

EUROPEAN LUNG CANCER CONFERENCE 2016

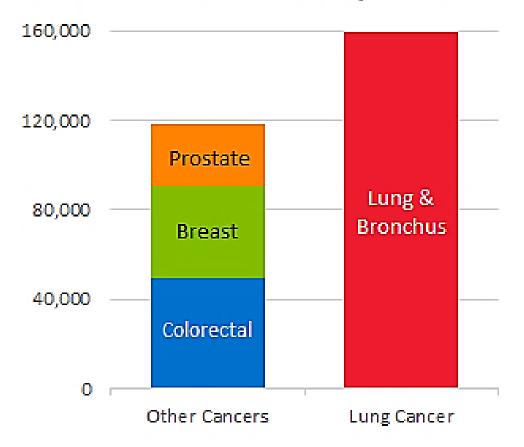
DOES CT-SCREENING HAVE ANY ROLE IN NSCLC ?

YES

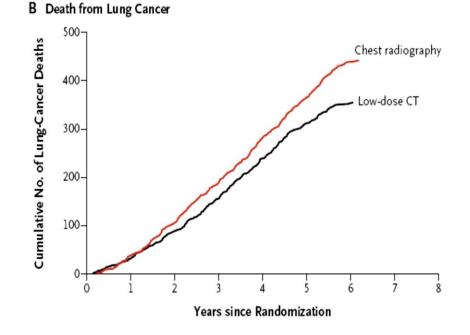
Harry J. de Koning, MD, PhD Professor of Public Health & Screening evaluation Erasmus MC

elcc2016.org

PI NELSON-trial Rotterdam, The Netherlands


Siemens Germany provided workstations for uniform reading Roche Diagnostics provided funds for a side-study on proteomics

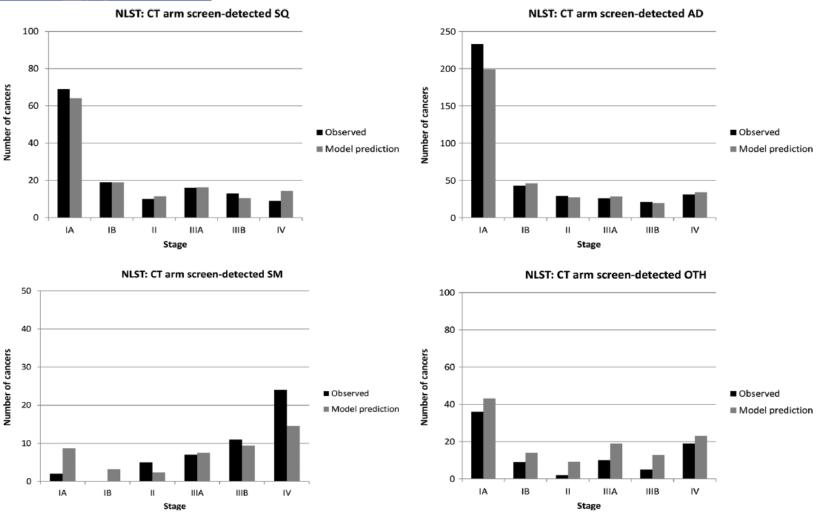
Department receives research funds from NIH/NCI, and EU regarding LC


Cancer epidemiology

Estimated Cancer Deaths by Site, 2015²

National Lung Screening Trial (NLST): USA

Figure 1. Cumulative Numbers of Lung Cancers and of Deaths from Lung Cancer.


The number of lung cancers (Panel A) includes lung cancers that were diagnosed from the date of randomization through December 31, 2009. The number of deaths from lung cancer (Panel B) includes deaths that occurred from the date of randomization through January 15, 2009.

NLST CT arm screen-detected lung cancers by histology and stage

ENCE 2016

Figure 1.

NLST CT arm screen-detected lung cancers by histology and stage. Abbreviations: AD, adenocarcinoma; OTH, other non-small cell carcinoma; SM, small cell carcinoma; SQ, squamous cell carcinoma.

Research Article

Lung Cancer Detectability by Test, Histology, Stage, and Gender: Estimates from the NLST and the PLCO Trials

Kevin ten Haaf¹, Joost van Rosmalen², and Harry J. de Koning¹

Cancer Epidemiol Biomarkers Prev; 24(1) January 2015

Cancer Epidemiology, Biomarkers & Prevention

Sensitivity estimates by histology/ stage/method (ten Haaf et al., CEBP 2015)

	AD	SQ	SM	ОТН
CXR				
IA	16.91%	9.72%	2.51%	6.27%
IB	27.13%	28.90%	4.25%	7.57%
П	27.26%	30.02%	6.64%	7.57%
IIIA	48.11%	46.31%	14.74%	29.78%
IIIB	49.29%	47.96%	53. <mark>1</mark> 8%	34.40%
IV	96.31%	78.62%	97.31%	36.94%
СТ				
IA	56.63%	30.95%	8.83%	20.78%
IB	64.12%	38.05%	10.28%	24.75%
П	64.48%	39.19%	11.19%	24.78%
IIIA	75.93%	69.67%	41.58%	60.40%
IIIB	80.21%	79.39%	87.06%	68.27%
IV	98.88%	97.66%	99.35%	95.67%

