The 8th TNM staging system Impact on surgical strategy in early and advanced NSCLC

Hans-Beat Ris
Service de Chirurgie Thoracique
CHUV, Lausanne

Disclosure slide

No conflicts of interest to declare

7TH TNM CLASSIFICATION¹

8TH TNM CLASSIFICATION¹

Retrospective data collection

Database sampling 1990 – 2000

81915 patients

20 Countries

4 Continents Europe 58%

USA 21%

Asia 14%

Retrospective data collection

Database sampling 1999 – 2010

77156 patients

16 Countries

4 Continents Europe 49%

USA 5%

Asia 44%

¹ enacted 2010

¹ to be enacted 2017

7TH TNM CLASSIFICATION

8TH TNM CLASSIFICATION

Surgery only	41%	Surgery only ¹	58%
Combined treatments	25%	Combined treatments ²	32%
Chemotherapy only	23%	Chemotherapy only	9%
Radiotherapy only	11%	Radiotherapy only	2%

¹Complete resection 28150 (94%) ²CHT+S 21%, RT+S 2%, trimodal 4%

 \rightarrow Surgery in > 80% of patients

1. CORRELATION OF SURVIVAL WITH TUMOR SIZE

1-5 cm tumors: progressive degradation of survival for each 1cm cut point

- \triangleright Important for screening programs (60% stage I; 50% \leq 1cm)
- > Important for studies with sublobar resections
- 5-7cm tumors correspond to T3 survival
- >7cm tumors correspond to T4 survival

- 2. INVOLVEMENT OF MAIN BRONCHUS BUT NOT CARINA
 - Corresponds to a T2 prognosis (including poststenotic pneumonia)
 - ightharpoonup T2N0-1M0 \rightarrow upfront resection (sleeve lobectomy)
- 3. INVASION OF DIAPHRAGM
 - Corresponds to T4 prognosis (5y survival <30% after resection)
- 4. MEDIASTINAL PLEURAL INVASION
 - Mostly in combination with true mediastinal invasion (T4 prognosis)

T1 < 3cm, surrounded by lung/visceral pleura ≤ lobar bronchus

```
Tla(mi) Minimally invasive adenocarcinoma (< 5mm invasion)
```

T1a ≤ 1 cm

T1b > 1cm but ≤ 2 cm

T1c > 2cm but ≤ 3 cm

T2 > 3cm but < 7cm < 5cm,

or invades visceral pleura / main bronchus > 2cm carina but not carina

T2a > 3cm but ≤ 4 cm

T2b > 4cm but < 5cm

- 73 > 7cm > 5cm but ≤ 7cm, or satellite nodules in same lobe, or invades chest wall / phrenic nerve / pericardium / diaphragm / mediastinal pleura / main bronchus < 2cm carina
- T4 > 7 cm,
 or invasion of mediastinum / diaphragm / heart / great vessels / carina / trachea / recurrent nerve / esophagus / vertebrae,
 or separate nodule in a different ipsilateral lobe

Rami-Porta R, J Thorac Oncol 2015;10:990-1003

The current (7th) N0-N3 descriptors consistently separate prognostically distinct groups for both, cN and pN status

No node metastases
 Peribronchial / hilar metastases (including extension involvement)
 Ipsilateral /subcarinal metastases
 Contralateral mediastinal / hilar metastases
 or scalene / supraclavicular metastases (ipsi/contralateral)

Oligometastatic disease has a similar prognosis than pleural / pericardial dissemination which holds true for all organs systems involved

- M0 No distant metastases
- M1a Malignant pleural / pericardial dissemination /effusion, or contralateral / bilateral tumor nodules
- M1b Distant metastases Single extrathoracic metastasis (oligometastatis)¹
- M1c Multiple extrathoracic metastases in one / more organs

¹Include single distant non regional lymph node

THE 8TH TNM CLASSIFICATION: SURVIVAL

Survival curves are the result from a combination of tumor characteristics and treatment efforts

Improved overall and stage-for stage-survival compared to the 7th edition

- > Improvements in diagnosis / staging (screening / PET / HRCT / EBUS)
- Improvements in treatments (adjuvant chemotherapy / VATS / MLND)
- More radical options for less fit patients
- Improvement in patient care (interdisciplinarity / case load)

THE 8TH TNM CLASSIFICATION IMPACT ON SURGICAL STRATEGIES FOR NSCLC

The revised TNM edition is a refinement of the classification and is not designed to formulate new treatment recommendations!

Changes of established treatments should be based on new trials

- > Sublobar resections for small tumors?
- New multimodal approaches including surgery for T3/T4 tumors?
- Surgical approaches for oligometastatic disease?

