

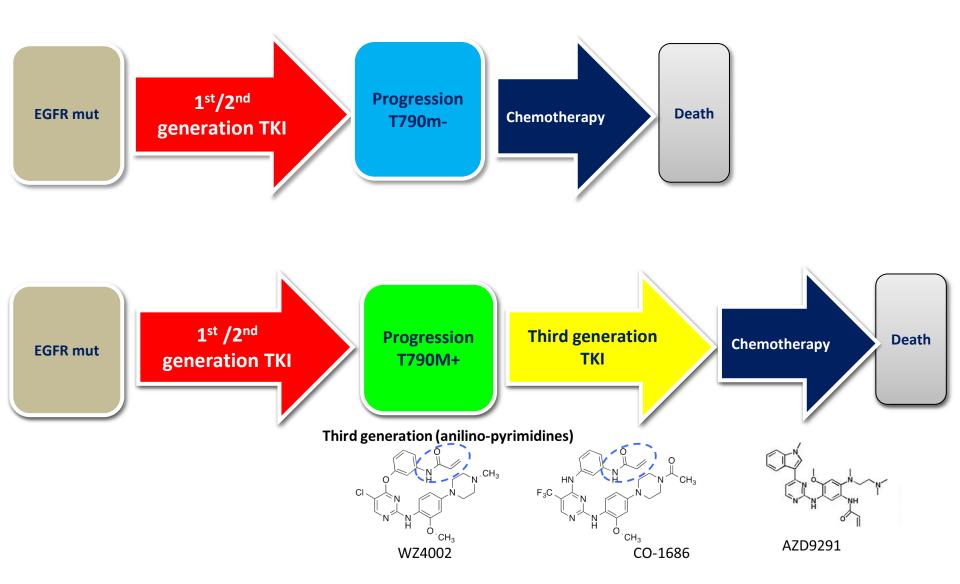
EUROPEAN LUNG CANCER CONFERENCE 2016

T790M INHIBITOR AS FIRST LINE THERAPY: PROMISES AND PITFALLS

David Planchard (MD, PhD)

Department of Cancer Medicine

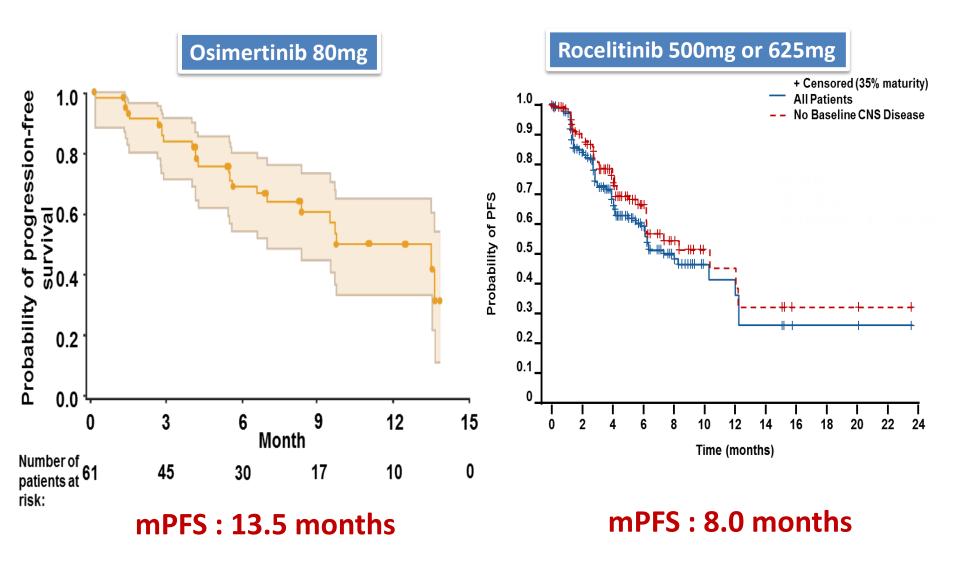
Gustave Roussy – Villejuif (France)


