Clinical trial designs and ongoing clinical trials in thoracic immune-oncology

ELCC 2016 15 April 2016 Geneva, Switzerland

David Carbone, MD PhD Director, James Thoracic Center The Ohio State University Columbus, Ohio USA

Disclosures

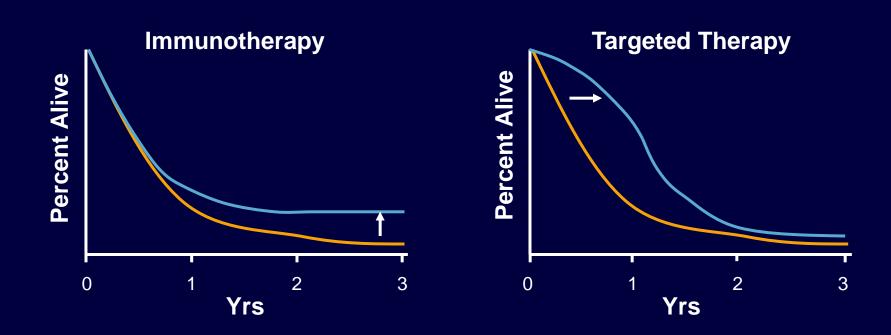
- Bayer Health Care
- Biodesix
- Biothera
- Boehringer Ingelheim
- Bristol Myers-Squibb (BMS)
- Clovis Oncology
- Eisai Inc.
- Genentech/Roche
- GlaxoSmithKline (GSK)
- MedImmune
- Merck
- Novartis

- Peregrine Pharmaceuticals, Inc.
- Pfizer
- Synta Pharmaceuticals Corp.

This includes receipt of grants/research support, receipt of honoraria or consulting fees, and participation in company sponsored speaker's bureaus.

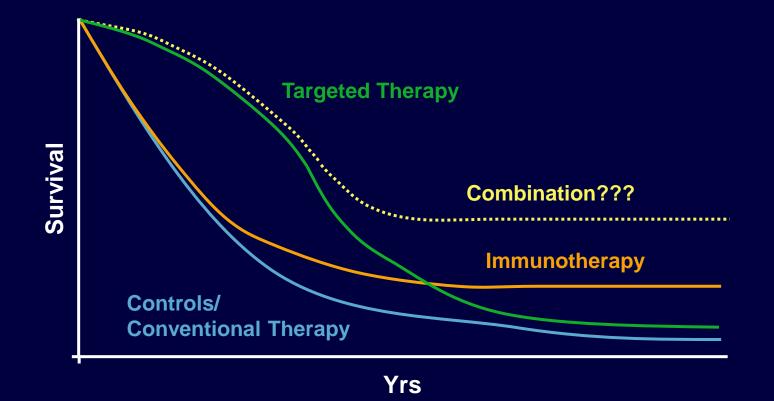
Clinical trial designs and ongoing trials

- 171 immunotherapy trials in lung cancer in clinicaltrials.gov
- Hundreds more poised to start
- Pointless to list them
- Very few trials have not been thought of!!


Optimal clinical trials designs

- We now have multiple very different therapy modalities for lung cancer patients
- Each of these modalities results in clinical benefit by different means
- Progression patterns are different
- Toxicity types and patterns are not all the same either
- Clinical trial design is not "one size fits all" any more than our therapies are.