Abbreviations: AD, adenocarcinoma; OTH, other non-small cell carcinoma; SM,

Preclinical duration of lung cancer by gender, histology and stage

Table 2. MPST estimates (in years) of preclinical stages by gender^a

	AD	SQ	SM	ОТН
Men				
IA	1.82	2.16	1.25	1.96
IB	0.64	0.76	0.44	0.69
II	0.46	0.55	0.32	0.50
IIIA	0.46	0.55	0.32	0.50
IIIB	0.36	0.42	0.25	0.39
IV	0.74	0.88	0.51	0.80
Total mean preclinical duration ^b	4.48	5.32	3.09	4.84
Women				
IA	2.44	2.15	1.36	2.31
IB	0.86	0.76	0.48	0.81
II	0.62	0.55	0.34	0.59
IIIA	0.62	0.55	0.35	0.59
IIIB	0.48	0.42	0.27	0.45
IV	0.99	0.88	0.55	0.94
Total mean preclinical duration ^b	6.01	5.31	3.35	5.69

Abbreviations: AD, adenocarcinoma; OTH, other non-small cell carcinoma; SM, small cell carcinoma; SQ, squamous cell carcinoma.

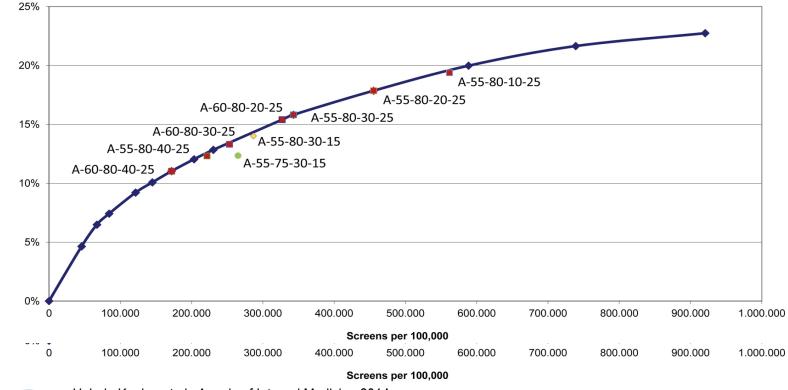
^aThe MPST estimates should be interpreted as follows: the time for an adenocarcinoma cancer to progress from preclinical stage IA to preclinical stage II (or be clinically detected in stage IB) in a male is on average 2.46 (1.82 + 0.64) years, of which 1.82 years are spent in the preclinical state of stage IA and 0.64 years are spent in the preclinical state of stage IB. ^bIf discovered clinically in stage IV.

ONFERENCE 2016

Annals of Internal Medicine

Original Research

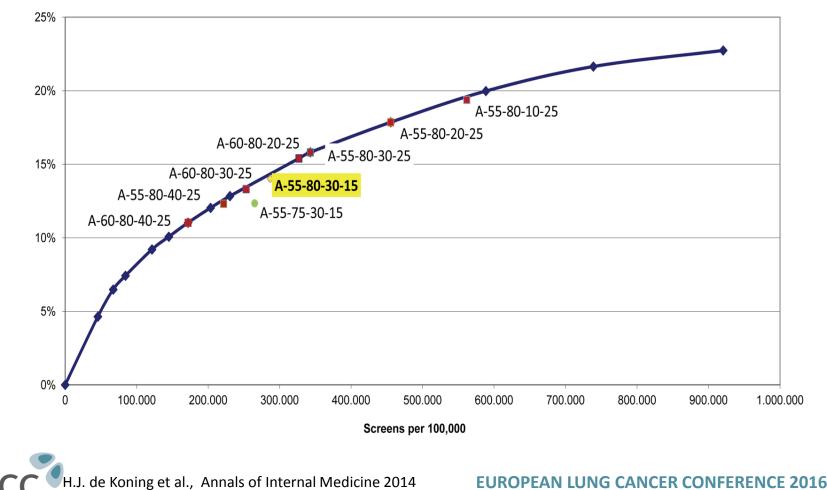
Benefits and Harms of Computed Tomography Lung Cancer Screening Strategies: A Comparative Modeling Study for the U.S. Preventive Services Task Force


Harry J. de Koning, MD; Rafael Meza, PhD; Sylvia K. Plevritis, PhD; Kevin ten Haaf, MSc; Vidit N. Munshi, MS; Jihyoun Jeon, PhD; Saadet Ayca Erdogan, PhD; Chung Yin Kong, PhD; Summer S. Han, PhD; Joost van Rosmalen, PhD; Sung Eun Choi, SM; Paul F. Pinsky, PhD; Amy Berrington de Gonzalez, PhD; Christine D. Berg, MD; William C. Black, MD; Martin C. Tammemägi, PhD; William D. Hazelton, PhD; Eric J. Feuer, PhD*; and Pamela M. McMahon, PhD*

Ann Intern Med. 2014 Mar 4;160(5):311-20

LC MORTALITY REDUCTION RESULTS FOR 9 DIFFERENT ANNUAL SCENARIOS (55/60 ENDING THROUGH AGE 80) – USPSTF -

All model averages: Scenarios up to age 80


H.J. de Koning et al., Annals of Internal Medicine 2014

EUROPEAN LUNG CANCER CONFERENCE 2016

LC mortality reduction

Advantageous scenario (USPSTF)

All model averages: Scenarios up to age 80

LC mortality reduction

P

Benefits

- Lung cancer mortality reduction
- Reduction advanced disease
- Life years gained