elcc2016.org

DISCLOSURE SLIDE

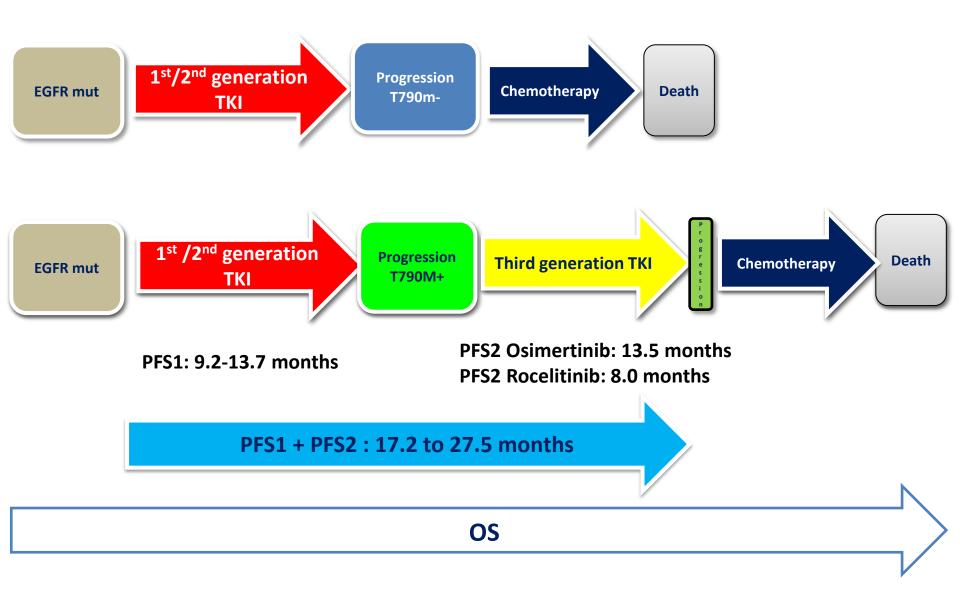
AstraZeneca, BMS, Clovis, GSK, Lilly, MSD, Pfizer, Roche, Sanofi, Pierre Fabre, Merck, Boehringer Ingelheim,

EGFR mutated lung cancer patient

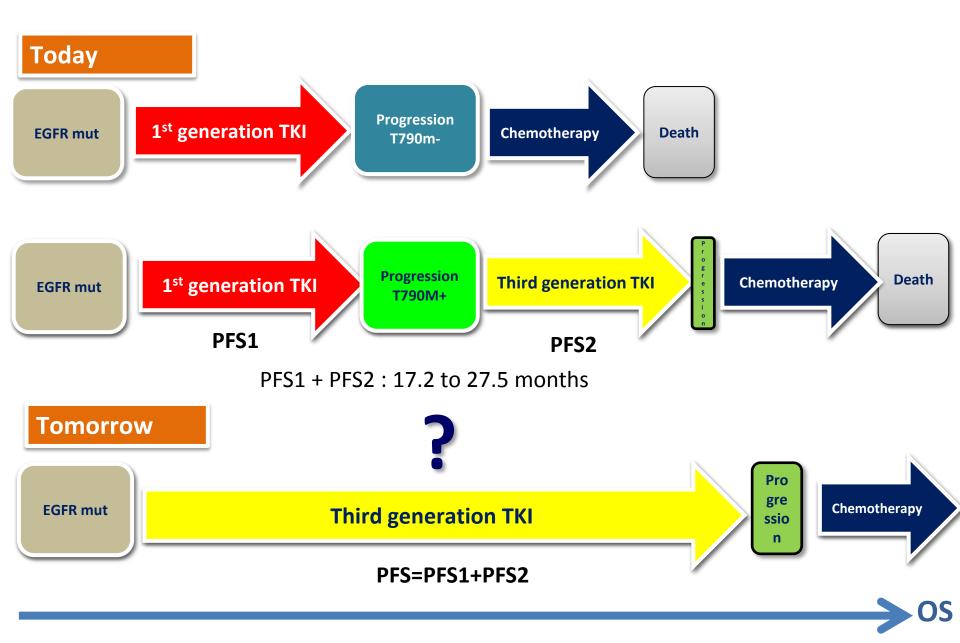

EGFR-TKI in 1st ligne treatment increase PFS

Trial		N (EGFRmut)	RR	Median PFS(months)
EURTAC ³	Erlotinib vs cddp/doc	173	58.1% vs 14.9%	9.7 vs 5.2
OPTIMAL ⁴	Erlotinib vs carbo/gem	154	83% vs 36%	13.7 vs4.6
IPASS ⁵	Gefitinib vs carbo/pacli	261	71.2% vs 47.3%	9.5 vs 6.3
NEJ002 ⁶	Gefitinib vs carbo/pacli	224	73.7% vs 30.7%	10.8 vs 5.4
WJTOG3405 ⁷	Gefitinib vs cddp/doc	172	62.1% vs 32.2%	9.2 vs 6.3
LL3 ¹	Afatinib vs cddp/pem	345	56% vs 23%	11.1 vs 6.9
LL6 ²	Afatinib vs cddp/gem	364	66.9% vs 23%	11 vs 5.6

