTOG 0617 Overall Survival

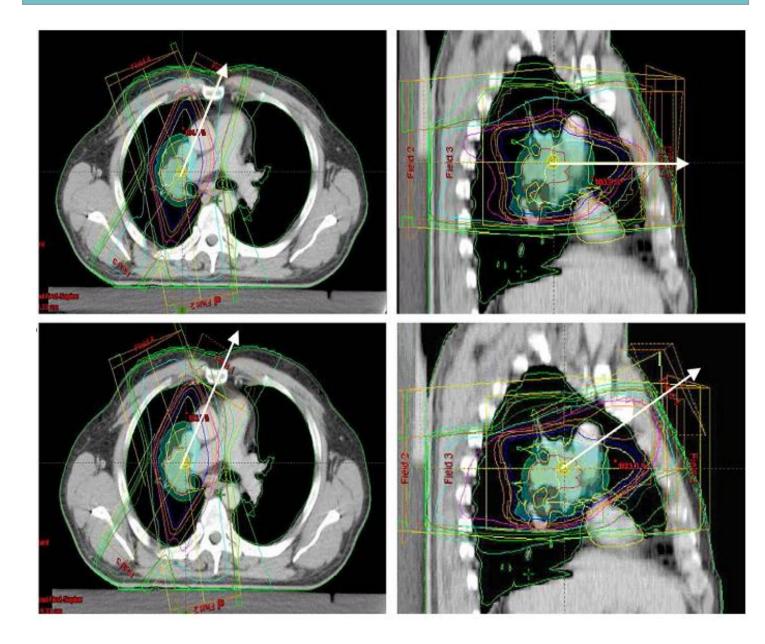
RTOG 0617:Multivariate Cox Model Backwards Selection

Covariate	Comparison	HR (95% CI)	p-value
Radiation dose	60Gy v 74 Gy	1.55 (1.07, 2.23)	0.020
Histology	Non-squam v Squam	1.37 (0.94, 1.98)	0.097
Gross Tumor Volume	Continuous	1.002 (1.000, 1.003)	0.034
Heart V5	Continuous	1.010 (1.004, 1.017)	0.002

Exit criteria = p>0.10; radiation dose and histology forced to remain Covariates dropped from the model were: gender, age, lung V5.

RTOG undertook a careful re-analysis of all heart contours and doses received by the heart.

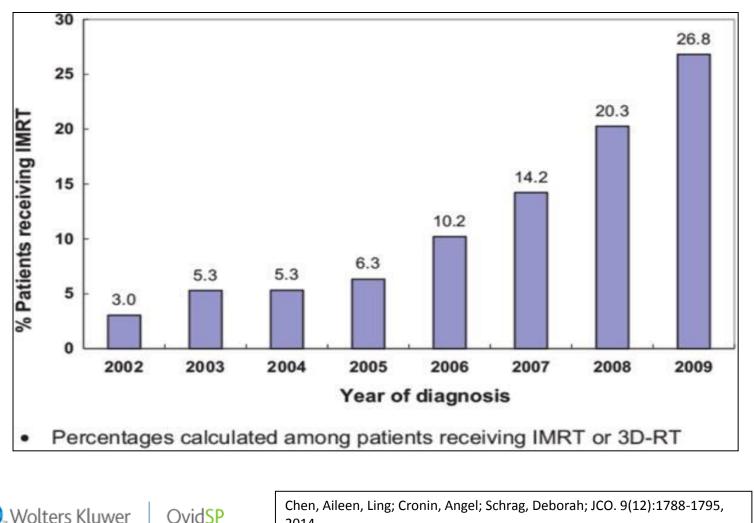
Heart Dose in RTOG 0617: IMRT vs. 3D RT


- 53% of patients in RTOG 0617 received 3D RT and 47%, IMRT
- The IMRT group had more Stage IIIB patients; larger PTVs (486 mL vs. 427 mL) and larger PTV: lung ratio than the 3D RT group
- In spite of the above, IMRT was associated with:

Outcome	3D-CRT	IMRT	P-value
Grade 3+ pneumonitis	8%	3.5%	0.0462
Heart V40	11.4%	6.8%	0.0026

