

EUROPEAN LUNG CANCER CONFERENCE 2016

MONOTHERAPY WITH CHECKPOINT INHIBITORS ANY CHANCE FOR LONG TERM SURVIVAL?

Martin Reck

Department of Thoracic Oncology

LungClinic Grosshansdorf

Germany

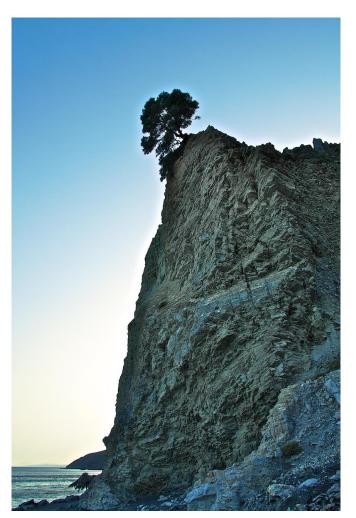
DISCLOSURES

- Honoraria for lectures and consultancy:
- Hoffmann-La Roche, Lilly, MSD, BMS, AstraZeneca, Boehringer-Ingelheim, Pfizer, Celgene

NIVOLUMAB IN PATIENTS WITH ADVANCED REFRACTORY SQUAMOUS (SQ) NSCLC: 2-YEAR FOLLOW-UP FROM CHECKMATE 063 AND EXPLORATORY CYTOKINE PROFILING ANALYSES

Hervé Lena,¹ Naiyer Rizvi,² Jurgen Wolf,³ Federico Cappuzzo,⁴ Gerard Zalcman,⁵ Paul Baas,⁶ Julien Mazieres,⁷ Benedetto Farsaci,⁸ M Anne Blackwood-Chirchir,⁸ <u>Suresh Ramalingam</u>⁹

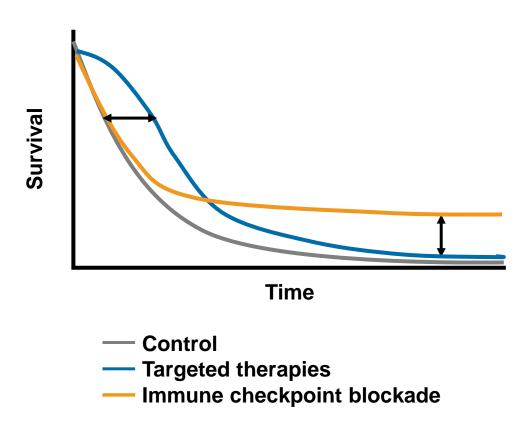
Centre Hospitalier Universitaire de Rennes, Rennes, France;
 Memorial Sloan Kettering Cancer Center, New York, NY, USA;
 Universitaetsklinik Köln, Köln, Germany;
 Istituto Toscano Tumori, Livorno, Italy;
 Centre Hospitalier Universitaire de Caen, Caen, France;
 Hopital Larrey, Centre Hospitalier Universitaire de Toulouse, Toulouse, France;
 Bristol-Myers Squibb, Princeton, NJ, USA;
 Winship Cancer Institute, Emory University, Atlanta, GA, USA



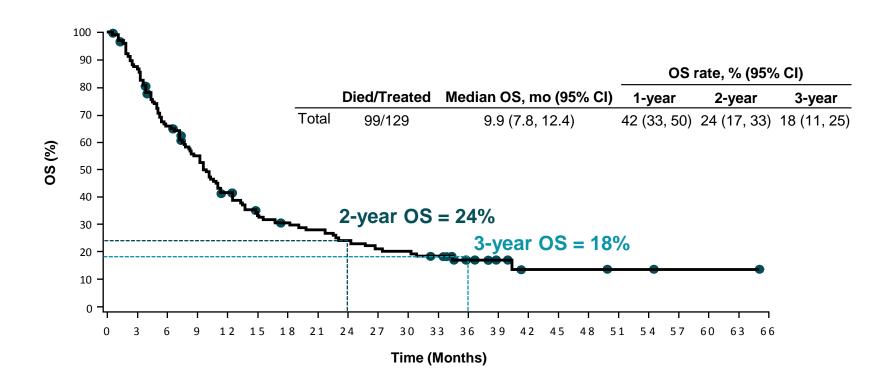
IMMUNOTHERAPY IN LUNG CANCER

Any chance for long term survival?

SLOPE OR PLATEAU?


ROLLER COASTER OR STEAM RAILWAY?