9.2-13.7 months

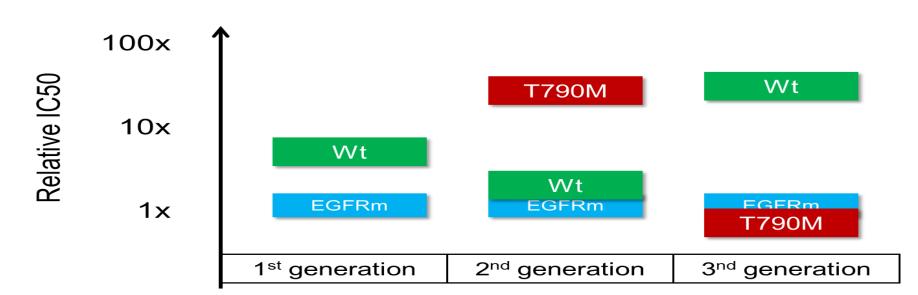

1. Sequist et al. *J Clin Oncol.* 2013;31:3327; 2. Wu et al. *Lancet Oncol.* 2014;15:213; 3. Rosell et al. *Lancet Oncol.* 2012;13:239; 4. Zhou et al. *J Clin Oncol.* 30, 2012 (suppl; ab7520); 5. Fukuoka et al. *J Clin Oncol.* 2011;29:2866; 6. Inoue et al. *Ann Oncol.* 2013;24:54; 7. Mitsudomi et al. *J Clin Oncol.* 30, 2012 (suppl; ab7521).

T790M positive – Progression free survival

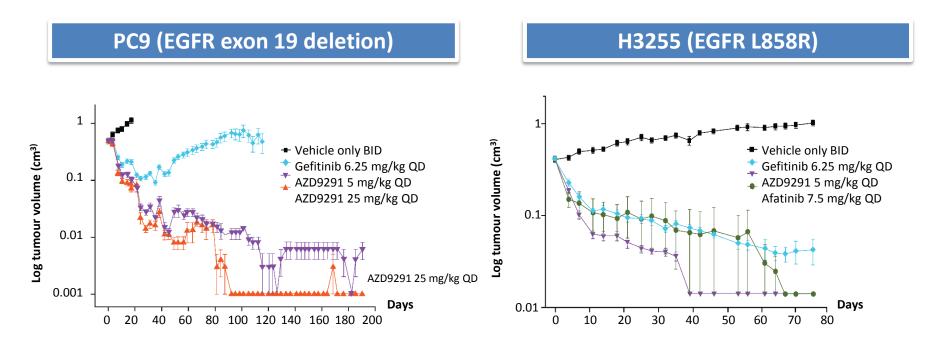


Pasi A Janne et al, ELCC 2015 ; LV Sequist et al, ASCO 2015

Benefit of T790M inhibitor


What is the Best Sequence?

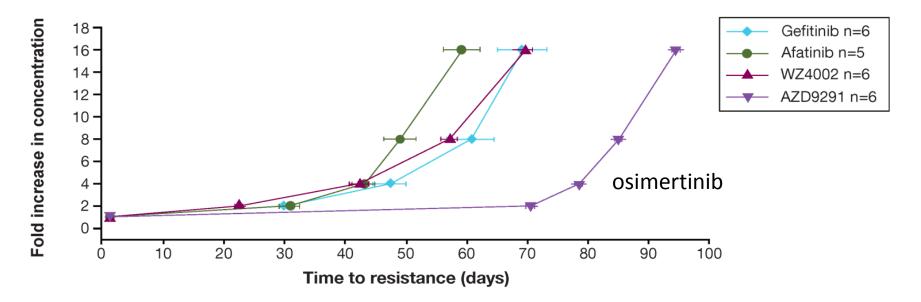
T790M inhibitor as first line


- 'Hitting harder' the EGFRm target
 - Inhibits mutant EGFR with sensitising mutation (ex19 or L858R) and dual mutant EGFR with de novo/secondary T790M resistance mutation

T790M

Tumour shrinkage in EGFRm+ NSCLC tumour xenografts (Osimertinib)

 AZD9291 induces sustained tumour shrinkage in PC9 and H3255 tumour xenografts



AZD9291 at 25 mg/kg in mouse approximates to clinical exposure of 80 mg once daily, gefitinib at 6.25 mg/kg in mouse approximates to clinical exposure of 250 mg once daily; afatinib at 7.5 mg/kg in mouse approximates to clinical exposure of 40 mg once daily

QD, once daily

Expect a prolonged control of the disease compared to currently available TKis

- In vitro in EGFRm+ (exon 19 deletion) PC9 cells, resistance to AZD9291 took significantly longer to emerge compared with other TKIs¹
 - Resistance to 10 nM AZD9291 took on average 43 days longer to develop than with 0.8 nM afatinib, 30 nM WZ4002, or 20 nM gefitinib