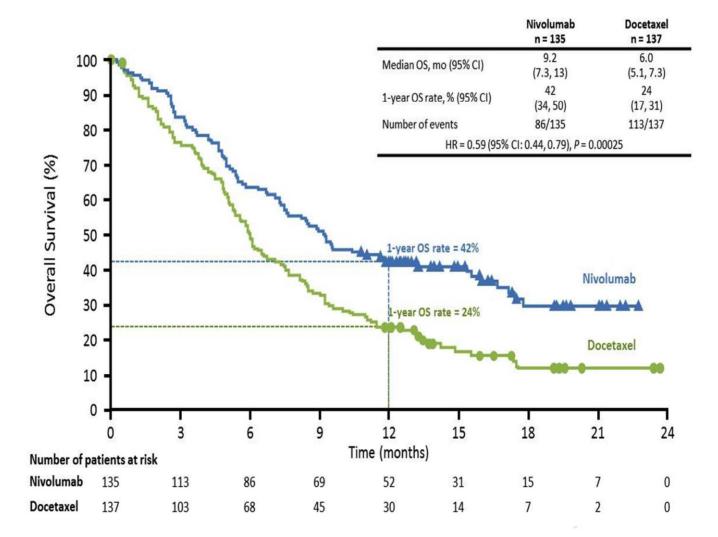
Examples of old assumptions


- Phase I trials are only for toxicity assessment
 - With effective therapies, benefit can be seen in the first trials of an agent
- Phase III trials must have an OS endpoint
 - With targeted therapies, crossover confounds OS endpoints
- Single site progression is the same as multi-site
 - Resistance can develop in one of many tumor sites, and oligoprogression can be treated locally
- All TKIs are equivalent
 - Maximizing "time on TKIs": PFS1 -> PFS2

Response Patterns for Immunotherapy Compared With Targeted Therapy

Ribas A, et al. Clin Cancer Res. 2012;18:336-341.

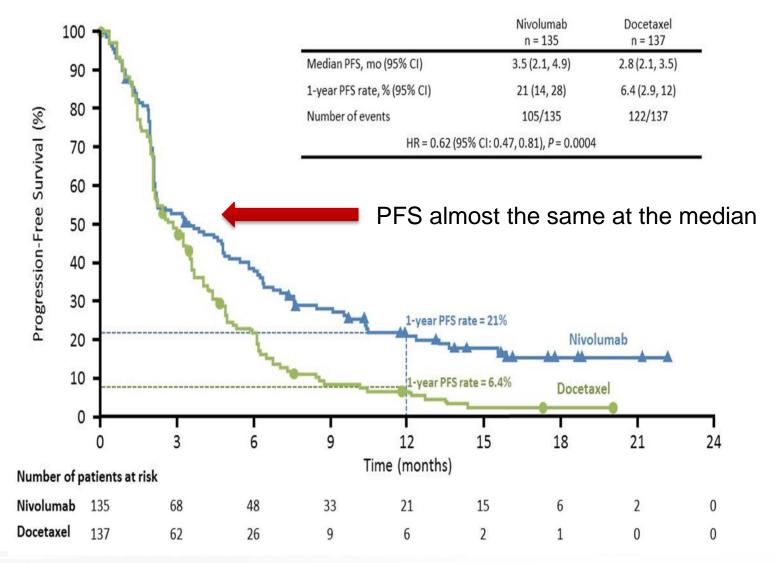
Combining Immunotherapy and Targeted Therapies



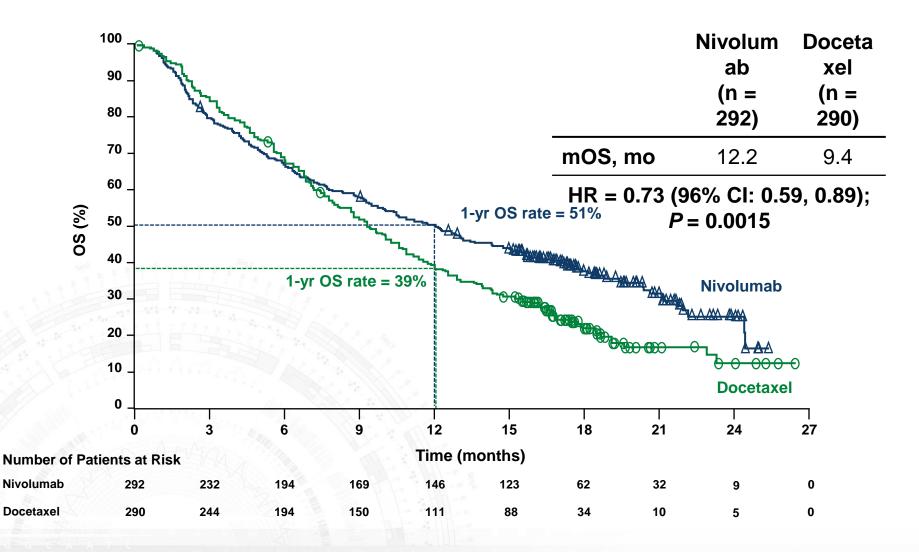
Adapted from Ribas A, et al. Clin Cancer Res. 2012;18:336-341.