THE PROMISE PLATEAU OF LONG TERM OS BY DIFFERENT MOA



Adapted from Ribas A, presented at WCM, 2013; Ribas A, et al. *Clin Cancer Res* 2012;18:336–341; Drake CG. *Ann Oncol* 2012;23(suppl 8):viii41–viii46

THE TEASER LONG TERM SURVIVAL IN PRETREATED PATIENTS, EXAMPLE NIVOLUMAB

CA209-003: phase 1 study, stage IIIB/IV NSCLC, up to 5 prior lines of therapy

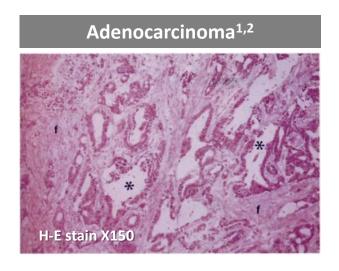
THE CLINICAL QUESTION

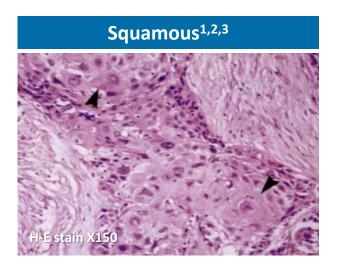
- Is this real?
- Is this superior to chemotherapy?

• First of all...

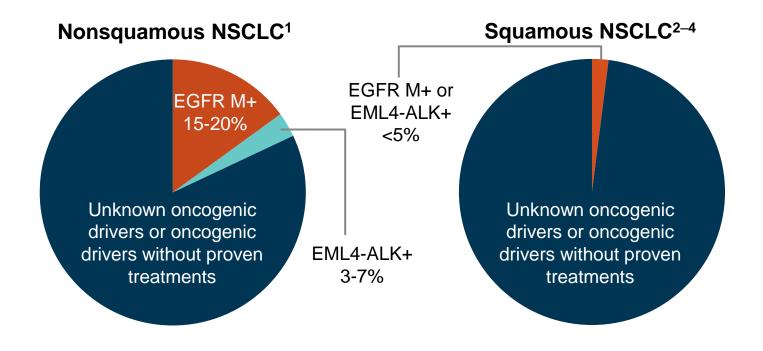
WHAT DO WE KNOW ABOUT LONG TERM SURVIVAL?

- In Second-line treatment of NSCLC?
- In Second-line treatment of squamous cell NSCLC?



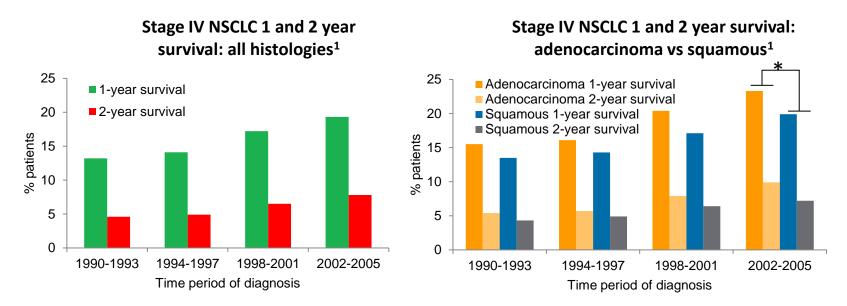

WHAT DO WE KNOW ABOUT SQUAMOUS NSCLC?

DIFFERENT PATHOLOGY


- Presence of glands and papillary structures (*)
- Neoplastic cells with round to oval nuclei, prominent nucleoli, and moderate amounts of cytoplasm
- Stain for mucin, TTF-1, cytokeratin 7

- Flattened appearance (i.e., "squamous")
- Intercellular bridges
- Individual cell keratinization (arrowhead)
- Keratin pearls
- Stain for p63, p40, cytokeratin 5/6

FEW TREATABLE ONCOGENIC ALTERATIONS¹⁻⁴



ALK, anaplastic lymphoma kinase;

EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer

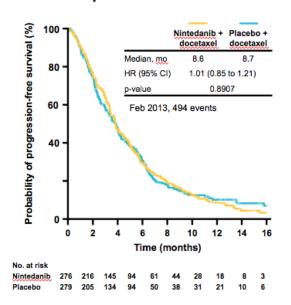
- 1. Gerber DE et al. Am Soc Clin Oncol Educ Book 2014;e353–65;;
- 2. Cancer Genome Atlas Research Network. Nature 2012;489:519–25;
 - 3. Pan Y et al. Chest 2014;145:473-9;
 - 4. Rekhtman N et al. Clin Cancer Res 2012;18:1167-76;

Improvements in survival over recent decades have been greater in stage IV adenocarcinoma vs squamous NSCLC¹

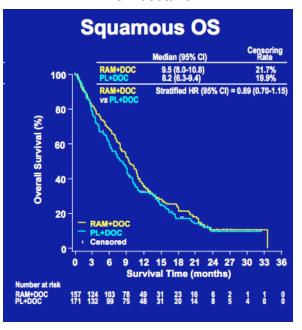
Based on data from the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) Program for patients diagnosed between 1990 and 2005 for patients with stage IV NSCLC¹