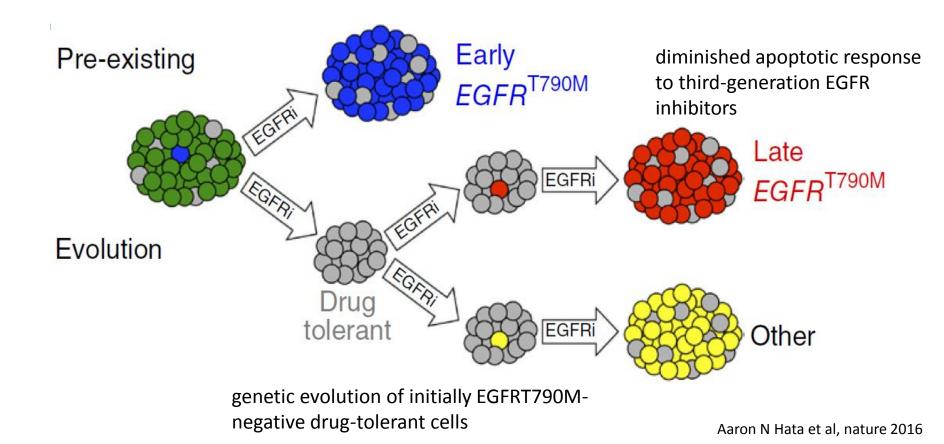
Initial concentration was equal to the proliferative IC50 previously determined for each inhibitor: gefitinib 20 nM, afatinib 0.8 nM, WZ4002 30 nM, AZD9291 10 nM

n = number of separate resistant populations; error bars are standard error of the mean

IC50, half-maximal inhibitory concentration

1. Eberlein et al. Proceedings of the 105th Annual Meeting of the American Association for Cancer Res Diego, CA, abstract 1722.

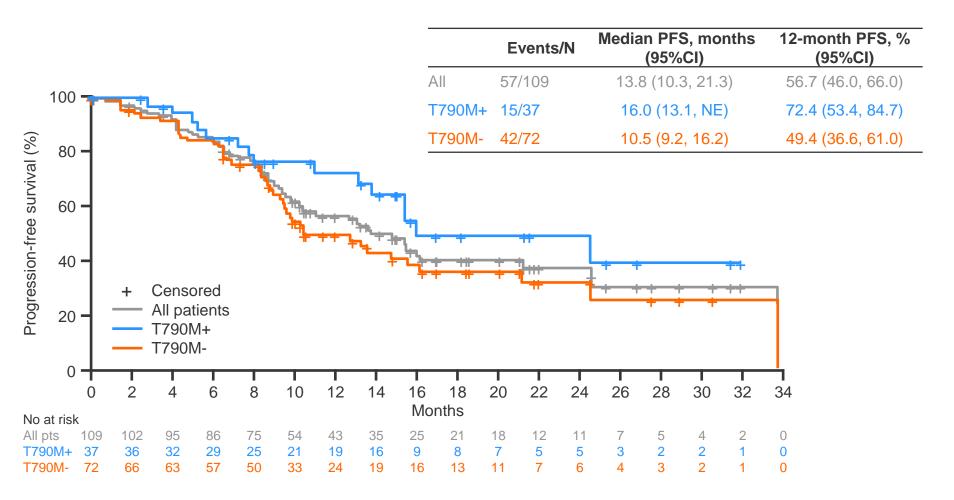
Detection of T790M resistance in EGFR-TKI-treated PC9 cell lines


 In contrast to gefitinib and afatinib, AZD9291 acquired resistance *in vitro* in PC9 cell lines was not dependent on T790M¹

1. Eberlein et al. Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 5–9 April 2014; San Diego, CA, abstract 1722.

Tumors resistant to EGFR inhibitors can arise via different mechanisms

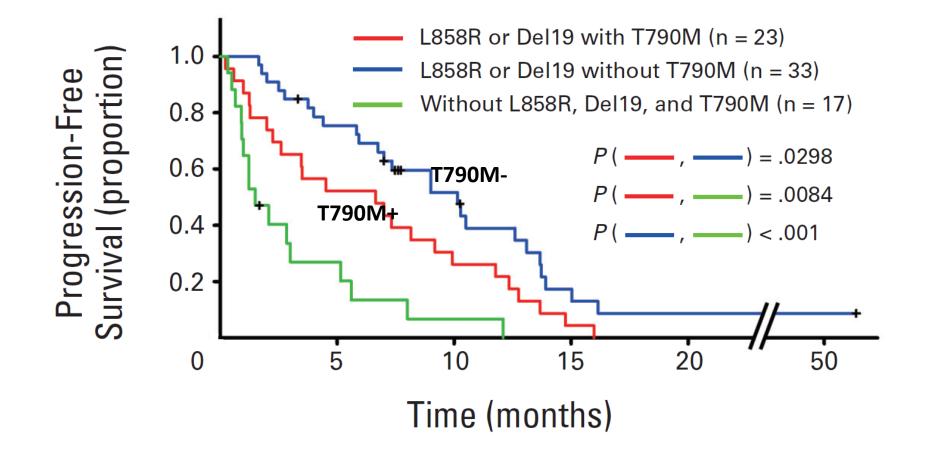
- Acquired resistance caused by
 - pre-existing EGFR T790M positive clones
 - or via genetic evolution of initially EGFR T790M negative drug-tolerant cells