Challenges we face in immunotherapy trials

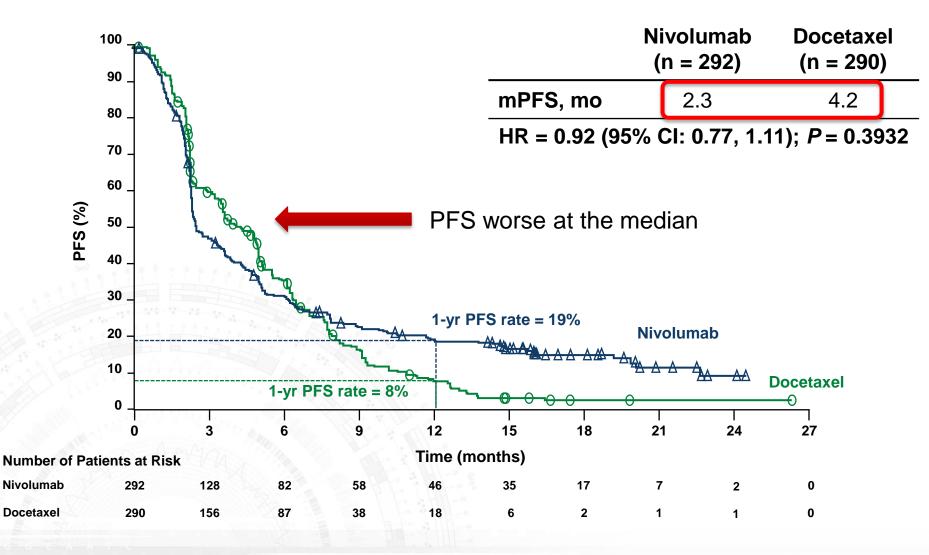
- Reliable early assessment of long-term benefit
 - Surrogate markers of survival
- Balancing toxicity with benefit
 - Chronic vs. acute toxicities
 - Frequent benefit with infrequent devastating toxicity
 - Limbic encephalitis in SCLC with ipi/nivo
 - Grade 5 hemoptysis with bevacizumab
- Selecting patients without missing opportunities
 - Cost of missing an opportunity
 - Cost of overtreatment
- Sequencing or combination with other therapies


Nivolumab in second line squamous - OS

Brahmer, NEJM 2015


Nivolumab in second line squamous - PFS

Brahmer, NEJM 2015


Overall Survival, non-squamous (Checkmate 057)

Symbols represent censored observations.

Paz-Arez, ASCO 2015

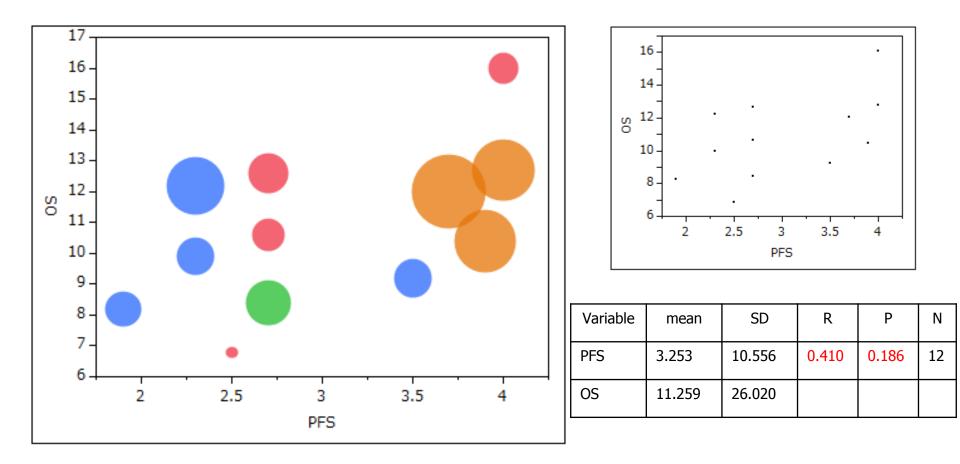
Progression-free Survival, non-squamous

Symbols represent censored observations.