CURRENT TREATMENT OF STAGE I/II NSCLC

SURGERY REMAINS THE MAINSTAY OF TREATMENT IN OPERABLE PATIENTS

Lobectomy and mediastinal lymph node dissection (MLND)
VATS procedures preferred in experienced centers

1B

2C

CURRENT TREATMENT OF STAGE I/II NSCLC

SUBLOBAR RESECTIONS

Patients with stage I NSCLC who can tolerate surgery but not a

lobectomy 1B

Anatomical segmentectomy is preferred over wedge resection 2C

ACCP Guidelines (3rded) Chest 2013;143 Suppl

 \rightarrow Is there a place for segmentectomy in patients who can tolerate a lobectomy?

ANATOMICAL SEGMENTECTOMY

Individual isolation and division of the targeted segmental pedicle Resection of the venous / lymphatic supply (*intersegmental plane*) Hilar and mediastinal lymph node dissection / sampling

VATS VS OPEN SEGMENTECTOMY FOR STAGE I NSCLC¹

Simlar postoperative outcomes, overall and cancer-specific survival

¹SEERS DATABASE Propensity score matching 577 stage I NSCLC < 65y, 424 open, 153 VATS

THE 8TH TNM CLASSIFICATION SURGICAL PERSPECTIVES FOR EARLY STAGE NSCLC

1. TRIALS WITH SUBLOBAR RESECTIONS FOR T1N0 TUMORS (SCREENING)

>5mm and increases in size develops solid component

PART SOLID LESION> 8mm and persistant

SOLID NODULE

Clinically suspect
PET-CT positive

SEGMENTECTOMY VS LOBECTOMY FOR STAGE CI NSCLC

PROPENSITY SCORE MATCHED PAIRS

	N	SIZE	5y OS	10y OS	5y DF	S 10y D	FS	
Koike ₂₀₁₆								
Lobectomy	87	<2cm	85%	66%	80%	64%]	
Segmentectomy	87	<2cm	84%	63%	77%	58%	j	ns
Kodama ₂₀₁₆								
Lobectomy	69	<1.5cm	90%	88%	97%	97%		
Segmentectomy	69	<1.5cm	97%	83%	97%	95%	3	
							-	ns

SEGMENTECTOMY VS LOBECTOMY FOR STAGE CI NSCLC

PROPENSITY SCORE MATCHED PAIRS

	N	SIZE	5y OS	10y OS	5y DFS	10y DFS
Tsutani 2013						
Lobectomy	81	0.7cm	93%	-	93%	- 1
Segmentectomy	81	0.8cm	96%	-	93% 91%	- hs
Landrenau 2014						
Lobectomy ¹	312	2.2 <u>+</u> 1cm	60%	_	$71\%^2$ $70\%^2$	- 1
Segmentectomy ¹	312	2.2 <u>+</u> 1cm	54%	-	$70\%^2$	- hs

¹ Stage IB: segmentectomy group 26%, lobectomy group 31%

RESECTION FOR SUBCENTRIMETRIC cT1N0M0 NSCLC (N=135)

CT/PET-CT → RESECTION + MLND/SAMPLING

	N	5y os	5Y DFS	pN1/2
Pure GGO	64	100%	100%	-
Part solid	45	100%	93%	0%
Pure solid	26	87%	75%	32%
Suv _{max} <2.5				3%
Suv _{max} >2.5				50%

 $[\]rightarrow$ Risk of N1-2 disease in \leq 1cm pure solid NSCLC with a high SUV_{max}

THE 8TH TNM CLASSIFICATION SURGICAL PERSPECTIVES FOR EARLY STAGE NSCLC

2. TRIALS WITH STEREOTACTIC RT VS SURGERY FOR T1N0 TUMORS

CURRENT INDICATION FOR SBRT

Patients who do not tolerate a segmentectomy or unfavorable tumor localization

SBRT VS SURGERY FOR OPERABLE STAGE CI NSCLC

	MORTALITY	FOLLOW UP	RECURRENCE	OS
		MTS	LOCO-REGIONAL	
Chang ₂₀₁₅				
S = 27	4%	35	$4\%^{1}$	$79\%^{1}$ (3y)
RT = 31	0%	40	16.1%	95% (3y)
Hamaji ₂₀₁₅				
S = 41	0%	54	$8\%^2$	$69\%^2 (5y)$
RT = 41	0%	41	38%	37% (5y)
vandenBergh ₂₀₁	5			
S = 143	-	61	$13\%^{3}$	$58\%^3$ (5y)
$RT = 197^3$	-	61	23%	32% (5y)

¹Combined analysis of failed ROSEL/STARS trials, 30% patients in SABR group without histology