- Survival has been improving since 1990 for NSCLC of all histologies¹
- Significantly increased survival was observed for patients diagnosed in 2002-2005 with adenocarcinoma compared with those diagnosed with squamous cell carcinoma¹

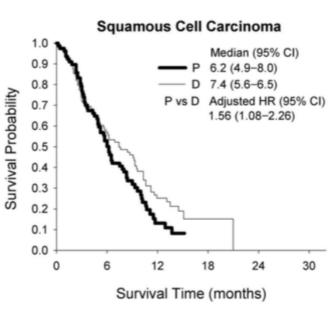
WHAT DO WE KNOW ABOUT SECOND-LINE THERAPY IN NSCLC?


	Docetaxel	Pemetrexed	Erlotinib	Afatinib (SCC)	Docetaxel + Ramucirumab (NSCLC)	Docetaxel + Nintedanib (NSCLC)
RR, %	5.0–12.0	7.1–11.8	7.9–9.0	6	23	4.4 Central Review
Median PFS, m	2.0–3.1	2.6–2.9	2.2–3.6	2.4	4.5	3.4
Median OS, m	5.7–8.0	6.7–8.9	6.7–7.9	7.9	10.5	10.1
1-year OS,%	28.7–37.0	29.7–38.5	31.0–35.7	nr	nr	nr

Shepherd, et al. JCO 2000; Fossella, et al. JCO 2000; Ramlau, et al. JCO 2006; Paz-Ares, et al. BJC 2008 Kim, et al. Lancet 2008; Krzakowski, et al. JCO 2010; Hanna, et al. JCO 2004, Cullen, et al. Ann Oncol 2008 Shepherd, et al. NEJM 2005; Vamvakas, et al. ASCO 2010; Ciuleanu, et al. IASLC Chicago 2010; Reck M, et al, Lancet Oncology 2014; Garon E et al, Lancet 2014; Soria JC, Lancet Oncology 2015


SECOND-LINE TREATMENT IN SCC? NOT REALLY THE MODEL FOR LONG TERM OS

Nintedanib + Docetaxel vs Docetaxel

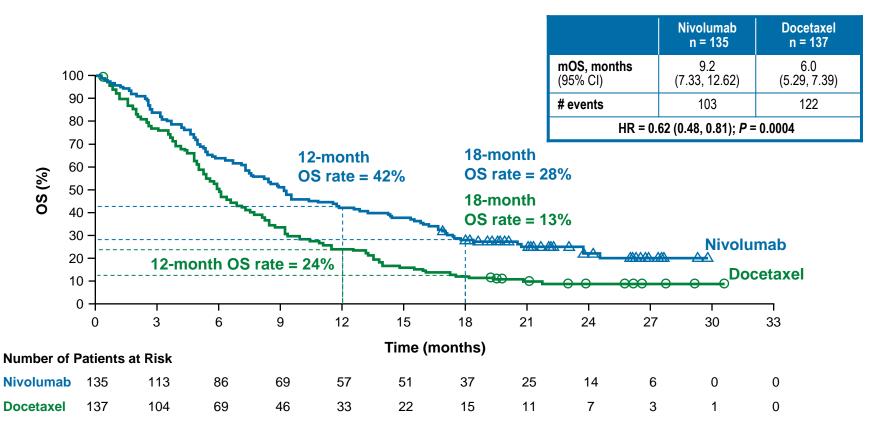

Squamous Cell Carcinoma

Ramucirumab + Docetaxel vs Docetaxel

Pemetrexed vs Docetaxel

Median OS: 8.6 vs 8.7 m

Median OS: 9.5 vs 8.2 m


Median OS: 6.2 vs 7.4 m

THIS HAS SOMEWHAT CHANGED...

CHECKMATE 017: OVERALL SURVIVAL

Based on August 2015 DBL.

Minimum follow-up for survival: 18 months

mOS = median overall survival. Symbols refer to censored observations.

Reckamp K, et al. Presented at the 16th World Conference on Lung Cancer; September 6–9, 2015; Denver, Colorado, USA. Oral 02.01.

