

EUROPEAN LUNG CANCER CONFERENCE 2016

NSCLC TARGETED THERAPY AND CIRCULATING BIOMARKERS

Proffered Papers session 3

Stephen Finn MB PhD FRCPath

Cancer Molecular Diagnostics and Pathology.

University of Dublin, Trinity College and St.

James's Hospital

elcc2016.org

DISCLOSURE SLIDE

Commercial Research Support: Janssen and Astellas

Honoraria: Merck, Pfizer, Astra Zeneca, Roche, Boehringer Ingelheim, BMS

Abstracts to discuss

- 580_PR Clinical and demographic features that influence EGFR mutation detection in plasma from patients with aNSCLC: The ASSESS experience. **Dr. Normanno** et al
- 1340_PR Plasma ctDNA analysis for detection of EGFR T790M mutation in patients with EGFR mutation-positive advanced non-small cell lung cancer (aNSCLC) Dr. Jenkins et al Dr. Yang presenting
- 1350_PR Plasma genotyping for predicting benefit from osimertinib in patients with advanced NSCLC Dr. Oxnard et al

The liquid Biopsy: Easy access to the primary and resistance phenotype(s)? Or not?

Abstract 580: ASSESS

- Large (n= 1162) multicentre, non-interventional, non comparative diagnostic study evaluating the utility of ctDNA for EGFR mutation testing in patients with NSCLC in Europe and Japan
- Mandatory plasma and tumor at diagnosis (Stage IIIA/B or recurrent after surgery, chemo naïve
- Objectives:
 - Primary: Concordance between tissue/cytology and blood (plasma) Testing
 - Secondary: EGFR Mutation practices
- Presentation of impact of clinical (disease)/patient characterization the ability to detect mutations in plasma

Primary Results:

ctDNA assessment is feasible

Accuracy of Plasma v Tumour

- Concordance 89%
 - Sensitivity: 46% (Real World Setting)
 - Sensitivity in plasma increases with disease burden
 - Specificity: 97%
- Presumably a wide array of technologies used for local practice tissue assessment?
 - Technology for ctDNA? Digital v Non-Digital

- Increased sensitivity associated with burden of disease (Intuitive and demonstrated previously)
- Also in never Smokers
 - Tseng JS. Dynamic plasma EGFR mutation status as a predictor of EGFR-TKI efficacy in patients with EGFR-mutant lung adenocarcinoma. J Thorac Oncol 2014;10:603–10.
 - Madic J, Pyrophosphorolysis-activated polymerization detects circulating tumor DNA in metastatic uveal melanoma. Clin Cancer Res 2012;18:3934–41.
- Intriguing findings in relation to clinical characteristics and/or patient demographics on the ability to detect mutations in plasma
 - EGFR Mutation detection in plasma higher in patients aged <65 v >65!!!
 - Overall higher frequency of EGFR mutations in patients >65 but nevertheless detection in plasma higher in younger patients
 - A window on disease biology as a function of age
- Similar sensitivity and PPV comparing Exon 19 Del v L858R
- Reassurance of similar trends in IGNITE

AURA Studies: Technologies

	PHASE 1	PHASE 2
Plasma Assay	BEAMing	Cobas
Comparator Assay	ddPCR or Cobas	miSEQ NGS
Abstract	1350	1340

Abstract 1340: AURA Phase II Studies Osimertinib

- Plasma ctDNA of T790M
- EGFR Roche Cobas® v2
- T790M: Concordance of Cobas® v2 with NGS Methodology (miSeq)
- Sensitivity, Specificity and Concordance
 - Tissue
 - Sensitivity: 88.3%
 - Specificity: 97.3%
 - Concordance: 91%
 - Plasma
 - Sensitivity: 91.5%
 - Specificity: 91.1%
 - Concordance: 91.3%

Cobas® Plasma v Cobas® Tissue

Cobas® plasma performance with Tissue as Reference or "Gold Standard"