 Conclusion: "IMRT is able to lower heart dose as compared to 3D RT" (no difference in OS/PFS between IMRT and 3D RT)

Chun S et al, Oral #20, IASLC 2015

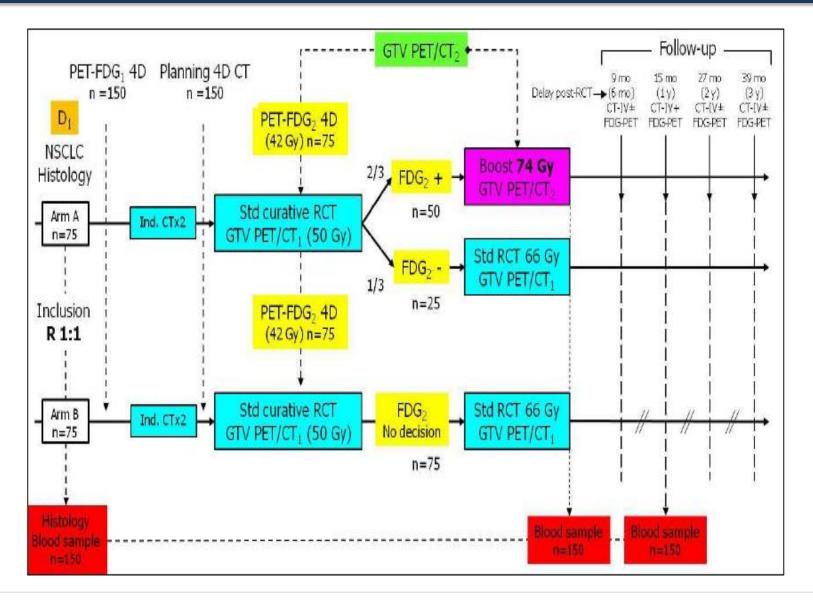

IMRT to reduce the heart dose

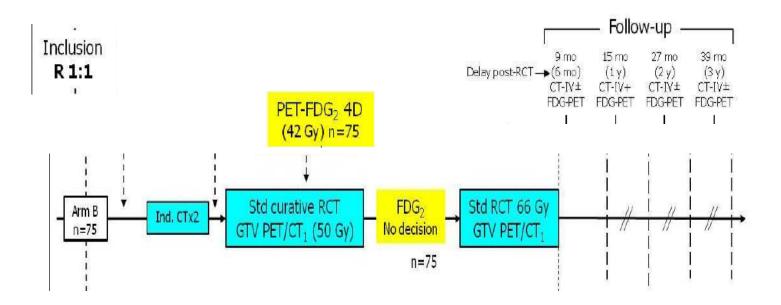
Effect of Heart Dose on Survival

Study	Prescription RT Dose	Conclusions	Reference		
IDEAL-CRT (Univ. College London)	Mean 67.5 Gy Maximum 73 Gy (30 fractions, isotoxic)	Strong association between lower OS and heart volumes receiving 65-75 Gy	Mini33.02: IASLC 2015 (Counsell N)		
NKI Amsterdam (retrospective)	66 Gy in 2.75 Gy fractions	Strong association between lower OS and higher heart doses	Mini33.03: IASLC 2015 (Belderbos J)		

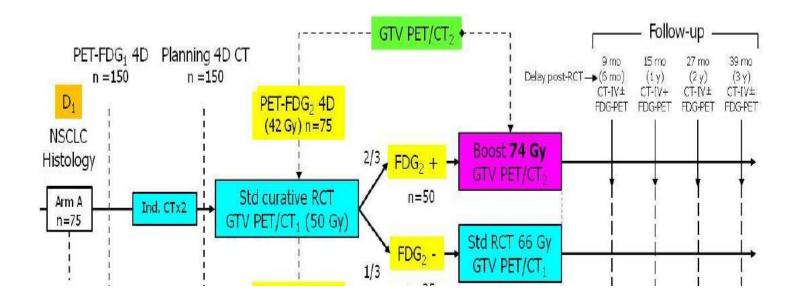
Comparative Effectiveness of Intensity-Modulated Versus 3D Conformal RT Among Patients with Stage III Lung Cancer