CHECKMATE 063: STUDY DESIGN AND BASELINE CHARACTERISTICS

Patients

- Stage IIIB/IV SQ NSCLC
- ≥2 prior systemic therapies
- ECOG PS 0-1

(N = 117)

Treatment

Nivolumab
3 mg/kg IV q2w,
until PD or
unacceptable
toxicity

Endpoints

Primary

IRC-assessed confirmed ORR

Secondary

· Investigator-assessed confirmed ORR

Exploratory

- Safety and tolerability
- PFS and OS
- Efficacy by PD-L1 expression

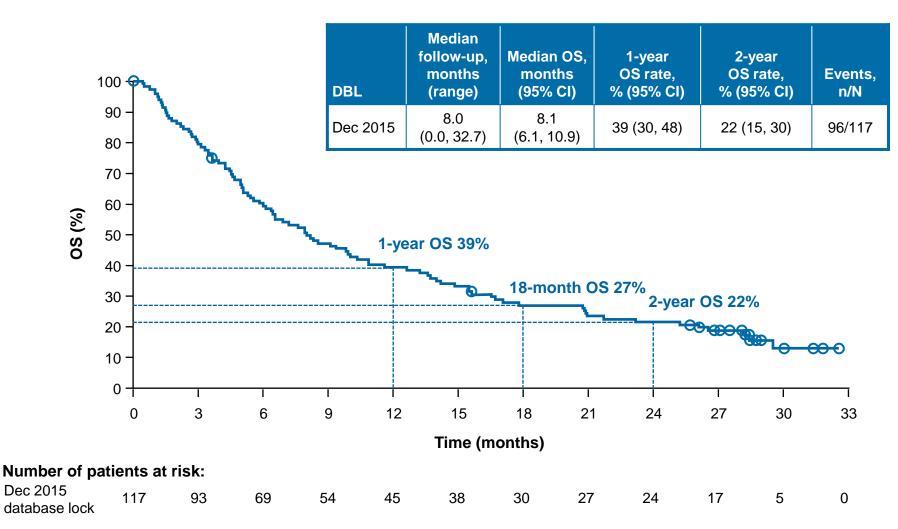
	Nivolumab 3 mg/kg Q2W N = 117
Median age, years (range)	65 (37–87)
Male, %	73
Disease stage, % IIIB IV	17 83
ECOG PS, % 0 1	22 78
Smoking status, % Current/former Never	92 8
PD-L1 quantifiable, % ^a ≥1% ≥5% ≥10%	65 59 33 33
Number of prior systemic regimens, % 2 3 ≥4	35 44 21

^aPercentages based on number of patients with evaluable samples (n = 76)

IRC = independent radiology review committee; PD = progressive disease; PFS = progression-free survival

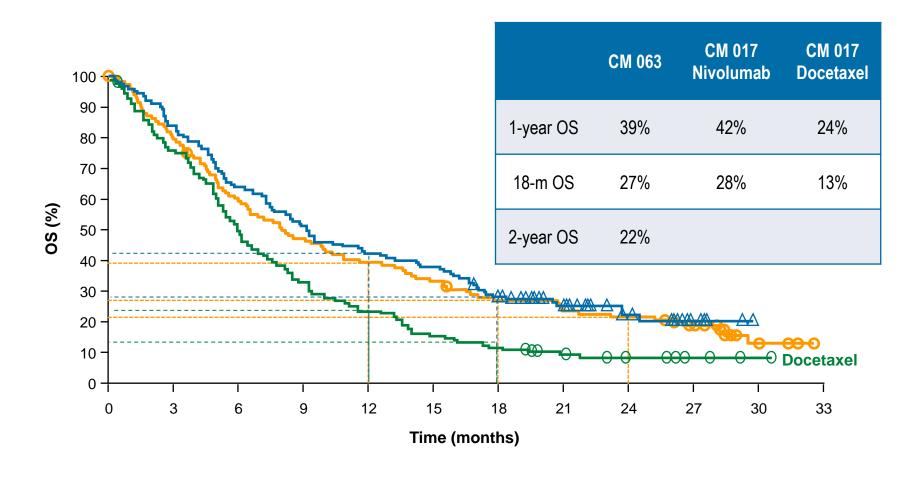
CHECKMATE 063 2-YEAR UPDATE: EFFICACY

	Nivolumab 3 mg/kg Q2W, N = 117			
Efficacy	IRC-assessed, 6 months ^a	Investigator-assessed, 6 months ^a	Investigator-assessed, 24 months ^b	
ORR, % (95% CI)	12 (7, 19)	13 (7, 20)	15 (9, 22)	
Ongoing responders, % (n/N)	71 (10/14)	93 (14/15)	29 (5/17) ^c	
Median TTR, months (range)	3.0 (1.7-4.8)	2.2 (1.3-6.0)	3 3 (1 6-7 4)	
Median DOR, months (range)	NR (2.8 to 6.9+)	NR (1.2+ to 7.0+)	19 (4.5+ to 27.5+	
Median PFS, months (95% CI)	1.9 (1.8, 3.2)	2.2 (1.8, 3.3)	2.0 (1.8, 3.2)	
PFS rate, % (95% CI)	27 (18, 36)	-	9 (4, 15)	
Best overall response, % CR PR SD PD Unable to determine/not reported	0 12 29 43 16	1 12 32 44 11	2 13 30 45 10	