Paz-Arez, ASCO 2015

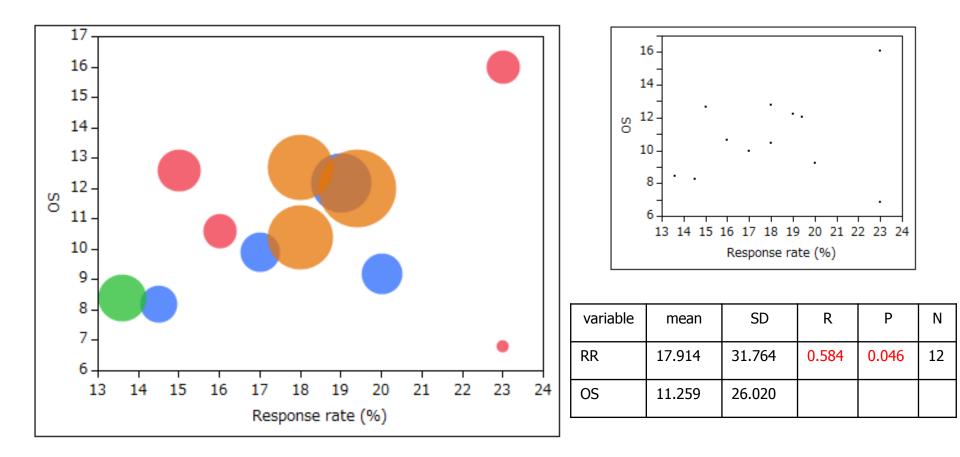
Do single agent immune-oncology trials in metastatic disease require a different design?

- Endpoints in trials
 - Median PFS?
 - PFS HR?
 - When to assess number of progression events
 - ORR? DOR?
 - Landmark PFS, OS?
- Crossover?
- Is it an advantage to have equal efficacy with less toxicity?
- What if PFS is less, but OS is better?


Anti PD-1/PD-L1 antibody monotherapy Clinical trials for NSCLC

1 st author	Study name	Patient	Phase	Ν	Agent	Dose/ Schedule	OS (M)	PFS (M)	6mPFS (%)	1yPFS (%)	ORR (%)	DCR (%)
Gettinger SN	CheckMate003	2 nd +	1	129	Nivolumab	1mg/kg q2w 3mg/kg q2w 10mg/kg q2w	9.9	2.3	33	22	17	-
Brahmer J	CheckMate017	sq; 2 nd	3	135	Nivolumab	3mg/kg q2w vs docetaxel	9.2	3.5	-	21	20	49
Naiyer AR	CheckMate063	Non-sq; 2 nd	2	117	Nivolumab	3mg/kg q2w	8.2	1.9	25.9	20.0	14.5	40.2
Paz-Ares L	CheckMate057	2 nd	3	292	Nivolumab	3mg/kg q2w vs docetaxel	12.2	2.3	-	19	19	45
Vansteenkiste J	POPLAR	2 nd	2	144	Atezolizumab	1200mg q3w vs docetaxel	12.6	2.7	-	-	15	-
Besse B	BIRCH	3 rd	2	139	Atezolizumab	1200mg q3w	NA	2.8	31	-	17	-
Besse B	BIRCH	2 nd	2	267	Atezolizumab	1200mg q3w	NA	2.8	29	-	17	-
Besse B	BIRCH	1 st	2	253	Atezolizumab	1200mg q3w	NA	5.5	46	-	19	-
Garon EB	KEYNOTE001	any	1	495	Pembrolizumab	2mg per kg q3w 10mg per kg q3w 10mg per kg q2w	12	3.7	-	-	19.4	46.3

Anti PD-1/PD-L1 antibody monotherapy Clinical trials for NSCLC


1 st author	Study name	Patient	Phase	Ν	Agent	Dose/ Schedule	OS (M)	PFS (M)	6mPFS (%)	1yPFS (%)	ORR (%)	DCR (%)
Herbst RS	KEYNOTE010	2 nd	3	344	Pembrolizumab	2mg/kg q3w vs docetaxel	10.4	3.9	-	-	18	-
Herbst RS	KEYNOTE010	2 nd	3	346	Pembrolizumab	10mg/kg q3w vs docetaxel	12.7	4.0	-	-	18	-
Horn L	Atezolizumab Phase 1	Any	1	88	Atezolizumab	0.01-20mg/kg q3w	16	4	-	31	23	51
Spigel DR	FIR	1 st	2	31	Atezolizumab	1200mg q3w	NR	4.5	43	-	26	-
Spigel DR	FIR	2 nd brain met -	2	92	Atezolizumab	1200mg q3w	10.6	2.7	39	-	16	-
Spigel DR	FIR	2 nd brain met +	2	13	Atezolizumab	1200mg q3w	6.8	2.5	45	-	23	-
Gulley JL	Avelumab Phase1b	2 nd +	1b	184	Avelumab	10mg/kg q2w	8.4	2.7	-	18.1 (48w)	13.6	50.5
Higgs BW	Durvalumab Phase1/2	any	1/ 2	200	Durvalumab	10mg/kg q2w	NA	-	-	-	16	-