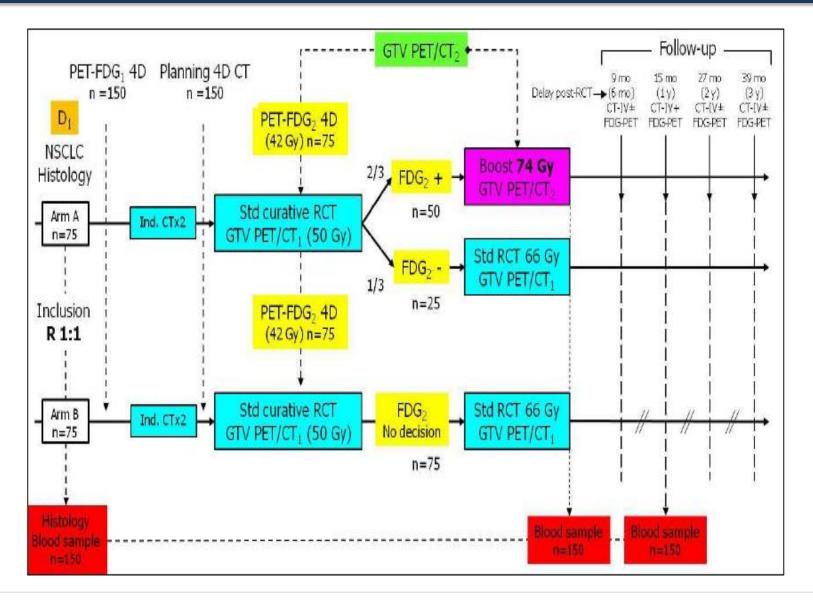
2014


Health



3-"Metabolic irradiation".


PET-CT contribution: Response evaluation and a tool for RT dose escalation?

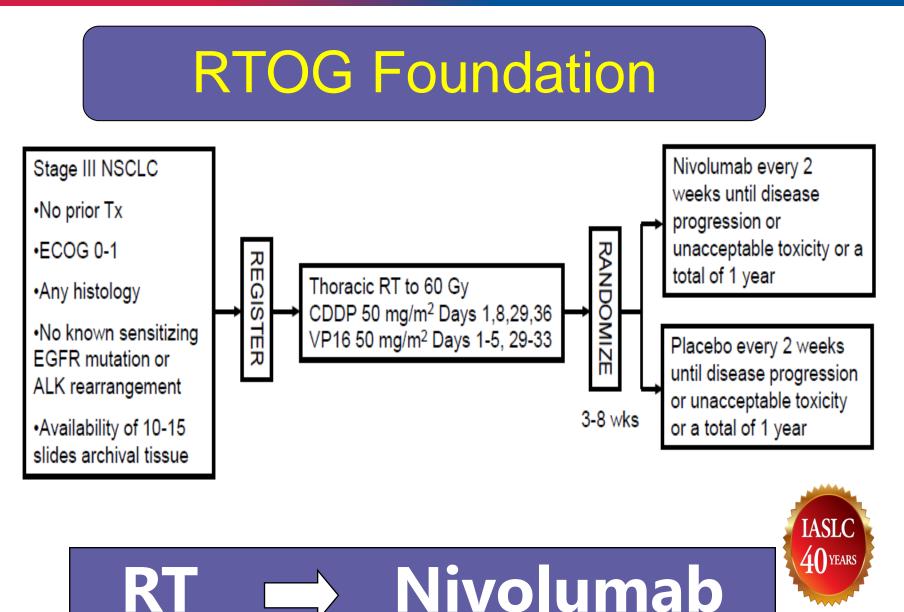


BRAS STANDARD = BRAS B 66 Gy en 33 fractions de 2 Gy en 7 semaines

BRAS EXPERIMENTAL = BRAS A Augmentation de dose à 74 Gy si PET-FDG POSITIF à 42 Gy

4. Trials with new targeted agents not yet successful, but promising!!

IASLC


40 YEARS

Stage IIIA/B NSCLC trials in progress or planned with rational strategies including targeted agents