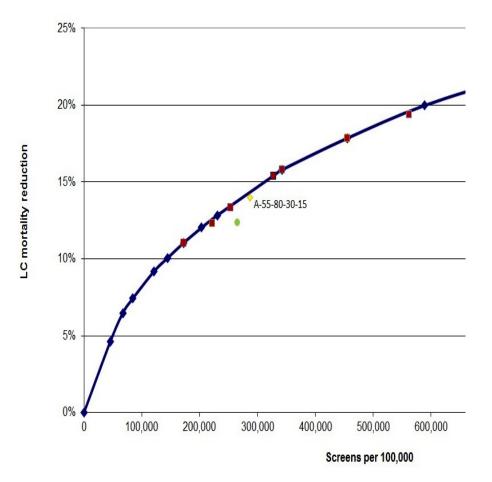
Harms

- False-positives
- Over diagnosis
- Over treatment
- Radiation exposure
- Costs
- Quality of life

Conclusions

- Triennial and biennial screens reduce LC mortality by only 5-10%
- Expanding the original NLST criteria by 5 more years (A 55-80-30-15) and/or to start 5 years later (at age 60), but extending the risk group (up to 25 years since quit smoking) are more effective and more efficient
- Extending eligibility to fewer pack-years lead to higher benefits, but more additional harms
- Advantageous scenario: Annual CT-screening 55 through 80 (30-15) (minimum 30 pack-years; maximum quit smoking 15 years: 19% eligible)

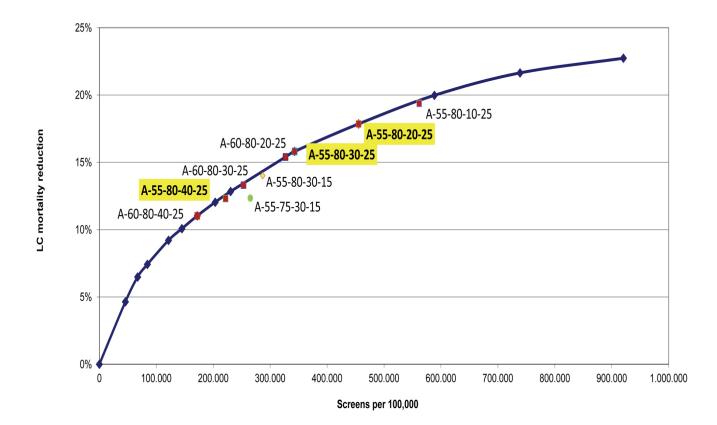
287,000 screens - 500 LC deaths prevented (ratio 1:575)


5,250 life-years gained

190 overdiagnosed cases (10% of screen-detected cases)

NLST-criteria (stop 75) not efficient

All model averages: Scenarios up to age 80



H.J. de Koning et al, Annals of Internal Medicine 2014

LC mortality reduction results for 9 different annual scenarios (100,000 US-1950 cohort followed 45-90)

All model averages: Scenarios up to age 80

H.J. de Koning et al., Annals of Internal Medicine 2014

Should Never-Smokers at Increased Risk for Lung Cancer Be Screened?

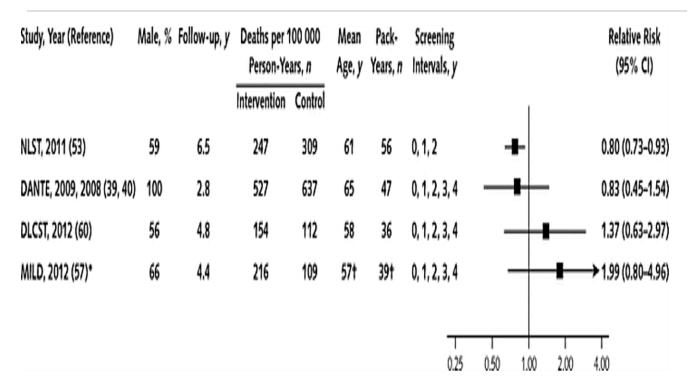
Kevin ten Haaf, MSc, and Harry J. de Koning, MD, PhD

Journal of Thoracic Oncology[®] • Volume 10, Number 9, September 2015

Characteristics of RCT on LDCT screening for lung cancer

Table 2. Characteristics of randomised controlled trials on LDCT screening for lung	
cancer	

Trial	rial Participants Initiation Design Screening		Screenings	gs Characteristics p			pants	
	N	Year		Ν	Sex	Age*	Smoking	Cessation
NLST ^{97,138}	53,439	2002	LDCT vs. CXR	3	M/F	55-74	≥30 py	<15 yrs
NELSON ^{108,139}	15,822	2004	LDCT vs. no screening	4	M/F	50-75	≥15/day for 25 yrs or ≥10/day for 30 yrs	≤10 yrs
DLST ⁹⁹	4,104	2004	LDCT vs. no screening	5	M/F	50-70	≥20 py	<10 yrs
MILD ¹⁰⁰	4,099	2005	LDCT vs. no screening	5/10	M/F	≥49	≥20 py	<10 yrs
LUSI ¹⁰¹	4,052	2007	LDCT vs. no screening	4	M/F	50-70	≥15/day for 25 yrs or ≥10/day for 30 yrs	≤10 yrs
UKLS ^{102,140}	4,000	2011	LDCT vs. no screening	1	M/F	50-75	≥5% risk of lung 5 yrs	g cancer in
ITALUNG ¹⁰³	3,206	2004	LDCT vs. no screening	4	M/F	55-70	≥20 py	<10 yrs
DANTE ¹⁰⁴	2,472	2001	Initial CXR, followed by LDCT vs. no screening	4	М	60-75	≥20 py	<10 yrs


Definition of abbreviations: LDCT = low-dose computed tomography; CXR = chest x-ray; M = male; F = female; py = pack-years; yrs = years.

* Age range up to, but not including upper limit.