Wide variation in frequency of de novo EGFR T790M mutations

Ref	Method	Baseline T790M mutation
Maheswaran et al	Scorpion ARMS	38%
Sequist <i>et al</i>	Direct seq	5,9%
Nakamura <i>et al</i>	MBQ-PQ	9,4%
Rosell et al	TaqMan assay + PNA	34,9%
Wu et al	Direct sequencing	1%
Fujita <i>et al</i>	Colony hydridization	78,9%
Su et al	MALDI-TOF	25%
Sakai <i>et al</i>	SABER	7%
Costa <i>et al</i>	Taqman probe+PNA	65,3%
Yu et al	MALDI-TOF MS	2%

ARMS, amplification refractorymutation system; MBQ-QP, mutation-biased polymerase chain reaction — quenching probe; PNA, peptide-nucleic acid; MALDI-TOF MS, matrix-assisted laser desorption ionization time-of-flight mass spectrometry; SABER, single allele base extension reaction

Erlotinib and bevacizumab in pts with advanced NSCLC with activating EGFR mutations with and without T790M mutation. BELIEF trial

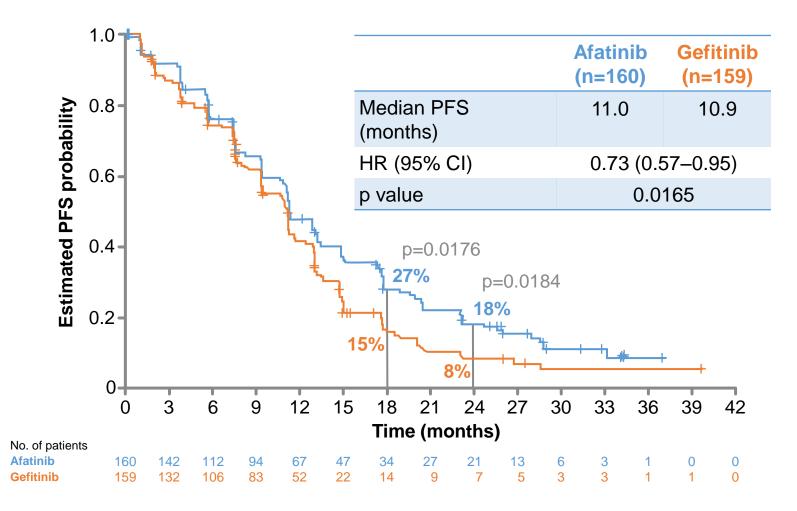


Stahel et al. Ann Oncol 2015; 26 (suppl 6): abstr 3BA

Pretreatment EGFR T790M Mutation Predicts Shorter EGFR Tyrosine Kinase Inhibitor Response Duration

25.2% EGFR- T790M+

matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and next-generation sequencing (NGS)

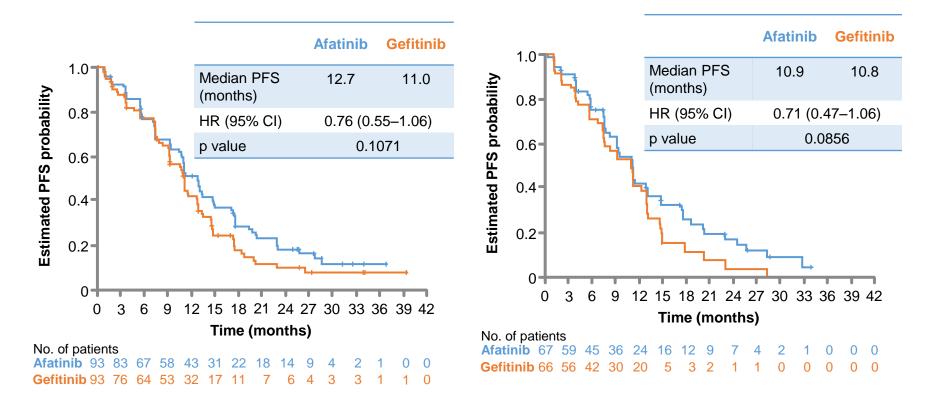

LUX-Lung 7 PFS by independent review

18-21 DECEMBER

SINGAPORE

SINGAPORE

2015


Effect of Afatinib on T790M... ??