- Metformin
- PDL, PDL1 alone (pembrolizumab, MED14736, nivolumab)
- Combinations of immunotherapy agents
- Tecemotide (L-BLP25)+ bevacizumab
- Trametinib (MEK)
- EGFR and ALK positive population only (antibodies, TKIs)

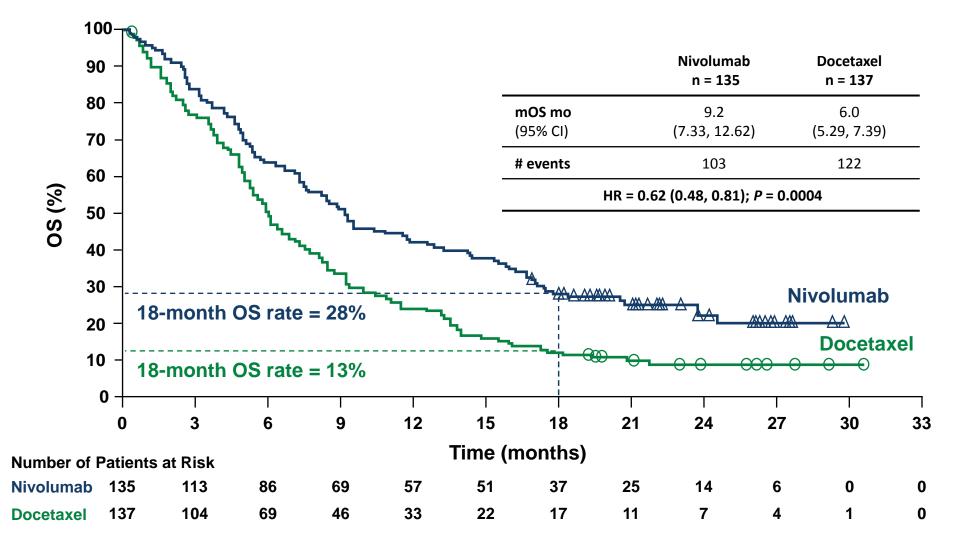
NTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

2016-2017 Predictions

3rd ESO Lung Cancer Observatory: Innovation and care in the next 12 months

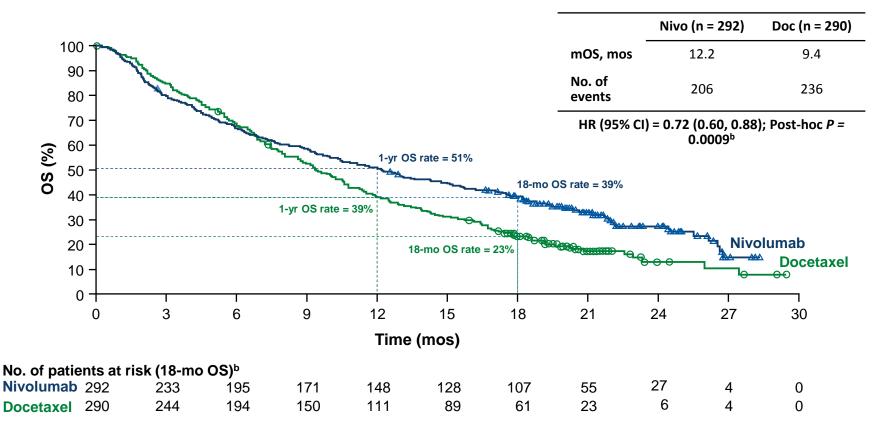
Enriqueta Felip Vall d'Hebron University Hospital Barcelona, Spain

View of a Medical Oncologist


3rd ESO Lung Cancer Observatory: innovation and care in the next 12 months

Anti-PD1 / anti-PDL1 strategies in NSCLC: Their potential role in NSCLC treatment