	L858R	Del Exon 19	T790M
Sensitivity (PPA)	75.6%	85.1%	61.4%
Specificity (NPA)	98.1%	98%	78%
Concordance (OPA)	90.9%	90%	65.4%

- Objective Response Rates (ORR) similar between tissue and plasma
- Similar figures to those seen in Karlovich et al Clin Cancer Research 2016*
- T790M Plasma v Tissue: Reflects Tumour Biology and Molecular Heterogeneity in the setting of resistance
- Issue of Negative T790M in plasma arises

1350 - Plasma genotyping for predicting benefit from Osimertinib in patients with advanced NSCLC AURA Trial

- Sensitivity of plasma genotyping 82-86% for sensitizing mutations
 - But sensitivity is 70% for T790M
- Reassurance of sensitivity for T790M association with sensitizing mutation
 - But T790M- sensitizing Mutation negative is uninformative

When is a False Positive NOT a False Positive?

- "False Positive' Rate: 3-4% for Sensitizing Mutations BUT 31% for T790M
 - Spotlight shone on these false positives (n=18)
 - Orthogonal assessment
 - 14 confirmed, 4 remained discordant, all with very low allele frequency
 - Cut off issue
 - No false positives for T790M in 100 cases without any sensitizing mutation in EGFR
- High ORR in patients with tumour or plasma T790M

- Heterogeneity Issue: Provides strong support for concept of ctDNA representing a gestalt situation
 - Biopsy alone misses T790M
- False Negative T790M an issue
 - Reflex to tissue
- Concept of uninformative plasma test is very helpful:
 - T790M Sensitizing +
 - T790M and Sensitizing (Status Unknown)
- Proposed Paradigm for use of plasma genotyping: See below

The Liquid Biopsy Centre Stage

Narrow Definition: A blood test that is associated with cytopathological assessment of CTCs

Broader Definition: ctDNA, ctRNA and Exosomes

Appeal of the "Liquid Biopsy"

Diagnosis, Prognosis, Theranostics, Prediction, Biology

Heterogeneity:

Liquid Biopsy as a Gestalt

Accessibility:

Blood, serum, plasma, urine, pleural fluid etc.

Temporal Heterogeneity of Disease:

Serial Access

Tissue V Plasma

	Tissue Re-biopsy	Plasma ctDNA
Ease of Access/Patient Comfort	X	✓
Serial Access	X	✓
Assessing potential Other Resistance Phenotypes	~	X
Small Cell Transformation	✓	X
Addresses Heterogeneity	X	✓
Turn Around Time	X	✓

Abstracts: Refine and add granularity to the ctDNA and T790M story

Summary:

- ctDNA feasible and practical at diagnosis and progression
- Especially useful when positive!!
- ctDNA is probably superior to biopsy alone as a screen for T790M if followed by a tissue test when T790M- and Sensitizing mutation-
- For T790M many False Positives are True Positives
- Use the sensitizing mutation as a control
- Beware the negative test

Testing Paradigm for acquired resistance to EGFR-TKI

Tissue V Plasma

	Tissue Re-biopsy	Plasma ctDNA
Ease of Access/Patient Comfort	X	•
Serial Access	Х	✓
We need to use plas	ma and tiss	ue together
Small Cell Transformation	✓	X
Addresses Heterogeneity	X	~
Turn Around Time	X	✓

The relative frequencies of the various mechanisms of acquired resistance.

Unanswered Questions

Technology

- Non Digital: Cobas®, Therascreen™ ARMS
- Digital: Droplet Digital PCR, BEAMing
- NGS

Focus:

- T790M burden to monitor disease?
- Allelle Frequency
- EGFR sensitizing and resistance mutations only?
- How to integrate other resistance candidates: Small Cell, PIK3CA, Her2 Amp, IGF1R, Met Amp
- Resistance to third Generation TKIs? Role of assessment for C797S
- Assessing T790M C797S cis and trans alleles