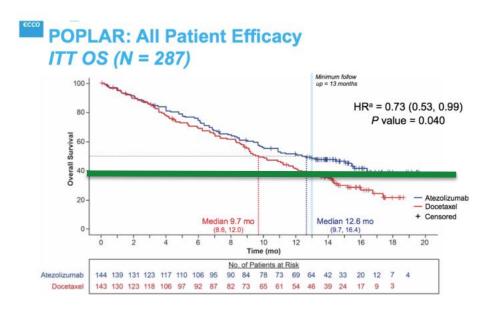

- At the 24-month data cutoff, 4 (3%) patients were still on treatment
- Five of 26 patients treated beyond initial PD demonstrated a non-conventional pattern of benefit

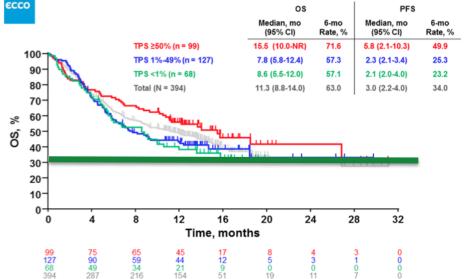
CR, complete response; DOR, duration of response; NR, not reached; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease; TTR, time to response.

^aMarch 2014 database lock. ^bDecember 2015 database lock. ^cTwo additional patients had ongoing responses but were censored prior to the database lock (1 was lost to follow-up and 1 withdrew consent).

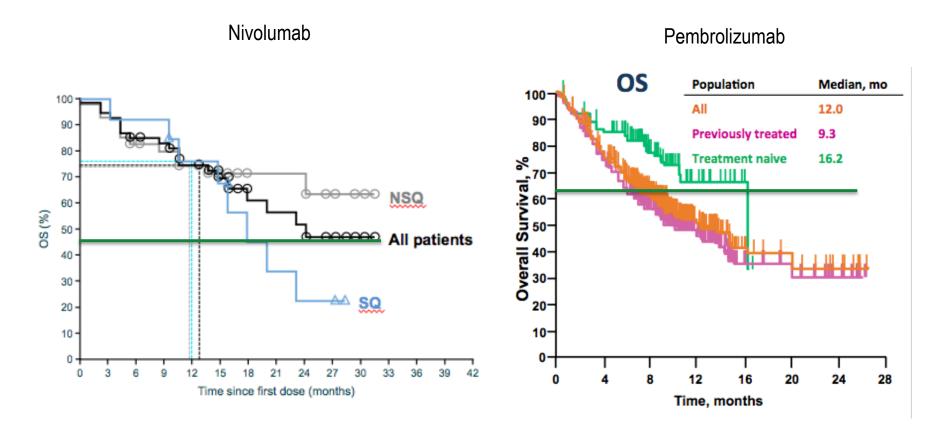


CHECKMATE 063 2-YEAR UPDATE: OVERALL SURVIVAL

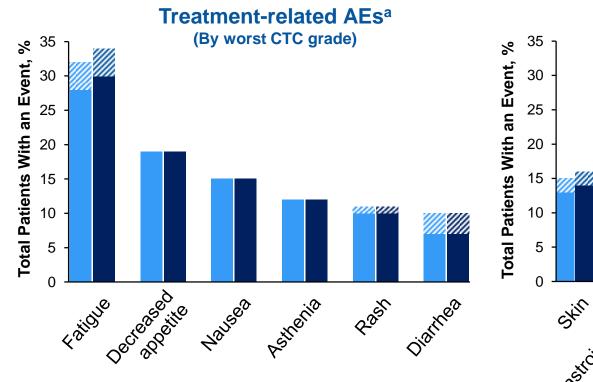

CHECKMATE 063 AND CHECKMATE 17 OVERALL SURVIVAL

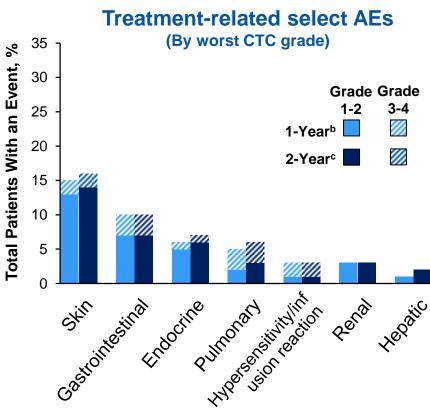

Reckamp K, et al. Presented at the 16th World Conference on Lung Cancer; September 6–9, 2015; Denver, Colorado, USA. Oral 02.01.