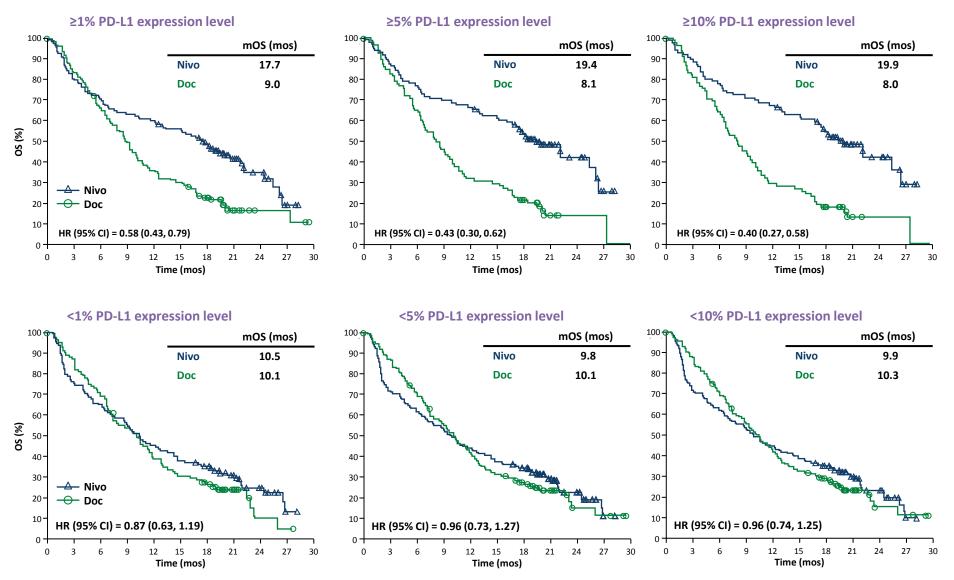
> Enriqueta Felip Vall d'Hebron University Hospital Barcelona, Spain


ELCC, Geneva, Switzerland 13-16 April 2016

CheckMate 017: updated overall survival

Reckamp K, et al. WCLC. 2015. Abstract 736

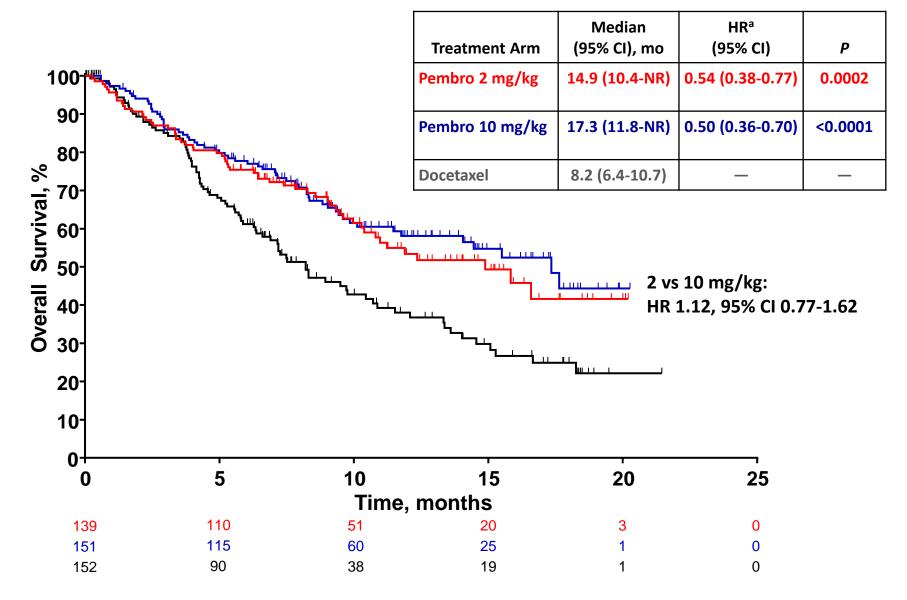
CheckMate 057: updated overall survival



^aBased on a July 2, 2015, DBL; ^bThe formal primary end point testing was based on the interim analysis (March 18, 2015).

