

State-of-the-art time/dose and fractionation for radio(chemo)therapy of lung cancer

José Belderbos ELCC 14 april 2016

Disclosures

None

Introduction

- After CCRT local control ≈ 70% at 3-5 years (Auperin JCO 2010)
- RT dose conventional 60 Gy in 2 Gy +/- concurrent chemotherapy

 Dose escalation is limited by normal tissue tolerances

Variation in the use of concurrent chemoradiation (CCRT)

	Country	% CCRT	
	The Netherlands ¹	~70%	
	England ²	~54%	
	Italy ³	~17%	
	Canada ⁴	~18%	
	Australia ⁵	~37%	~~~
	USA ⁶	~35%	
hys	\$ 2014	INSTI	

¹ van Reij E. Act. Onc. 2014
²Prewett S. Clin Onc 2012
³Ramella S. Tumori 2012
⁴Vinod S. JTO 2012
⁵Pramana A. AP JCO 2014
⁶Harris J. Int J Radiat Oncol Biol Phys 2014

Options to improve locoregional control

- RT dose escalation
- Enhance RT response by targeted radiosensitization
- Improve treatment accuracy ——> Image-guided adaptive RT
- Reduce overall treatment time and Accelerated cell repopulation

Hypo- or Hyperfractionation or Acceleration

RT dose and fractionation

- Split course RT: with a several-day break
- Hyperfractionation : multiple smaller daily doses
- Acceleration : same dose in shorter period
- Hypofractionation : fewer larger fractions

BED= biological effective dose

Influence Local Control on survival CHART trial:

54 Gy/ 36 fx 12 days

60 Gy / 30 fx 40 days

- 563 NSCLC patients
- 2 year OS benefit for hyperfractionation 9% (from 20 to 29%)
- For SCC 25% improved local control and a 24% reduction in risk distant metastases
- Improved LC reduced the incidence of metastases and improved survival!

Saunders R&O 1999

Meta-analysis Hyperfractionated / accelerated RT

- 10 trials, 2,000 NSCLC patients
- Modified fractionation improved OS as compared to conventional schedules (HR = 0.88, 95% CI, 0.80- 0.97; p = .009)
- Resulting in an absolute OS benefit of 2.5% (8.3% to 10.8%) at 5 years
- Similar benefit in SCLC

Mauguen et al JCO 2012

Dose-response relation in NSCLC

The probability of sterilizing a tumor increases with increasing radiation dose to the tumor

Dose-response relationship in SABR for NSCLC

Grills JTO 2012

RTOG 0617: Trial design

Stratify:

-RTTechnique (IMRTvs3D)

-PerfStatus (0 vs 1)

-Histology (squam vs other) R

-PET staging (yes vs no) RT: 60 Gy Paclitaxel Carboplatin +/-Cetuximab

RT: 74 Gy Paclitaxel Carboplatin +/-Cetuximab Paclitaxel Carboplatin X 2 +/- Cetuximab

Bradley et al Lancet Oncology 2015

RTOG 0617 Survival by RT dose

RTOG 0617 Local failure and RT dose

RTOG 0617 Multivariate Cox Model

Covariate	Comparison (RL)	HR (95% CI)	p-value	
Radiation dose	60 Gy v 74 Gy	1.51 (1.12, 2.04)	0.007	
Histology	<i>Non-squam</i> ∨ Squam	1.31 (0.99, 1.75)	0.061	
Max esophagitis grade	<3∨s ≥3	1.52 (1.06, 2.20)	0.024	
Heart Contour	<i>Per Protocol</i> ∨s. Not per protocol	0.67 (0.47, 0.96)	0.029	
GTV	Continuous	1.001 (1.000, 1.002)	0.038	
Heart V50(%)	Continuous	1.017 (1.004, 1.030)	0.008	

Backwards Selection: Exit criteria p>0.10

Two-sided p-values

Removed from model: Age (continuous), overall RT review (per protocol vs. not per protocol), and lung V5 (continuous)

Dose escalation using hypofractionation (CCRT)

Study	Dose	Fraction	Dose/fx	Acute BED	Late BED	3 Year OS (%)	1 Year OS (%)	AE (%)	AP (%)	LE (%)	LP (%)
Machtay (2005) ²¹	60	20	3	78.0	120.0			0	0	0	25
Belderbos (2007) ²²	66	24	2.75	84.2	126.5	29	56	17	9	5	18
Uitterhoeve (2007)23	66	24	2.75	84.2	126.5	31	57	NR	NR	5 ^a	18 ^a
Tsoutsou (2008) ²⁴	52.5	15	3.5	70.9	113.8		28	0	0	NR	NR
Bral (2010)25	67.2	30	2.24	82.3	117.4			NR	NR	NR	NR
Matsuura (2009) ²⁶	65	26	2.5	81.3	119.2	44	90	0	0	0	0
Casas (2011)27	61.6	23	2.68	78.2	116.7	34	59	6.	3	0	0
Carruthers (2011) ²⁸	55	20	2.75	70.1	105.4			13	3	NR	NB
Maguire (2012) ¹⁷	55	20	2.75	70.1	105.4	38	73	NR	NR	NR	NR
Lin (2013) ²⁹	69	22-24	3	85.8	132.0			15	8	NR	NR
Liu (2013) ³⁰	75	25	3	78.0	120.0		61	15	8	8	0
Chen (2013) ³¹	55	20	2.75	70.1	105.4		69	22	NR	11	NR
Donato (2013)32	68.4	30	2.28	82.7	118.1		77 ^a	7	10 ^a	0 ^a	5 ^a
van Den Heuvel (2013)33	66	24	2.75	84.2	126.5		80	NR	NR	NR	NB
Bearz (2013) ³⁴	60	25	2.4	74.4	108.0	24	80	3	0	0	0