THE PICTURE IS THE SAME ALSO WITH OTHER COMPOUNDS

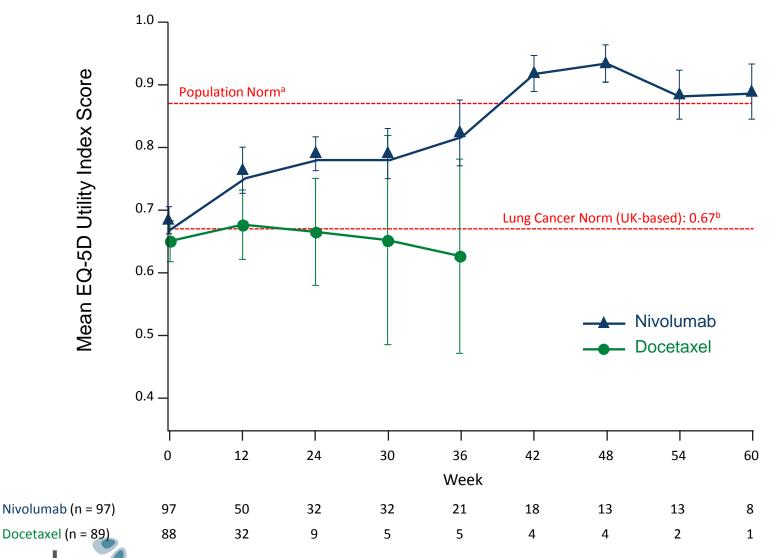

Atezolizumab (Vansteenkiste ECCO ESMO 2015)

Pembrolizumab (Soria ECCO ESMO 2015)

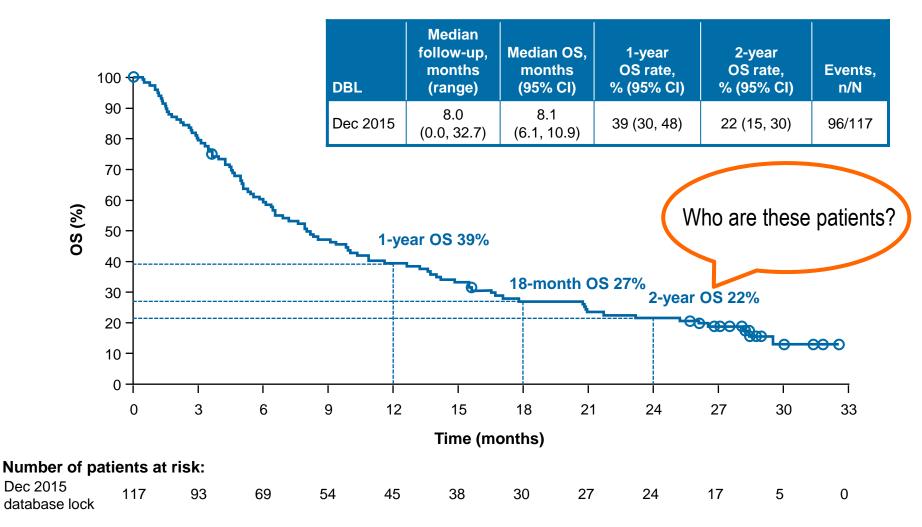


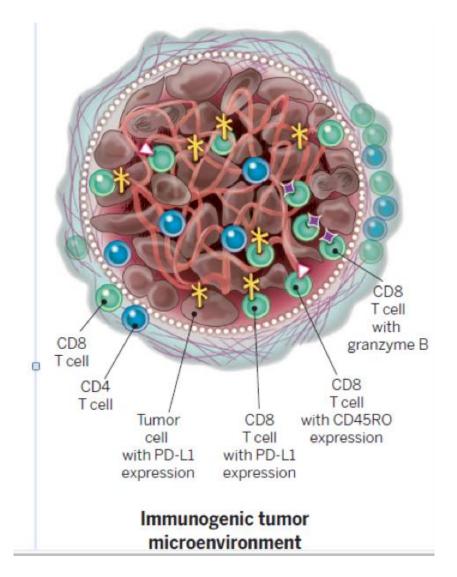

PERHAPS EVEN BETTER IN UNTREATED PATIENTS

IT IS NOT ONLY EFFICACY: TREATMENT-RELATED AEs AND SELECT AES

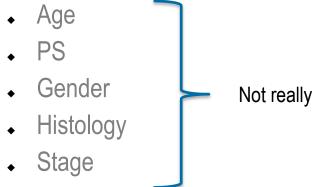


No new grade 3-4 treatment-related AEs/select AEs have been reported since the 1-year database lock


^aReported in >10% of patients. ^bJuly 2014 database lock. ^cDecember 2015 database lock. CTC = common terminology criteria.