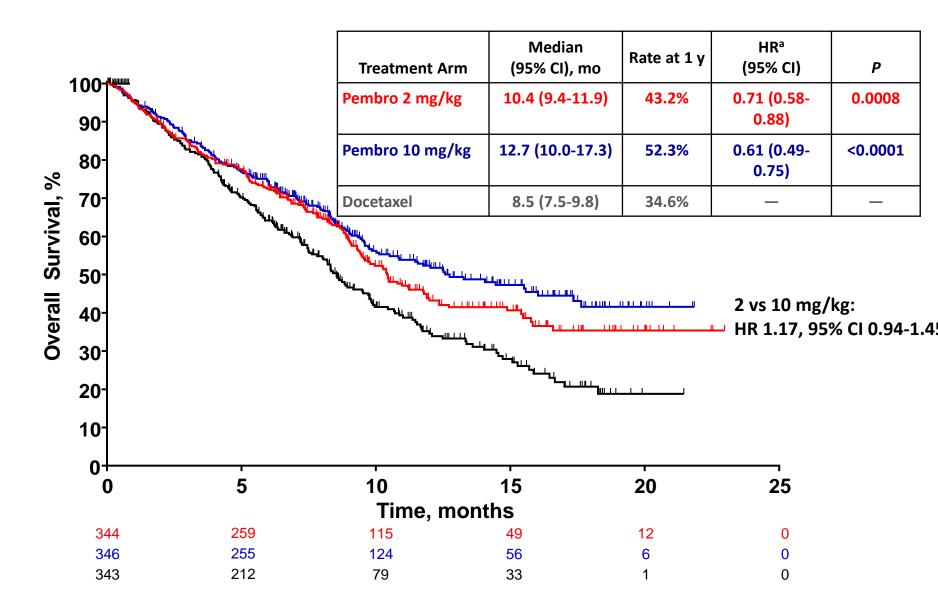
HR for 1-yr OS rate: 0.73 (96% CI: 0.59, 0.89), P = 0.0015

Borghaei H, NEJM 15


Overall survival by PDL1 expression

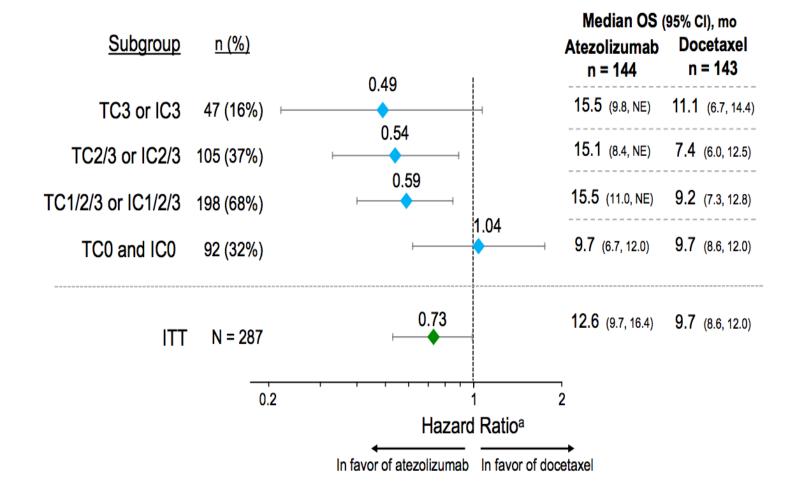
Based on a July 2, 2015 DBL. Symbols represent censored observations.

Borghaei H, NEJM 15


KEYNOTE-010, OS, PDL1 TPS ≥50% Stratum

Herbst, Lancet 2016

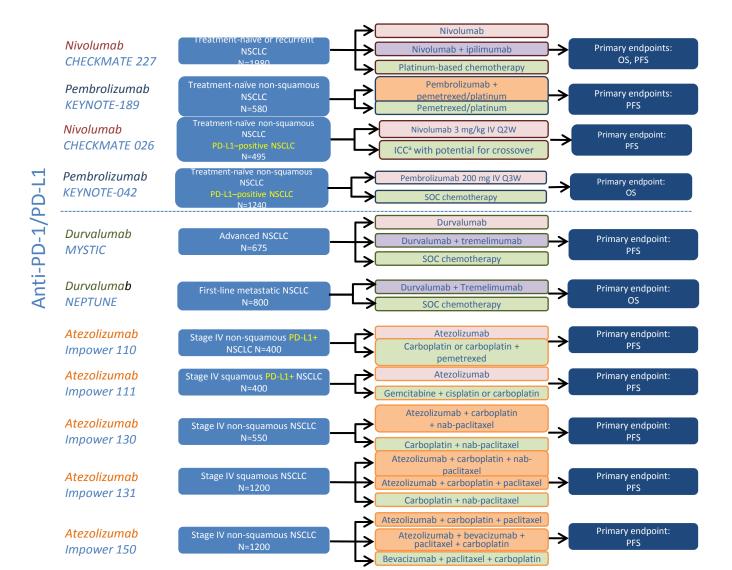
^aComparison of pembrolizumab vs docetaxel.