Keunchil Park et al, ESMO Asia 2015

Efficacy in patients with Del19 or L858R mutation

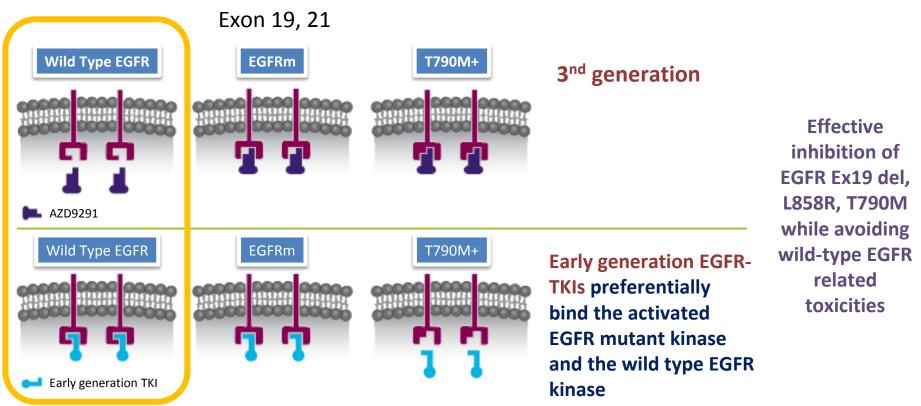
Del 19

L858R

Drug-related AEs (>10%)

	Afatinib	(n=160)	Gefitinib (n=159)			
AE category, %	All	Grade 3	All	Grade 3		
Diarrhea	90.0	11.9 [†]	61.0	1.3		
Rash/acne*	88.8	9.4	81.1	3.1		
Stomatitis*	64.4	4.4	23.9	-		
Paronychia*	55.6	1.9	17.0	0.6		
Dry skin	32.5	-	37.1	-		
Pruritus	23.1	-	22.6	-		
Fatigue*	20.6	5.6	14.5	-		
Decreased appetite	16.3	0.6	11.9	-		
Nausea	16.3	1.3	13.8	-		
Alopecia	10.6	-	1 5.1	-		
Vomiting	10.6	-	3.8	0.6		
ALT increased	9.4	-	23.9	7.5 [‡]		
AST increased	6.3	-	20.8	2.5		

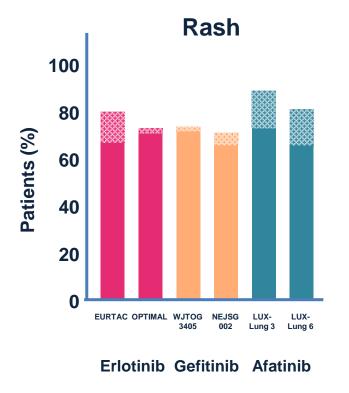
*Grouped terms of AEs

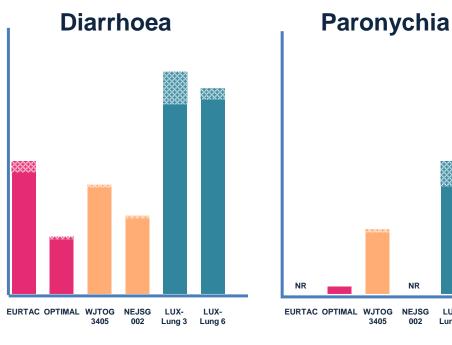

[†]Plus 1 case of grade 4 diarrhea [‡]Plus 1 case of grade 4 increased ALT ALT, alanine aminotransferase; AST, aspartate aminotransferase

T790M inhibitor as first line

- 'Hitting harder' the EGFRm target
- Better tolerability profile versus available
 EGFR TKIs

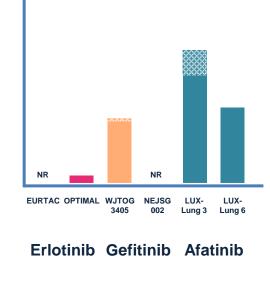
higher level of selectivity towards mutant EGFR vs. wild type


- allowing a wider therapeutic margin
- and also a better tolerability profile versus available EGFR TKIs


1st and 2nd generation EGFR -TKI

Grade 1–2

Grade 3–4



~80 % (5-15% Grd ¾)

Erlotinib Gefitinib Afatinib

~60 % (3-10% Grd ¾)

Rosell, et al. Lancet Oncol 2012; Zhou, et al. Lancet Oncol 2011; Mitsudomi, et al. Lancet Oncol 2010 Maemondo, et al. N Engl J Med 2010; Sequist, et al. J Clin Oncol 2013; Wu, et al. Lancet Oncol 2014