From: Screening for Lung Cancer With Low-Dose Computed Tomography: A Systematic Review to Update the U.S. Preventive Services Task Force Recommendation

Ann Intern Med. 2013;159(6):411-420. doi:10.7326/0003-4819-159-6-201309170-00690

Figure Legend: Trial results for lung cancer mortality.

DANTE = Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays; DLCST = Danish Lung Cancer Screening Trial; MILD = Multicentric Italian Lung Detection; NLST = National Lung Screening Trial.

* Annual screening group compared only with control group; biennial screening group not shown.

Long-term follow-up results of the DANTE trial: a randomized study of lung cancer screening with spiral computed tomography

Infante M, Cavuto S, Lutman ER, et al (2015)

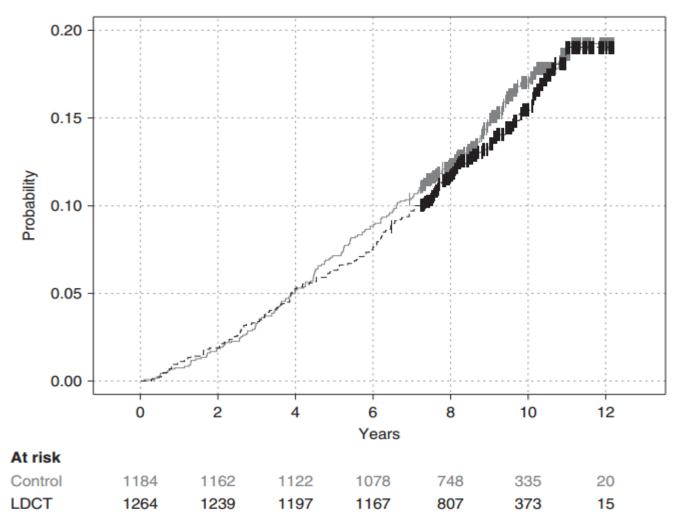
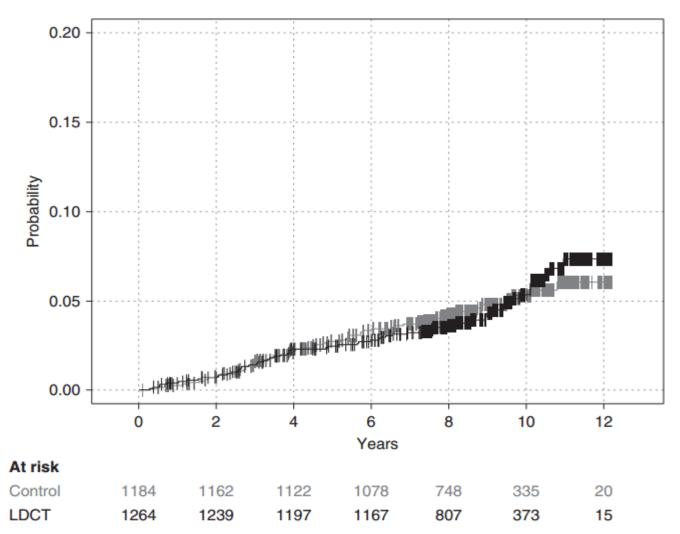



Figure 3. Cumulative probability of death from all causes. Hazard ratio = 0.947 (95% confidence interval, 0.769–1.165). LDCT = low-dose spiral computed tomography.

Figure 2. Cumulative probability of death from lung cancer. Hazard ratio = 0.993 (95% confidence interval, 0.688–1.433). LDCT = low-dose spiral computed tomography.

Table 4. Lung Cancer-Specific and All-Cause Mortality Rate	es (per 100,000 Person-Years)
--	-------------------------------

	LDCT	Control	All
Study subjects, n (%) FU, person-years Cause of death, n (%)	1,264 (51.59) 10,875	1,186 (49.41) 10,104	2,450 (100) 20,979
Cancer of the lung Cancer of other organs Nonneoplastic disease	59 (4.66) 54 65	55 (4.64) 59 62	114 (4.65)
Unknown* Total deaths Lung cancer mortality (95% CI) All-cause mortality (95% CI)	2 180 (14.24) 543 (413–700) 1,655 (1,422–1,916)	 176 (14.84) 544 (410–709) 1,742 (1,494–2,019)	356 (14.53) 543 (448–653) 1,697 (1,525–1,883)

Definition of abbreviations: CI = confidence interval; FU = follow-up; LDCT = low-dose spiral computed tomography.

*One patient died of disseminated cancer of unknown origin, and one patient died of unknown causes in a foreign country.

Cause of death	All	Screening	Control	
	N= 328	group N= 165	group N= 163	
Cancer Lung	77 (23)	39 (24)	38 (23)	
Pancreatic	22 (6.7)	9 (5.5)	13 (8.0)	
Cerebral	9 (2.7)	5 (3.0)	4 (2.5)	
Liver or biliary	7 (2.1)	3 (1.8)	4 (2.5)	
Esophagus	7 (2.1)	4 (2.4)	3 (1.8)	
Colon or rectal	7 (2.1)	5 (3.0)	2 (1.2)	
Bladder	7 (2.1)	2 (1.2)	5 (3.1)	
Prostate	6 (1.8)	3 (1.8)	3 (1.8)	
Gastric	5 (1.5)	4 (2.4)	1 (0.6)	
Other types*	34 (10)	18 (11)	16 (9.8)	
Ischemic heart disease	22 (6.7)	12 (7.3)	10 (6.1)	
Stroke	16 (4.9)	5 (3.0)	11 (6.7)	
COPD	15 (4.6)	7 (2.4)	8 (4.9)	
Alcohol addiction	12 (3.7)	3 (1.8)	9 (5.5)	
Alcoholic liver cirrhosis	9 (2.7)	5 (3.0)	4 (2.5)	
Aortic aneurism	8 (2.4)	4 (2.4)	4 (2.5)	
Sepsis	5 (1.5)	3 (1.8)	2 (1.2)	
Other [†]	50 (15)	26 (16)	24 (15)	
Unknown	10 (3.0)	8 (4.8)	2 (1.2)	

Data presented as N (%).