KEYNOTE-010 OS, PD-L1 TPS ≥1% (total population)

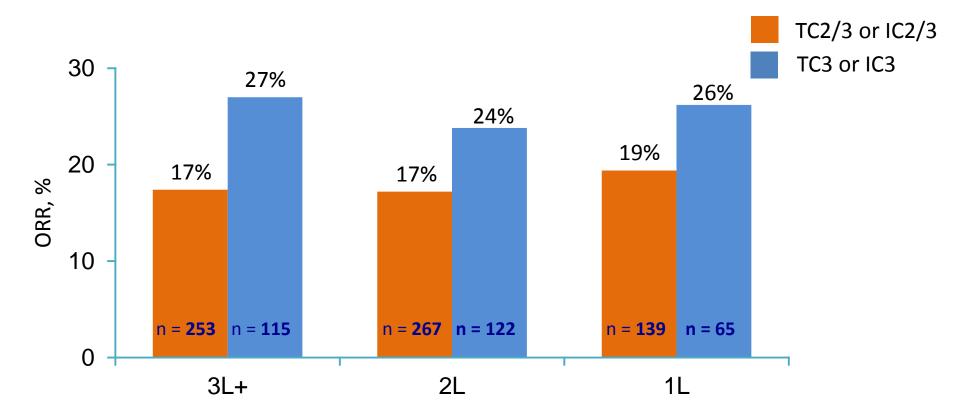
Herbst, Lancet 2016

^aComparison of pembrolizumab vs docetaxel.

Poplar: atezolizumab vs docetaxel OS data according to PDL1 level



Fehrenbacher L, Lancet 16


Anti-PD1/-PDL1 toxicity

- Treatment-related AEs less common with anti-PD1/-PDL1 than with docetaxel
- Common side effects are fatigue, pruritus, decreased appetite
- AEs uncommon (<5% of pts) but with special clinical relevance: pulmonary, GI, endocrinophaties

Phase 3 anti-PD1/-PD-L1 combination trials in 1st-line advanced NSCLC (>10,000 patients)

Checkpoints in 1st line BIRCH: TC3 or IC3 and TC2/3 or IC2/3 subgroups

- BIRCH enrolled patients with tumors that were PDL1 TC2/3 or IC2/3
- 34% of screened pts

Besse, ESMO 2015

Checkpoints in monotherapy vs CT in 1st line

- Phase II trial of nivolumab vs investigator's choice CT as 1st-line for stage IV or recurrent PD-L1+ NSCLC (CheckMate 026)
 - Primary outcome measures: PFS in subjects with strongly PD-L1+ tumor expression
- Phase III trial of MK-3475 vs platinum-based CT in 1L subjects with PD-L1 strong metastatic NSCLC
 - Primary outcome measures: PFS

PD-1/PD-L1 CDx in development, companions tests

pembrolizumab	nivolumab	Atezolizumab	Durvalumab
22C3	28-8	SP142	SP263
 1% or 50% Tumor only Only validated cutoff in a prospective clinical study 	 Retrospective analysis of 1, 5 and 10% 	IHC 3: ≥ 10% tumor immune cells positive for PD-L1 (IC+); IHC 2 and 3: ≥ 5% tumor immune cells positive for PD-L1 (IC+); IHC 1/2/3: ≥ 1% tumor immune cells positive for PD-L1 (IC+); IHC 0/1/2/3: all patients with evaluable PD-L1 tumor IC status	• Cut-off 25% tumor cells in NSCLC
 Developing PD-L1+ IHC CDx with Dako 	 Developing PD-L1+ IHC CDx with Dako No need for PD-L1+ testing in 2L + 	 CDx platform (Ventana) for development and to validate commercial PD-L1+ CDx 	 Developing CDx for PD-L1+ with Ventana