²Blinded, prospensity score matching, all patients in SABR with histology

³Matched pairs, 78% patients in SABR group without histology

THE 8TH TNM CLASSIFICATION SURGICAL PERSPECTIVES FOR LOCALLY ADVANCED NSCLC

1. NEW TRIALS WITH INDUCTION THERAPY \rightarrow SURGERY FOR T3 TUMORS

¹ 8th Edition

INDUCTION THERAPY → SURGERY FOR T3N0-2 TUMORS

PANCOAST TUMOR
CHEST WALL INVASION
TUMOR SIZE >5 cm

THE 8TH TNM CLASSIFICATION SURGICAL PERSPECTIVES FOR LOCALLY ADVANCED NSCLC

3. NEW TRIALS WITH INDUCTION \rightarrow SURGERY FOR T4_{invasive} TUMORS

R Rami-Porta, J Thorac Oncol 2015;10:990-1003

INDUCTION THERAPY AND RESECTION FOR T4_{invasive} N0-1 NSCLC

CHT / RT-CHT → resection can result in long-term survival in experienced centers even in presence of N2 disease (*per continuitatem* invasion)

INDUCTION THERAPY AND RESECTION FOR T4_{invasive} N0-2 NSCLC

POTENTIALLY RESECTABLE T4 TUMORS

Superior vena cava / carina / recurrent nerve / vertebral body / left atrium

SVC RECONSTRUCTION

CARINAL RESECTION / RECONSTRUCTION

NEOADJUVANT CHT-RT \rightarrow RESECTION FOR T4_{Invasive} N0-2 NSCLC (N=72)¹

	TOTAL	LOBECTOMY	PNEUMONE	CTOMY
	N=72	N=48	N=24	
90d mortality	8%	2%	21%	p = 0.01
5y survival	45%	50%	33%	p = 0.01

¹49% T4N0-1, 51% T4N2

²R0 resections 84%

SLEEVE RESECTIONS AFTER INDUCTION THERAPY

	N	AP /SVC ¹	COMPLICATIONS	MORTALITY
Veronesi 2002	27	10	7%	0
Rendina ₁₉₉₇	27	11	11%	0
Ohta ₂₀₀₃	20		35%	0
Pezzetta 2005	24	6	15%	4%

¹additional AP=pulmonary artery / SVC=super vena cava resection/reconstruction

THE 8TH TNM CLASSIFICATION SURGICAL PERSPECTIVES FOR LOCALLY ADVANCED NSCLC

4. SURGICAL TRIALS FOR OLIGOMETASTATIC T1-2N0 DISEASE

→ VATS resection and ablation of isolated metastasis (brain / adrenal)

THE 8TH TNM CLASSIFICATION

IMPACT ON SURGICAL STRATEGIES FOR NSCLC

The revised classification is not designed to formulate new treatment recommendations, and treatment changes must be based on new trials

The improved stage-for-stage survival observed in the revised edition is the result of a combination of tumor characteristics and improvements in staging and treatments ($mainly\ surgery$) \rightarrow keep surgery as part of new trials

- new trials to examine the role of sublobar resections and non-surgical ablation of early NSCLC
- new trials with multimodal treatments including surgery for locally advanced / oligometastatic disease

Thank you for your attention

THE 8TH TNM CLASSIFICATION SURGICAL PERSPECTIVES FOR LOCALLY ADVANCED NSCLC

2. TRIALS WITH NOVEL INDUCTION \rightarrow SURGERY FOR N2 DISEASE

INFILTRATIVE N2
BULKY/MULTILEVEL
RT-CHT

PREOPERATIVE

« DISCRETE » N2

RT-CHT orCHT \rightarrow Surgery

INCIDENTAL pN2
AFTER SURGERY
Adjuvant CHT

ACCP Guidelines (3rded) Chest 2013;143 Suppl

4. Significant difference in survival according to geographic regions for pN0/pN1 disease with a survival benefit for Asians compared to Europeans

> for pN0: 25%

for pN1: 20%

5. Naruke mapping¹ which is different from the ATS lymph node mapping accounts for 75% of all pN cases

¹Subcarinal space along inferior border of main stem bronchus \rightarrow N1

2. A combination of location of nodal metastases (single vs multiple stations) and absence / presence of skip metastases may result in a more accurate prognosis:

> pN1a single station pN1b multiple stations

> pN2a single station¹ pN2b multiple stations

3. The tumor burden at regional lymph nodes is not reflected (*micrometastasis vs bulky /extracapsular disease*)

¹ pN2a1 single station without N1 involvement (*skip metastases*) pN2a2 single station with N1 involvement

The 8th TNM Classification Stage groupings

Stage IA1	$T1a^1$	N0	M0
Stage IA2	T1b	N0	M0
Stage IA3	T1c	N0	M 0
Stage IB	T2a	N0	M 0
Stage IIA	T2b	N0	M 0
Stage III I	120	110	1410
Stage IIB	T1	N1	M0

¹ Including T1a(mi)

The 8th TNM Classification *Stage groupings*

Stage IIIA	T1-2	N2	M 0
	T3	N1	M0
	T4	N0-1	M 0
Stage IIIB	T1-2	N3	M 0
	T3	N2	M 0
	T4	N2	M0
Stage IIIC	T3	N3	M 0
	T4	N0	M 0
Stage IV	Tany	N _{any}	M1a,b,c