Osimertinib Phase I/II: All-causality adverse events

Patients with an AE, %	20 r (N=:		40 r (N=		80 I (N=1		160 (N=		240 (N≕	•	Tot (N=2	
70	Any Gr	Gr ≥3	Any Gr	Gr ≥3	Any Gr	Gr ≥3	Any Gr	Gr ≥3	Any Gr	Gr≥3	Any Gr	Gr ≥3
AE by preferred term, c	occurring	in >15%	of patier	nts over	all							
Diarrhoea	29	0	47	2	36	1	68	3	76	5	50	2
Rash, grouped terms	24	0	33	0	38	0	63	3	76	5	46	1
Decreased appetite	38	10	19	0	26	3	24	0	33	0	25	2
Nausea	14	5	17	0	18	1	34	1	43	0	24	1
Dry skin	14	0	16	0	15	0	36	0	24	0	22	0
Paronychia	14	0	9	0	21	2	29	4	38	5	22	2
Pruritus	14	0	21	0	19	0	20	0	38	0	21	0
Fatigue	24	5	26	0	16	0	19	0	19	5	19	1
Constipation	5	0	26	0	21	0	18	0	14	0	19	0
Cough	19	0	17	0	13	0	21	0	0	0	16	0
Select AEs of interest												
Hyperglycaemia (n=8)	^	^	2	^	4	•	2	^	^	^	2	
QT pro LBA2_PR - Os	imertinib	(AZD92	291) in p	re-treat	ed pts w	ith T790)M-positi	ve adva	anced N	SCLC:	updated	4
ILD-III Phase 1 (P1) and pooled Phase 2 (P2) results												
Popul *All IL	amalinga	m ² , P	Jänne ³ ,	M. Can	tarini ⁴ , ⁻	T. Mitsuo	domi ⁵ ; 1	TW, ² 0	3A/US, ³	MA/US	, ⁴ GB, ⁵	JP

Presented by Pasi A Jänne at the 2015 European Lung Cancer Conference. Ann Oncol 2015; 26(Suppl1): i60, LBA3.

Rocelitinib

Common Treatment-related Adverse Events

Treatment-related adverse events (all grades) seen in >10% of patients, N (%)

AE **Rociletinib dose** 500mg 625mg 750mg BID BID BID 1000ma (N=119) (N=236) (N=95) BID(N=6)Hyperglycemia 42 (35) 107 (45) 56 (59) 4 (67) 39 (33) 94 (40) 28 (30) 4 (67) Diarrhea 23 (19) 79 (34) 35 (37) 3 (50) Nausea Fatigue 15 (29) 37 (30) 21 (27) 1 (25) QTc 16 (13) 3 (50) 53 (23) 25 (26) prolongation Decreased 18 (15) 38 (16) 24 (25) 2 (33) appetite Muscle 17 (14) 1 (17) 30 (13) 20 (21) spasms Vomiting 10 (8) 38 (16) 13 (14) 0 (0) Weight loss 12 (10) 21 (9) 16 (17) 1 (17)

<u>Grade 3/4</u> treatment-related adverse events seen in >10% of patients, N (%)

AE	Rociletinib dose								
	500mg BID (N=119)	625mg BID (N=236)	750mg BID (N=95)	1000mg BID (N=6)					
Hyperglycemia	20 (17)	56 (24)	34 (36)	2 (33)					

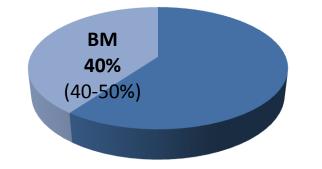
- No ILD observed in 500mg BID dose group
 - 7/456 cases overall (1.5%)
 - Rociletinib continuation possible with steroid cover
 - No fatal ILD in program
 - No paronychia or stomatitis observed; trivial rash
- Grade 3 QTc prolongation at 500mg BID = 2.5%
- Treatment-related AEs leading to drug discontinuation seen in 2.5% of cases at 500mg BID (4% overall)
- Hyperglycemia readily managed with oral agents
 - No contraindication for pre-existing diabetic patients

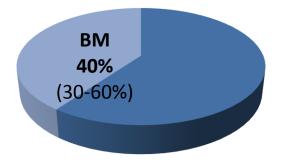
ILD=interstitial lung disease.

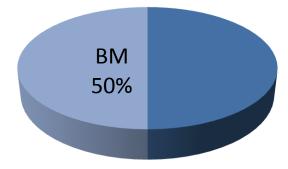
SLIDES ARE THE PROPERTY OF THE AUTHOR. PERMISSION REQUIRED FOR REUSE.

Lecia V. Sequist et al, ASCO2015

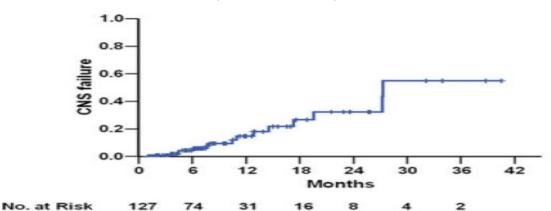
T790M inhibitor as first line


- 'Hitting harder' the EGFRm target
- Better tolerability profile versus available
 EGFR TKIs
- Optimising brain penetration


Optimising brain penetration


CNS involvement in NSCLC

All comers incidence of BM


EGFR + patients treated ALK+ patients treated with with 1st generation TKI crizotinib

Sorensen JB et al, J Clin Oncol.1988;6: 1474 Langer CJ et al, J Clin Oncol 2005, 23:6207 Homuro et al , Cancer.2005: 3, 2344 Hoen S et al, Clin Cancer Res 2010: 16, 5873 Lee YJ et al, Cancer 2010: 116, 1336

Figure 1. The actuarial incidence of isolated central nervous system failure, measured by the Kaplan-Meier method, in patients with clinical benefit from epidermal growth factor tyrosine kinase inhibitors.