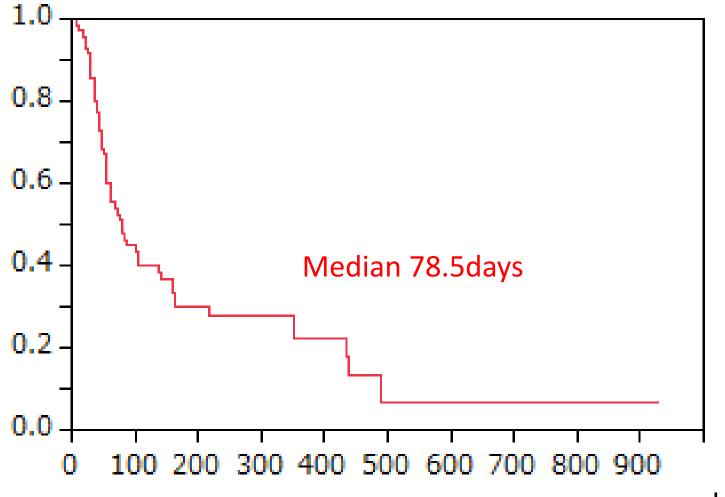
Median OS and median PFS

Shukuya and Carbone, unpublished

Median OS and Response rate

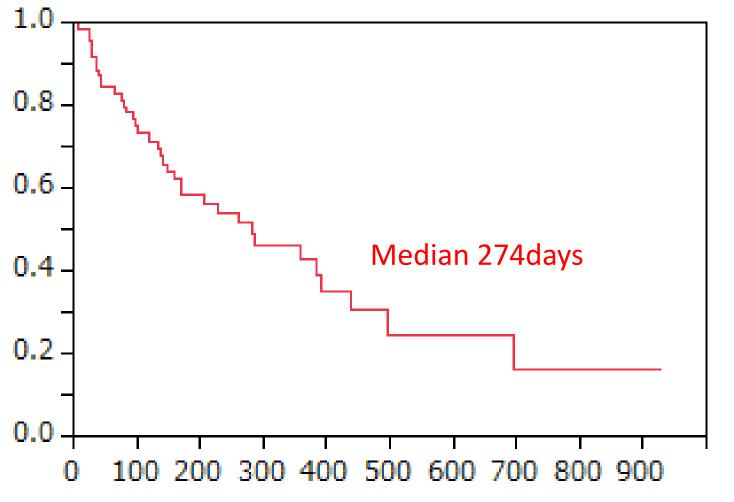
Shukuya and Carbone, unpublished

Retrospective analysis at OSU

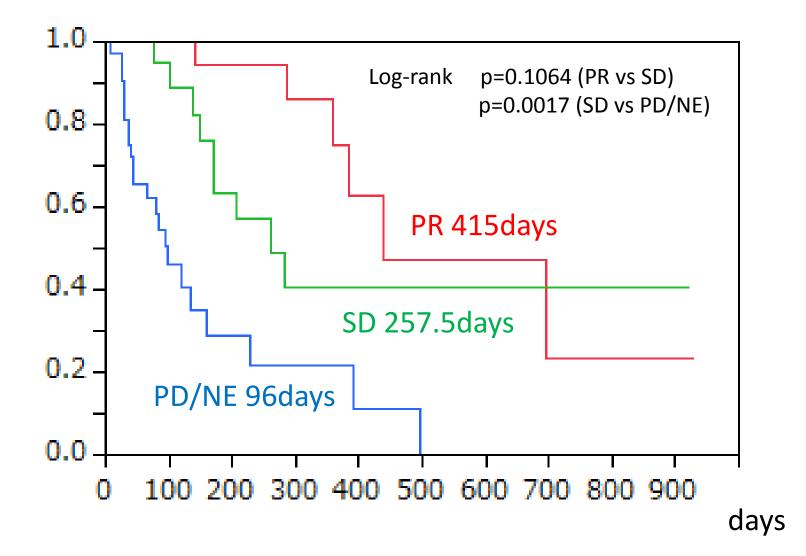

		N=71
Sex	Male Female	38 33
Age (years)	Median Range	65 39-86
Histology	Adenocarcinoma Squamous others	35 29 7
PS	0 1 2 3	12 48 10 1
Smoking history	Never Smoker	8 63
stage before 1st line	III IV	4 67
Agent	Nivolumab Atezolizumab Durvalumab	55 14 2
Prior chemotherapy	0 1 2	19 25 27

