

EUROPEAN LUNG CANCER CONFERENCE 2016

PRIMARY RADIOCHEMOTHERAPY

Radiation Oncology in NSCLC

Current developments and state-of-the-art

Rafal Dziadziuszko Medical University of Gdańsk, Poland

DISCLOSURE SLIDE

Nothing to declare

Current radiochemotherapy standards in stage III NSCLC

CONCURRENT VS. SEQUENTIAL CHEMORADIATION: METAANALYSIS OF SURVIVAL

A Trial	No. Deaths / I RT + Conc CT	No. Entered RT + Seq CT	O-E	Variance	Hazard Ratio	HR (95% CI)
		<u> </u>			: _	<u> </u>
CALGB 8831	45/46	39/45	2.4	20.9		1.12 (0.73 to 1.72)
WJLCG	131/156	142/158	-16.8	67.3		0.78 (0.61 to 0.99)
RTOG 9410	180/204	189/203	-20.5	91.1		0.80 (0.65 to 0.98)
GMMA	15/15	15/15	-1.0	7.0		0.87 (0.41 to 1.82)
Ankara 95						
GLOT-GFPC	87/102	96/103	-9.9	45.0		0.80 (0.60 to 1.07)
NPC					1	
EORTC 0897	2 63/80	66/78	-0.5	31.9	-	0.98 (0.69 to 1.39)
Total	521/603	547/602	-46.4	263.1	À	0.84 (0.74 to 0.95)
Total	321/003	3477002	40.4	200.1	Y	0.04 (0.74 to 0.00)
Test for heterogeneity: $\chi^2_5 = 3.24$, $P = .66$, $I^2 = 0\%$				0.25	1.00	4.00
			RT + Conc CT Better RT + Seq CT Better			

RT + conc CT effect: Log-rank test = 8.19, P = .004

Chemoradiation in stage III NSCLC: RT alone vs. Sequential vs. Concurrent - Toxicity

Chemoradiation for stage III NSCLC: Optimal radiation volume

Extended Field RT

Involved Field RT

Chemoradiation for stage III NSCLC: Optimal radiation dose – RTOG 0617 results

Radiochemotherapy of stage III NSCLC: Unresolved issues

- Altered fractionation and treatment acceleration
- Value of proton and carbon ion therapy
- Optimal cytotoxic drugs and schedules
- Investigational systemic therapies

Altered fractionation and treatment acceleration

Induction chemotherapy followed by accelerated <a href="https://www.hyperschain.com/hyperschain-niews.nc-niews.

Systematic analysis of trials with hypo.fractionated definitive radio(chemo)therapy

Sequential vs. concurrent individualized <u>isotoxic</u> accelerated radiotherapy (INDAR) and chemotherapy

Hypofractionated definitive radiotherapy with daily cisplatin +/- cetuximab: NKI data

Homogenous vs. FDG-PET vs. HX4-PET boost - modeling study

Radiobiological basis of hypofractionated radiotherapy

The British Journal of Radiology, 83 (2010), 554-568

REVIEW ARTICLE

21 years of Biologically Effective Dose

J F FOWLER, DSc, PhD, FInsTP

Proton and carbon-ion Radiochemotherapy for lung cancer

Proton and carbon-ion radiochemotherapy

Proton and carbon-ion radiochemotherapy

- Results of a phase II randomized trial suggest small OS advantage for protons (median OS 24 vs. 17 months)
- Phase III clinical trial is currently ongoing (RTOG -1308)

Optimal chemotherapy

Chemoradiation in stage III NSCLC: Drugs and schedules

- Cisplatin etoposide
- Cisplatin vinorelbine
- Cisplatin pemetrexed
- Carboplatin paclitaxel (more common in the US)
- Cisplatin daily (NKI, Netherlands)

PROCLAIM TRIAL: PEM/CIS vs. ETOPOSIDE/CIS in chemoradiation of stage III NSCLC Senan S. et al., ASCO 2015; #7506

Chemoradiation with ETOPOSIDE/CIS vs. weekly CARBO/PACLITAXEL Retrospective VA database comparison

Before propensity score matching

After propensity score matching

Consolidation after chemoradiation Phase III Hoosier Oncology Group Trial

Consolidation after chemoradiation Phase III Hoosier Oncology Group Trial

Investigational systemic therapies

Investigational systemic therapies

- Targeted therapies in oncogene-addicted stage III NSCLCs (RTOG 1306 phase II; EGFR and ALK cohorts)
- ❖ PARP inhibitors (SWOG S1206 phase I II)
- Immune checkpoint inhibitors (PACIFIC durvalumab phase III)
- Metformin (randomized phase II NRG-LU001)

Conclusions

- Therapeutic plateau reached with regard to chemotherapy schedules combined with concurrent RT with ~ 30-35% 5-year OS
- Dose escalation with conventional fractionation no value (RTOG 0617)
- Number of phase II trials with altered fractionation and acceleration ongoing with good outcomes (BUT no phase III evidence)
- Identification of patients likely to show early dissemination may be key to focus on systemic treatment
 (~ 20 30% of patients die within 12 months!)
- More effective systemic therapies urgently needed
 several trials currently ongoing