*Other types of cancer involve less than 5 participants and include: Breast cancer, sarcomas, malignant melanoma, leukaemia, lymphoma, carcinoid cancer, tonsil cancer, oral cancer, and others.

[†]Other causes of death involve less than 5 participants and include: Amyotrophic lateral sclerosis, heart failure, suicide, diabetes mellitus with complications, HIV, gastro-intestinal haemorrhage, necrotic fasciitis, and others.

DLCST – in conclusion

- No differences in LC mortality and all-cause mortality between groups
- Twice as many LC in screen group
- Mainly early-stage adenocarcinomas
- No difference in number of high-stage LC (III+IV) between groups
- Study is underpowered on its own
- (annual incidence of lung cancer in the control group was 0.27% instead of 0.50% expected)
- Somewhat astonishing death results: 77 LC, 22 pancreatic, 21 alcohol, 22 ischaemic, 34 other cancers, 50 other

Table 3 Lung cancer incidence and mortality, and all-cause mortality per 100 000 person-years in the Multicentric Italian Lung Detection study at 5-year follow-up, by study arm

	Group					
	Control		Biennial CT		Annual CT	
	N	Rate	N	Rate	Ν	Rate
Person-years (incidence) Person-years (mortality)		432.9 449.5		470.9 516.8		481.9 556.7
Lung cancer incidence Lung cancer deaths Total deaths	20 7 20	310.9 108.5 310.1	25 6 20	457.0 108.8 362.5	34 12 31	620.2 216.0 557.9

CT, computed tomography.

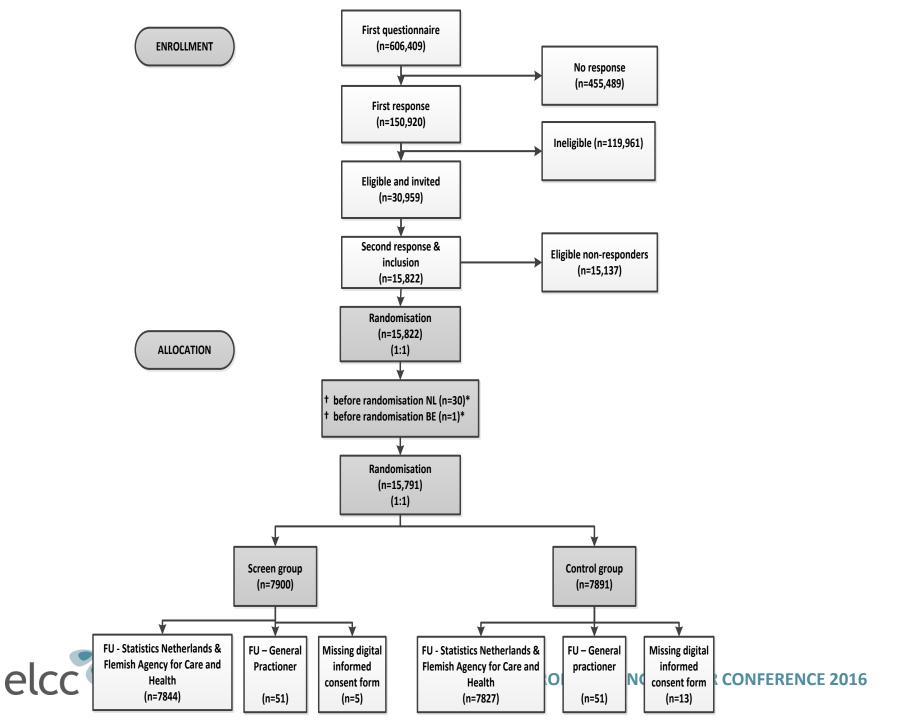
NELSON vs. NLST

	NELSON	NLST
Positive test results	< 3%	24%
PPV	40.4%	3.8%
Sens*	92.5%	93.8%
Spec*	98.3%	73.4%
Stage I	62%	59%
Stage IIIB/IV	18%	23%

*First (annual) screening round

N Horeweg et al., Lancet Oncology 2014

Design NELSON trial


- Randomized controlled trial
- Population-based recruitment
- Screening vs. no screening

Does LDCT screening of high-risk subjects* for developing lung cancer, lead to lung cancer mortality with 25% or more at 10 years after randomization?