SQUAMOUS: EQ-5D UTILITY INDEX WHILE ON TREATMENT

THE NEXT QUESTION

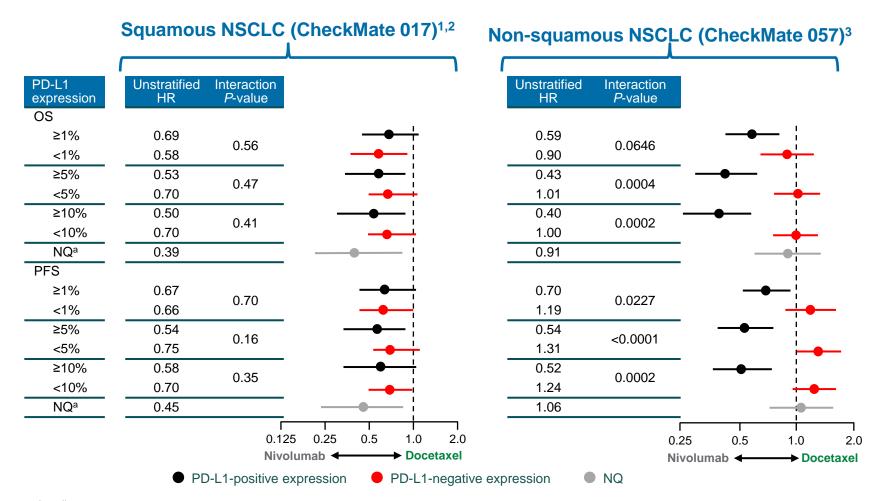


Clinical Factors?

Clinical Factors?

Not suitable

• PDL-1 Expression?



THE CHALLENGE IN PD-L1 TESTING: CURRENTLY FOUR TESTS IN DEVELOPMENT

	Merck	BMS	Roche	AZ	Pfizer Pfizer
	KEYTRUDA pembrolizumab	Opdivo nivolumab	Atezolizumab MPDL3280a	Durvalumab MEDI-4736	Avelumab MSB0010718C
Clone	22C3	28-8	SP142	SP263	_
Dxy	Dako	Dako	Ventana	Ventana	Dako
Cutoffs	TC: ≥1, ≥50	TC: ≥1, ≥5, ≥10	TC: ≥1, ≥10, ≥50 IC: ≥1, ≥5, ≥10	TC: ≥25, ≥90	TC: ≥1
Prospective	Yes	No	Yes	Yes	Yes
Inter Observer	95.6 (50%)	97.8 (1%) 98.5 (5%)	>90	96.7 (25%)	_
Inter Site	91.3 (50%)	90.2 (1%) 94.8 (5%)	_	_	_

DIFFERENT IMPACT OF PD-L1 EXPRESSION RELATED TO HISTOLOGY? PERHAPS NOT THE BEST IDEA IN SCC

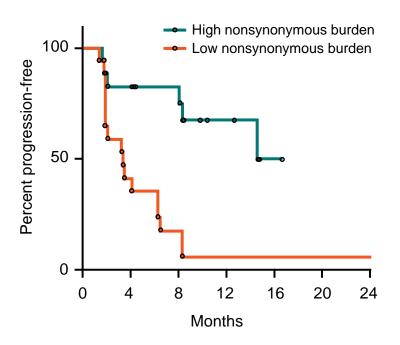
aat baseline.

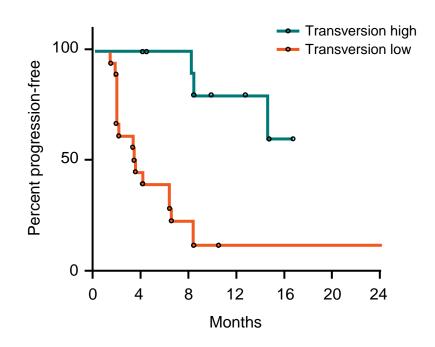
^{1.} Brahmer J, et al. New Engl J Med. 2015;373:123–135. 2. Spigel DR, et al. Presented at ASCO 2015, Abstract 8009. 3. Paz-Ares L, et al. Presented at ASCO 2015, Abstract LBA109.

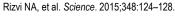
Clinical Factors?

• PDL-1 Expression?

Other?


Not suitable Not helpful in SCC


MUTATIONAL BURDEN AND SENSITIVITY TO IO AGENTS


EXAMPLE: PEMBROLIZUMAB

Mutational burden

Molecular smoking signature

IMPACT OF AN IFNY SIGNATURE ON EFFICACY EXAMPLE PEMBROLIZUMAB (HEAD AND NECK C)

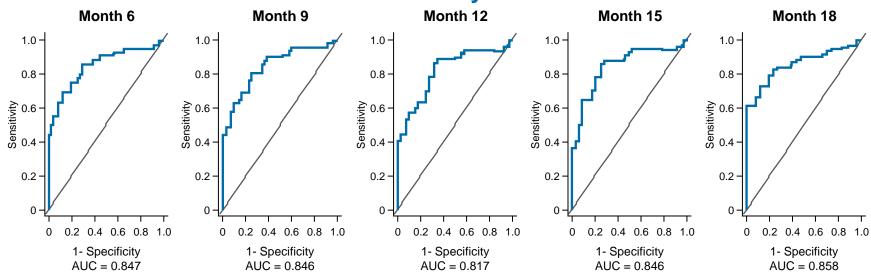
Table 3. Association of Immune-Related Gene Expression Signatures and Best Overall Response and PFS in Patients With Head and Neck Cancer^a