Response

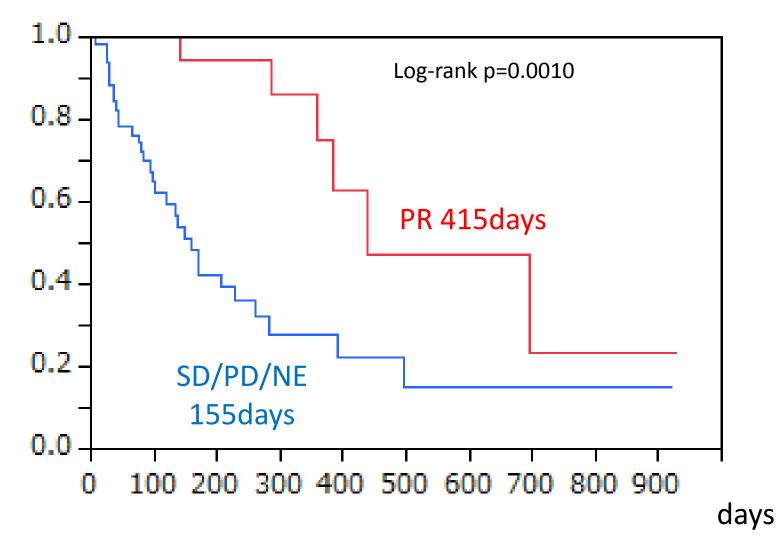
	N=71		
	No.	%	
PR	19	27	
SD	19	27	
PD	25	35	
NE	8	11	
Response rate (%) Disease control rate (%)	2 5	7 4	


Shukuya and Carbone, unpublished

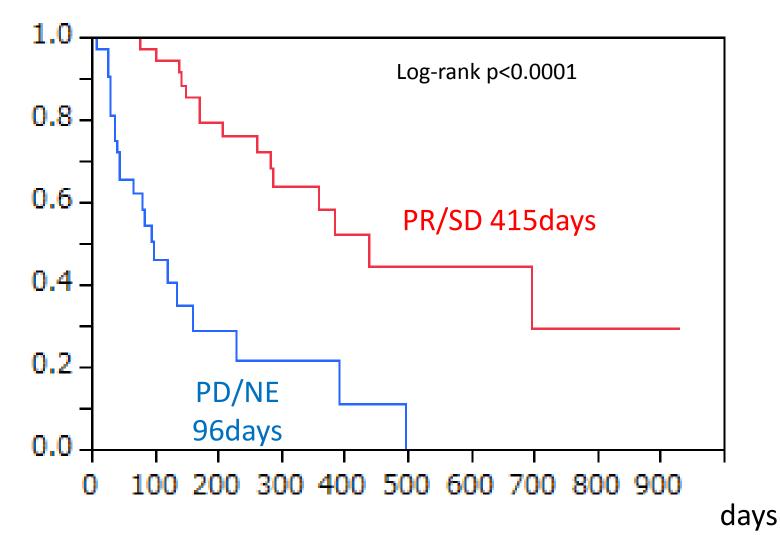
Progression free survival


days

Overall survival



days


Overall survival according to tumor response

Overall survival PR vs SD/PD/NE

Overall survival PR/SD vs PD/NE

Kaplan-Meier curve of overall survival in patients who achieved 8 week progression-free and those who did not achieved 8 week progression-free (landmark analysis) N=59