*High risk subjects:

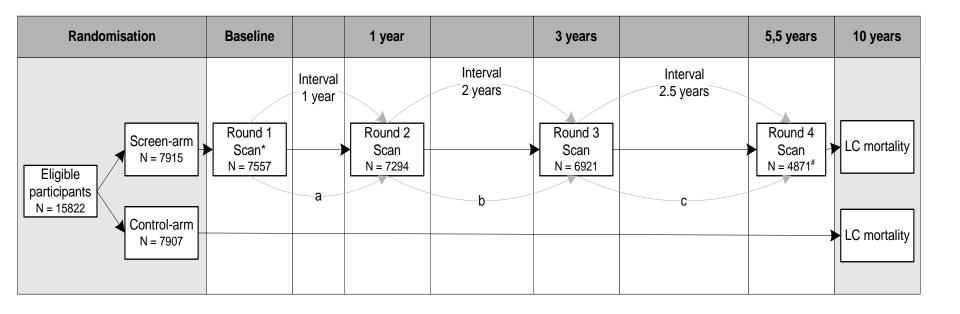
- Age 50 to 75 years
- Smoking history: 15+ cigarettes/day for 25 years or 10+ cigarettes/day for 30 years
- Current or former smokers (cessation \leq 10yrs)

ORIGINAL ARTICLE

Baseline Characteristics and Mortality Outcomes of Control Group Participants and Eligible Non-Responders in the NELSON Lung Cancer Screening Study

Uraujh Yousaf-Khan, MD, * Nanda Horeweg, PhD, MD, * Carlijn van der Aalst, PhD, * Kevin ten Haaf, MSc, * Mathijs Oudkerk, PhD, MD, † and Harry de Koning, PhD, MD*

(*J Thorac Oncol.* 2015;10: 747–753)


Generalisability NELSON trial

- Control group participants vs. Eligible non-responders
- Small healthy participant effect:
 - Younger age
 - More physically active
 - Higher educated
 - More often former smokers
- No differences: history of lung cancer, pack-yrs
- Mortality rate lower among participants
- However, differences are modest
- Results are inferable for the general high-risk population

(A.U. Yousaf et al., JTO 2015)

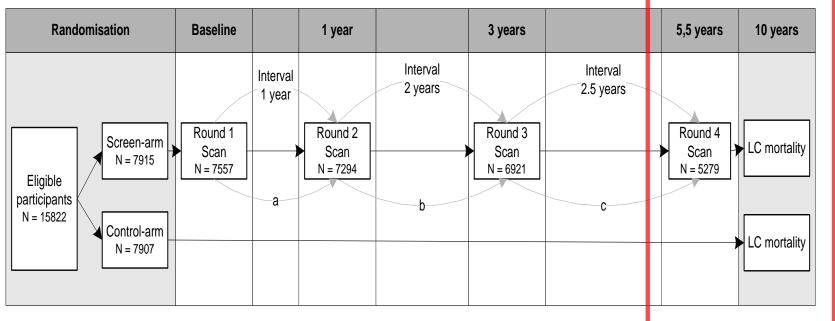
Design NELSON trial

5.5 yr risk calculations

First screening result

Risk screen detected lung cancer

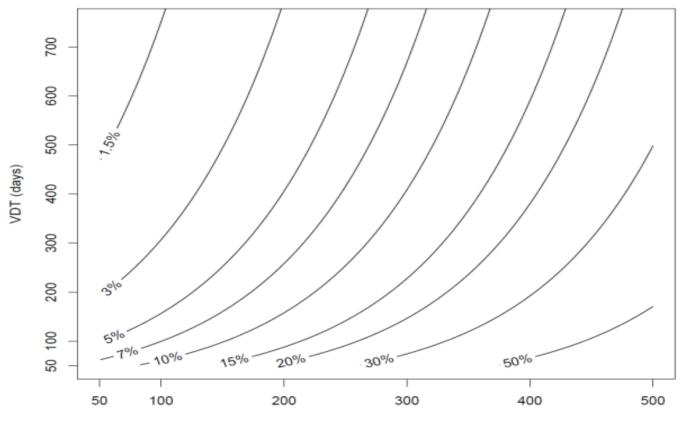
- Negative 1
- Indeterminate
- Positive


٠

- 1.0%
- 5.7%
- **48.3%**

Design NELSON trial

- 4 rounds of low-dose multi-slice computer tomography scanning
- Only trial with increasing length of the screening interval:
 - 1 yr, 2 yr and 2.5 yr


Lung cancer probability in patients with CT-detected pulmonary nodules: a prespecified analysis of data from the NELSON trial of low-dose CT screening

Nanda Horeweg^{*}, Joost van Rosmalen^{*}, Marjolein A Heuvelmans, Carlijn M van der Aalst, Rozemarijn Vliegenthart, Ernst Th Scholten, Kevin ten Haaf, Kristiaan Nackaerts, Jan-Willem J Lammers, Carla Weenink, Harry J Groen, Peter van Ooijen, Pim A de Jong, Geertruida H de Bock, Willem Mali, Harry J de Koning^{*}, Matthijs Oudkerk^{*}

Lancet Oncol 2014; 15: 1332-41

Results: combined effect of size and growth rate on lung cancer probability

Volume of largest nodule (mm3)

NELSON

Results: nodule volume algorithm based on LC probability

Screening result	Nodule volume
negative	< 100 mm³
indeterminate*	≥ 100 to 300 mm ³
positive	≥ 300 mm³

*Follow-up CT for VDT assessment:

- final screening result negative for VDT \geq 600 days
- final screening result positive for VDT < 600 days

Results: performance nodule volume algorithm

Screen test parameters	Performance percentage (95%CI)
Diagnostic work-up	5.9%
Follow-up CT scan	7.8%
Sensitivity	90.9 (81.2-96.1)
Specificity	94.9 (94.4-95.4)
Positive predictive value	14.4 (11.3-18.1)
Negative predictive value	99.9 (99.8-100.0)

Results: nodule diameter algorithms

Screening result	Algorithm based on nodule diameter percentage (95%CI)	Algorithm based on Fleischner criteria percentage (95%CI)
negative	< 5 mm	< 4 mm
indeterminate	≥ 5 to 10 mm*	≥ 4 to 8 mm [†]
positive	≥ 10 mm	≥ 8 mm