Dose escalation using hypofractionation

- Prolonged overall treatment time proven disappointing
 → accelerated repopulation¹
- Dose escalation using hypofractionation:
 - EORTC phase I/II study 08912²:

50 Gy/20 fx \longrightarrow 66 Gy /24 fx with daily cDDP was feasible

<u>EORTC phase III 08972-22973</u>: concurrent vs sequential;
 66 Gy /24 fx with daily cDDP
 2-year OS 39% (concurrent) and 34% (sequential)

<u>Dutch Raditux trial phase II⁴</u>
 66 Gy /24 fx with daily cDDP, +/- Cetuximab

- 1. Bese NS et al: IJROBP 2007
- 2. Uitterhoeve LLJ et al: Eur J Cancer, 2000
- 3. Belderbos JSA et al: Eur J Cancer 2007
- 4. Walraven I et al:R&O 2016

Long-term FU of NSCLC pts receiving concurrent hypofractionated CCRT +/-cetuximab

Walraven et al., Radiother Oncol, Feb 2016

Raditux trial phase II n=102

Walraven et al., Radiother Oncol, Feb 2016

Overall survival Raditux vs RTOG 0617

	Raditux trial	RTOG 0617 60 Gy	RTOG 0617 74 Gy
Mortality	64%*	58% ^a	67% ^a
1-year OS (%)	75%	78%	69%
2-year OS (%)	60%	53%	42%
5-year OS (%)	37%	-	-
Median OS (months)	32 months	29 months	20 months
			CANCER

INSTITUTE L

ANTONI VAN LEEUWENHOEK

Baseline characteristics Raditux vs RTOG 0617

	Raditux trial 66 Gy	RTOG 0617 60 Gy	RTOG 0617 74 Gy	
Age	62 years	64 years	64 years	
Stage II	8%	-	-	
Stage IIIA	52%	66%	63%	
Stage IIIB	40%	34%	37%	
GTV	119 cc	93 cc	110 cc	
PTV	499 cc	481 cc	478 cc	
PET staged	92%	90%	90%	
		14		

ANTONI VAN LEEUWENHOEK

Treatment characteristics Raditux vs RTOG 0617

	Raditux trial 66 Gy	RTOG 0617 60 Gy	RTOG 0617 74 Gy
RT OTT Total treatment duration	32 32	40 82	51 93
IMRT	76%	46%	47%
EQD2T (time corrected equivalent RT dose)	59,6 Gy	49.7 Gy	58.8 Gy
Chemotherapy concurrent	cisplatin	paclitaxel and carboplatin	paclitaxel and carboplatin
Consolidation CT	—	paclitaxel and carboplatin	paclitaxel and carboplatin
Protocol adherence	86%	83%	74%
Low-volume centers (< 4 pts per year)	_	2/3	2/3

Improve accuracy: Intensity Modulated RT Reduce Heart dose

Radiobiological Optimization of External-Beam RT

Comput Math Methods Med. 2012

Improve accuracy: Image-guided RT: Linear accelerator with Cone beam CT

Repeat 4D Cone Beam CT: Tumor regression during RT

Shows respiration, tumor shrinkage and baseline position variation

Image-guided adaptive RT Using Cone-Beam CT e.g. dissolving of atelectases

ANTONI VAN LEEUWENHOEK

Image-guided adaptive RT: Dose distribution before and after replanning

Current-Future developments

Combining high precision RT with targeted agents in a preclinical setting Novel PET tracers (proliferation-hypoxia) Evolving role of Radio-immunotherapy Possibillities to predict RT respons in serum Protontherapy/Heavy Ions

ANTONI VAN LEEUWENHOEK

Image-guided radiotherapy for small animals (µIGRT)

Image-guided radiotherapy for small animals (µIGRT) - mimicking clinical RT protocols -

Radio-Immunotherapy

- RT complements the effects of Immunotherapy
- RT can sensitize unresponsive tumors to anti CTLA-4
- Antitumor responses of RT and blocking of PD1 or PD-L1

NKI Trials RT + immuntherapy NSCLC

- *RT* + *Selectikine* (*NHS-IL2LT*) *Phase Ib*
- SABR+ Pembrolizumab vs. Pembrolizumab

Completed*

*Van den Heuvel M J Transl Med 2015

γ-H2AX assay to detect DSB secondary to ionising radiation

- Increased signal shortly after RT, lymphocytes with multiple foci
- Back to baseline levels at 24-hours and beyond

Courtesy of Shankar Siva

Take home messages

- The optimum dose and fractionation for NSCLC remains uncertain.
- The RT dose-response relationship remains a sound basis for further randomized studies making use of Image-guided adaptive RT
- Dose escalation: avoid long overall treatment time: hypofractionation or hyperfractionation
- Use of high precision RT: more personalized
 prescription

Meet NKI RT team