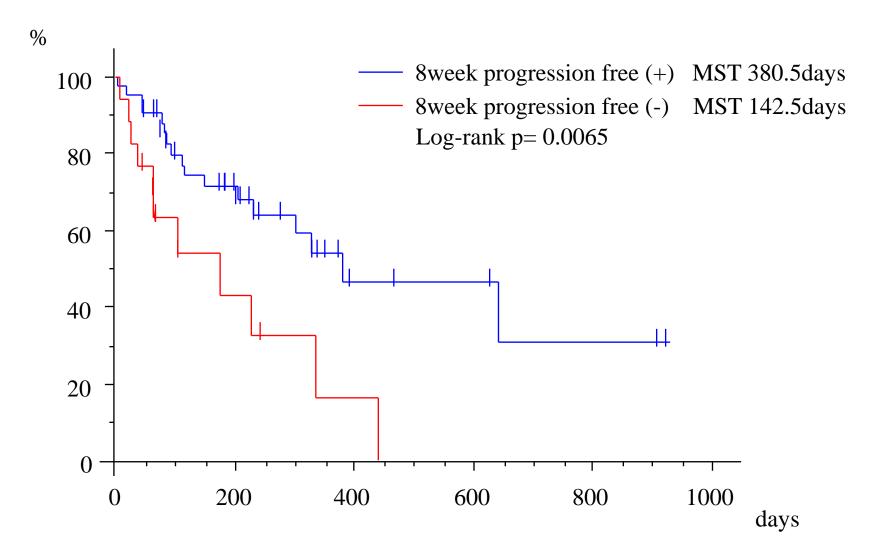


Figure 3E. Kaplan–Meier curves of overall survival in patients who achieved and did not achieve 16-week progression-free.

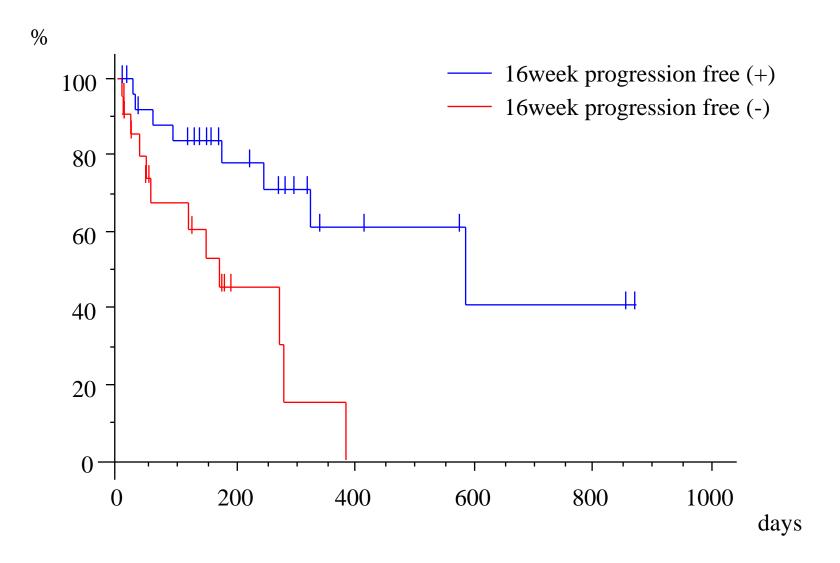
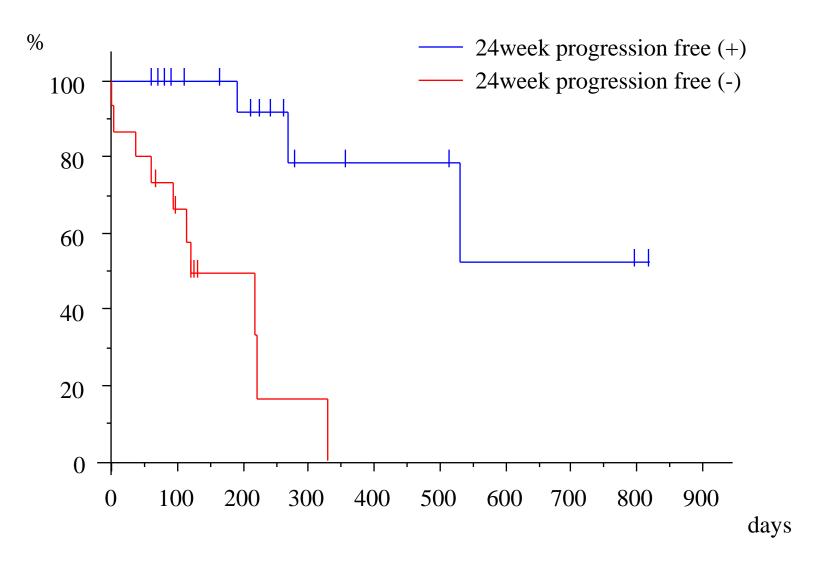



Figure 3F. Kaplan–Meier curves of overall survival in patients who achieved and did not achieve 24-week progression-free.