Anti-PD1/-PDL1 in NSCLC innovation and care in the next 12 months

- 2nd-line with anti-PD1/-PDL1 for pts with ECOGPS 0-1, RR 20% consistent across studies, less toxicity than docetaxel
 - ✓ Standard in squamous histology irrespective of PDL1 status
 - ✓ Standard in non-squamous histology, determining PDL1 status may help
- Higher RR in pts with PDL1+ tumors, greater benefit in pts with more PDL1 staining
 - ✓ Although different antibodies / different cut-off points, results regarding influence of PDL1 staining, similar across studies
 - Blueprint project; pathology committee of the IASLC with 6 of the commercial stakeholders to compare the tests for PDL1
- Large number of similar drugs compete in same treatment area
 - ✓ In 2nd-line randomized trials, control arm should include anti-PD1/-PDL1 compounds

Anti-PD1/-PDL1 in NSCLC innovation and care in the next 12 months

- Recruitment closed for 1st-line trials comparing nivolumab/pembrolizumab vs CT in PDL1+ tumors, results expected soon
 - ✓ Knowledge of naïve pts subgroup who will benefit from anti-PD1 strategies according to PDL1 status; will some stage IV NSCLC pts be treated without CT in future?
- Role of anti-PD1/-PDL1 strategies in ECOGPS2 will be defined
- Combination studies ongoing, no treatment change expected for the next 12 mo
 - ✓ With anti-CTL4, encouraging results; toxicity may be an issue
 - ✓ With CT, promising results in small sample size studies

Thanks!!!

efelip@vhebron.net

3rd ESO Lung Cancer Observatory: Innovation and care in the next 12 months

Keith Kerr

Aberdeen University Medical School Aberdeen Royal Infirmary, Foresterhill, Aberdeen,UK

View of a Pathologist

Predictive markers in NSCLC

Emerging molecular biomarkers as targets

Adenocarcinoma

- ROS1 fusion
- KRAS mutation
- RET fusion
- HER2 mutation
- BRAF mutation
- NTRK fusion

Resistance mechanisms T790M MET Phenotype

Squamous Cell Carcinoma

- FGFR1 amplification
- CDNK2

European School

EGFR protein IHC EGFR gene copy number MET exon14 mutations

How will those markers be detected

- Next generation sequencing platforms
 - Multiplex-cost tipping point
 - Different dynamic to requesting
 - Multifactorial data
- Are stand alone tests a thing of the past?
- Role of blood testing

learning to care

Immunotherapy

- Biological vs Evidential vs Fiscal arguments
- PD-L1 immunohistochemistry
 - It does work
 - Does it work well enough? Europe
 - It is complicated
 - Can it be made less so?
- Other biomarkers
 - Other check points?
 - Mutation burden however that might be measured

3rd ESO Lung Cancer Observatory: Innovation and care in the next 12 months

Fredrik Johansson

The Swedish Lung Cancer Association www.stodet.se Stockholm, Sweden

View of an Advocate Representative

learning to care

2016-2017 Predictions

Long-term lung cancer survivors: patient's needs

Fredrik Johansson fredrik.johansson@stodet.se

- Swedish Lung Cancer Advocacy
- www.stodet.se

Lung Cancer Europe

Lung Cancer Europe www.lungcancereurope.eu

Optimism is the faith that leads to achievement

- Patients want the latest news about new therapies & drugs available; today ePatients have to find & sort this wealth of information themselves.
- Many patients also want to participate in clinical trials and promising drug tests. Unfortunately, trials are not easy to find, and might not be known by the patient's medical team.

2016-2017 Predictions

Contact us

Fredrik Johansson fredrik.johansson@stodet.se

- Swedish Lung Cancer Advocacy
- www.stodet.se

Lung Cancer Europe

www.lungcancereurope.eu