* follow-up CT for VDT assessment:

final result negative for VDT \ge 600 days final result positive for VDT < 600 days

[†] follow-up CT for VDT assessment:

final result negative for VDT \ge 400 days final result positive for VDT < 400 days

Results: performance compared to current guideline

Screen test parameters	Algorithm based on nodule diameter percentage (95%CI)	Algorithm based on Fleischner criteria percentage (95%Cl)
Diagnostic work-up	9.1%	11.6%
Follow-up CT scan	22.2%	29.8%
Sensitivity	93.9 (85.0-98.1)	92.4 (83.1-97.1)
Specificity	91.8 (91.1-92.4)	89.2 (88.4-89.9)
Positive predictive value	9.6 (7.6-12.2)	7.4 (5.8-9.4)
Negative predictive value	99.9 (99.8-100.0)	99.9 (99.8-100.0)

Results: R1-R3 vs. R4

Participation rate by round

Informed c	onsent origina	al protocol	Additional Consen	t (screened)
R1	R2	R3	R4	
95.5 %	92.2 %	87.5 %	80.5%	(97.1%)

Screen results

	R1-R3	R4
Negative	87.2%	96.0%
Indeterminate	10.8%	2.0%
Positive	2.0%	2.0%

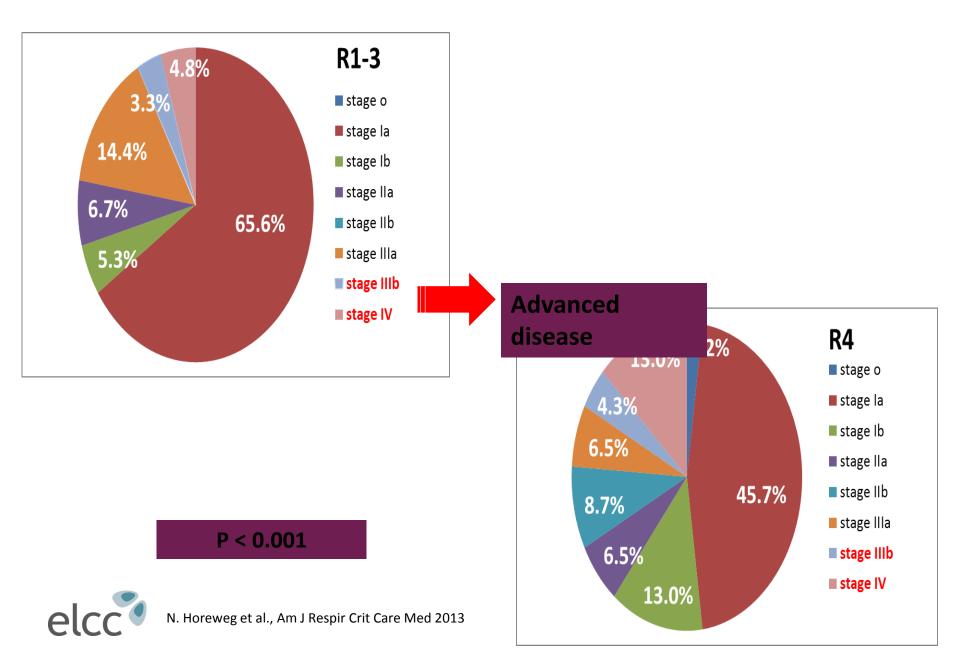
Results: R1-R3 vs. R4

Screen-detected LC	R1-R3			R4
Participants (n)	200			43
LC (n)	209			46
LC detection rate	R1	R2	R3	R4
	0.9%	0.8%	1.1%	0.8%
Cumulative LC detection rate	R1-R3			R4
	2.6%			3.4%

NNS to detect 1 LC	R1-R3	R4
	85-122	123

Test characteristics NELSON nodule

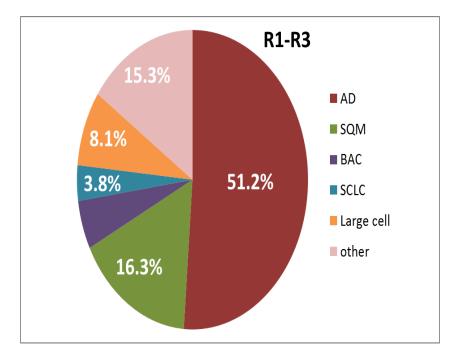
management strategy


R	1-R3 (combined	I)	R	4	
٠	Sensitivity:	84.6%	•	Sensitivity*: -	
•	Specificity:	98.6%	•	Specificity*: -	
•	FP rate:	59.4%	•	FP rate:	59.0%
٠	Overall FP rate:	1.2%	•	Overall FP rate:	1.2%
٠	PPV:	40.4%	•	PPV:	41.0%
•	NPV:	99.8%	•	NPV*: -	

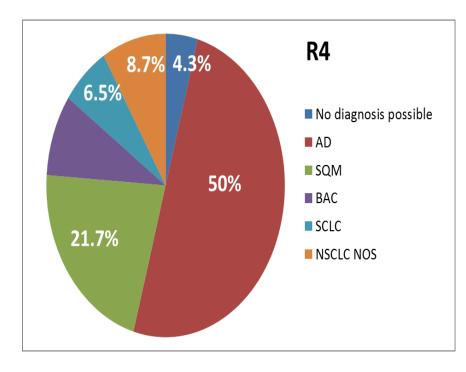
*: data about FN were not available yet

N. Horeweg et al., ERJ 2013, N. Horeweg et al., Lancet Oncology 2014

Stage distribution screen-detected lung cancers


Screenin	Stage I	Stage II	Stage III	Stage IV
g				
Round				
First	64.9%	9.5%	18.9%	6.8%
Second	75.8%	6.9%	13.7%	3.4%
Third	72.7%	3.9%	19.5%	3.9%
Fourth	62.2%	13.3%	11.1%	13.3%

1


Horeweg N, et al. Characteristics of Lung Cancers Detected by Computer Tomography Screening in the randomized NELSON Trial. Am J Respir Crit Care Med. April 15 2013.