Multivariate analysis -Cox proportional model-

	HR	95% CI low	95% CI high	p-value
PR/SD vs PD/NE	5.17	2.58	10.69	<0.0001
pre chemo 0 vs 1-	1.00	0.81	1.21	0.9671

	HR	95% CI low	95% CI high	p-value
PR vs SD/PD/NE	3.99	1.76	10.73	0.0005

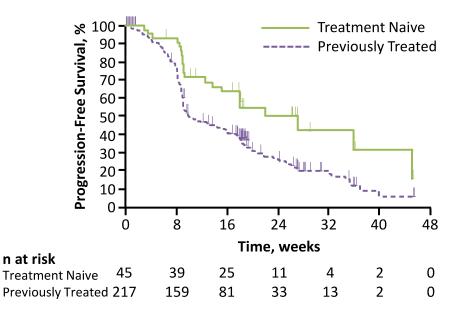
Result of multivariate landmark analysis to compare surrogate endpoints

Variable	P value	Hazard Ratio	95% CI
Tumor response at 5-9w CT PR vs SD/PD/NE	0.0604	2.835	0.960-12.107
Tumor response at 5-9w CT PR/SD vs PD/NE	0.0104	3.041	1.310-6.972
8 week progression free yes vs no	0.0183	2.684	1.191-5.839
16 week progression free yes vs no	0.0036	4.009	1.574-11.038
24 week progression free yes vs no	0.0002	12.726	3.045-88.359

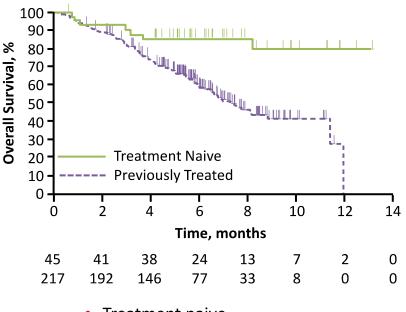
Age, sex, smoking history, performance status , histology, stage, and the number of prior chemotherapy were taken into account.

Conclusion

24 week progression free could predicted further survival the best. Landmark PFS be a surrogate endpoint for overall survival in NSCLC patients treated with anti PD-1/PD-L1 antibodies. Shukuya and Carbone, unpublished


What about first line immunotherapies or combination with other therapies?

- In first-line chemo vs. immuno trials what is the optimal endpoint?
 - OS? PFS? Landmark PFS?
- Should crossover be mandated?
 - (Applies to first line studies of 3rd gen TKIs as well)
- When combined with effective therapies (e.g. radiation or TKIs), randomized trials are essential
 - Capturing OS is essential as well to summarize all available treatment options that may be gained or lost by virtue of the combination therapy


Kaplan-Meier Estimates of Survival

PFS (RECIST v1.1, Central Review)

- Treatment naive
 - Median PFS: 27 weeks (95% Cl, 14-45)
 - 24-week PFS: 51%
- Previously treated
 - Median PFS: 10 weeks (9.1-15.3)
 - 24-week PFS: 26%

26-30 September 2014, Madrid, Spain

OS

- Treatment naive
 - Median OS: NR (95% CI, NE-NE)
 - 6-month OS: 86%
- Previously treated
 - Median OS: 8.2 months (7.3-NR)
 - 6-month OS: 59%

My conclusions in immunotherapy trial design

- Median PFS is a poor surrogate for OS
- PFS HR better, but data need to be mature
- Landmark PFS is even better.
- ORR and DOR and are also well correlated
- "Time on TKIs" or "time before needing chemotherapy" as novel, but impactful, endpoints
 - e.g. ALK inhibitor sequencing and cycling back
 - Survival after initiation of platinum doublets may be similar whether started first or after 2 years of immunoRx or targeted Rx

Immuno-immuno combinations in the era of "Nivo/Pembro for all"

- An important question is what drives resistance to PD1 inhibitors, and if other immune modulators may work in these patients
- Since most NSCLC will get nivo/pembro, we need novel flexible trial designs to allow the facile testing of new immunotherapies in patients progressing on Nivo/Pembro
- The challenges are daunting but the prospects for our patients are better than ever!