	Nominal 1-Sided P Value ^b			
Signature	Best Overall Response N = 40	PFS N = 43		
IFN-γ (6 genes)	0.005	<0.001		
TCR signaling (13 genes)	0.071	0.002		
Expanded immune (18 genes)	0.015	<0.001		
De novo (33 genes)	0.018	<0.001		

Best overall response and PFS assessed by investigator.

^bFrom logistic or Cox regression for overall response and PFS, respectively, using signature scores as a continuous variable.

CYTOKINES ASSOCIATED WITH OS IN PATIENTS WITH SQ NSCLC

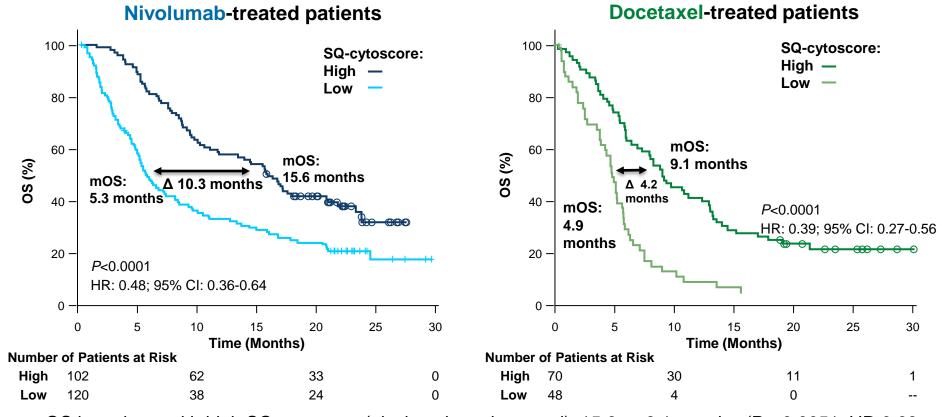

Cytokines associated with OS^a identified via stepwise variable selection in Cox model using AIC:

IL-8 VWF IP-10 IL-18 MICA MIP1B CRP ICAM1 IL-6

FRTN MMP3 MIG VDBP

Some key cytokines, such as IFN_γ and TNF, were not evaluable, so were not considered in the cytokine selection

Model Evaluation of the Selected Cytokines in the Validation Set



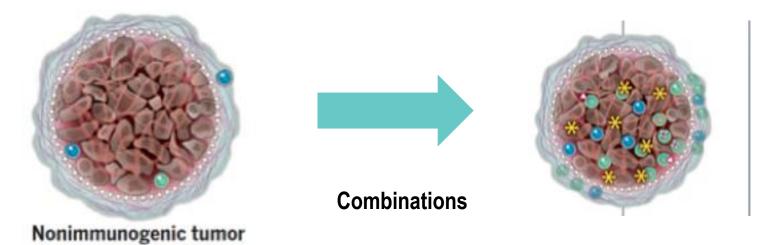
^aBased on 18-month data from CheckMate 063 (June 2015 database lock) and CheckMate 017 (August 2015 database lock).

AIC = Akaike information criterion. AUC = area under the curve.

PATIENTS WITH HIGH SQ-CYTOSCORE SHOWED LONGER MEDIAN OS – PROGNOSTIC FACTOR

- mOS in patients with high SQ-cytoscore (nivolumab vs docetaxel): 15.6 vs 9.1 months (P = 0.0051; HR:0.63; 95% CI: 0.45-0.88)
- mOS in patients with low SQ-cytoscore (nivolumab vs docetaxel): 5.3 vs 4.9 months (P = 0.0009; HR:0.51; 95% CI: 0.37-0.71)

Based on 18-month data from CheckMate 063 (June 2015 database lock) and CheckMate 017 (August 2015 database lock).


QUESTIONS

- Association of dynamic changes in cytokine levels with efficacy of checkpoint inhibitors? (Pharmacodynamic marker)
- Besides cytokines could circulating immune cells serve as a marker of interest (baseline markers as well as dynamic marker?)
- Do we see similar outcomes also in non-squamous NSCLC?
- Analyses of CM-057 will be presented at ASCO 2016!

CONCLUSION

- Is there a chance for long term survival by checkpoint-inhibitors?
- Yes, it seems so,
- ,....but
 - We are still on the way to identify these patients
 - (because these patients should receive IO-treatment!)
 - We will need to improve this plateau!

microenvironment