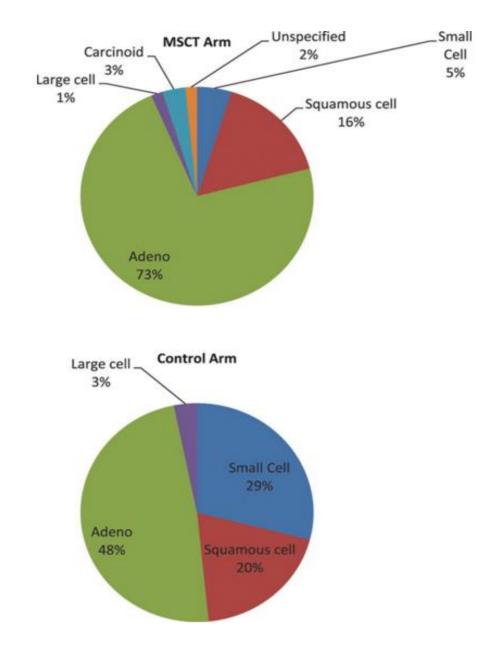
Histology screen-detected lung cancers

P =0.055

UK Lung Cancer RCT Pilot Screening Trial: baseline findings from the screening arm provide evidence for the potential implementation of lung cancer screening

J K Field, S W Duffy, D R Baldwin et al (2015)

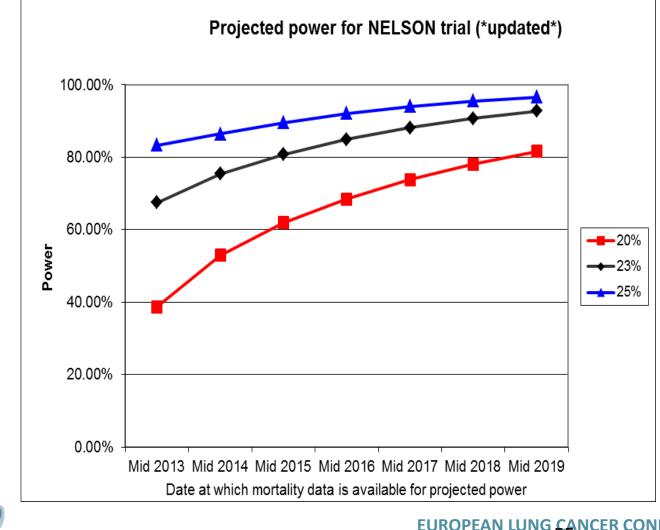
UKLS – lung cancer pathology


- N = 42
 - Adenocarcinoma, n = 25
 - SCLC, n = 3
 - Typical carcinoid, n = 1
 - BAC, n = 1
- Total stage I/II, 86%:
 - stage I, n = 42 (67%); stage II, n = 8/42 (19%)
- Treatment:
 - 92% of stage I/II LC patients had surgery
 - 2 had radical radiotherapy
 - 7 did not undergo resection

Randomized Study on Early Detection of Lung Cancer with MSCT in Germany Results of the First 3 Years of Follow-up After Randomization

N Becker, E. Motsch, M.L. Gross et al (2015)

Int. J. Cancer: **120,** 868–874 (2006) © 2006 Wiley-Liss, Inc.


Risk-based selection from the general population in a screening trial: Selection criteria, recruitment and power for the Dutch-Belgian randomised lung cancer multi-slice CT screening trial (NELSON)

Carola A. van Iersel^{1,2*}, Harry J. de Koning¹, Gerrit Draisma¹, Willem P.T.M. Mali³, Ernst Th. Scholten⁴, Kristiaan Nackaerts⁵, Mathias Prokop³, J.Dik.F. Habbema¹, Mathijs Oudkerk⁶ and Rob J. van Klaveren²

¹Department of Public Health, Erasmus MC, Rotterdam, The Netherlands ²Department of Pulmonology, Erasmus MC, Rotterdam, The Netherlands ³Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands ⁴Department of Radiology, Kennemer Gasthuis Haarlem, The Netherlands ⁵Department of Pulmonology, University Hospital Gasthuisberg, Leuven, Belgium ⁶Department of Radiology, University Medical Center Groningen, The Netherlands

NELSON projected power overview (Belgian participants included)

Future plans

Causes of death reviews NELSON (70% complete)


- Lung cancer mortality analyses
 - interim analysis NELSON
 - establish criteria for possible pooling for subgroup analyses (Italung, UKLS, German; 11,000, ...)
- Risk-based algorithms
- Microsimulation of screening scenarios & cost-effectiveness based on NELSON
- Validation study lung nodules (also in clinical care)

Conclusions

- One large CT-trial has shown statistically significant results on LC mortality reduction
- USPSTF formulated, based on quantifications from CISNET-models, an advantageous scenario -- possibly cost-effective
- 2.5 year interval is too long
- Important drawbacks in the original US-scenario
- NELSON trial much better screening algorithm
- So far, encouraging results in NELSON
- Still some patience