Osimertinib is distributed to mouse brain to a greater extent than gefitinib, CO-1686, or afatinib

AZD9291 and gefitinib p.o.

AZD9291 25 mg/kg and gefitinib 6.25 mg/kg mouse

AZD9291, gefitinib, CO-1686, and afatinib p.o. plasma and brain C_{max}

	AZD9291	Gefitinib	CO-1686	Afatinib
Dose (mg/kg)	25	6.25	100	7.5
Plasma C _{max} (μΜ)	0.82	0.82	3.3	0.14
Brain C _{max} (µM)	2.8	0.17	BLQ	BLQ
Brain/plasma ratio	3.4	0.21	NC	NC

BLQ, below limit of quantification (CO-1686 0.25 µM, afatinib 0.05 µM); C_{max}, maximum concentration; NC, not calculated; p.o., orally. Doses are equivalent to clinical doses or reported previously for preclinical studies.

Time (h) At clinically relevant doses, AZD9291 distribution to the brain is ~10fold higher than gefitinib

Presented by P Ballard at the World Conference on Lung Cancer 2015. Journal of Thoracic Oncology 2015; 10(9, Suppl 2): S300, abstract Mini 10.12

[¹¹C]AZD9291 is distributed to cynomolgus monkey brain

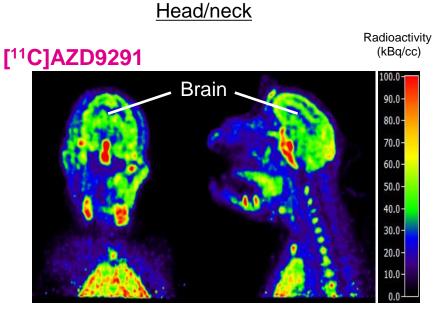
Abdomen

Radioactivity

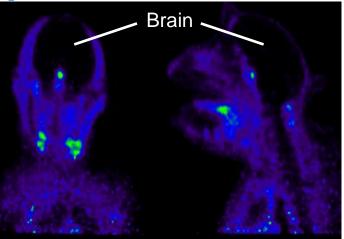
(kBq/cc)

700.0

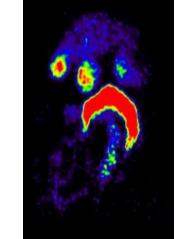
600.0


500.0

400.0


300.0

200.0-

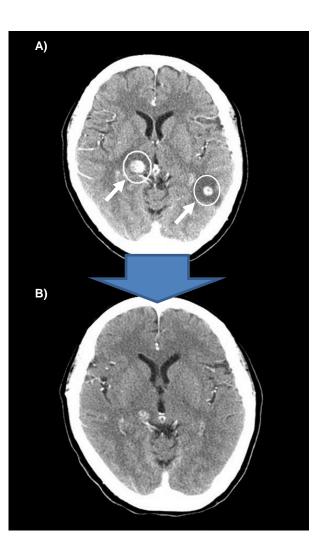

100.0

[¹¹C]CO-1686

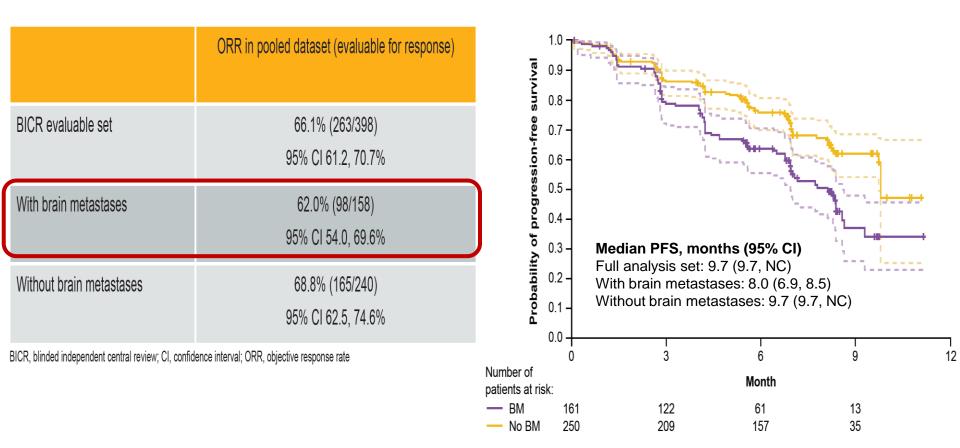
Summation images acquired 5 min up to 2 h after intravenous microdose (<3 µg) injection

Summation images acquired 1.5 h up to 2 h after intravenous microdose (<3 µg) injection

Radiolabeled imaging

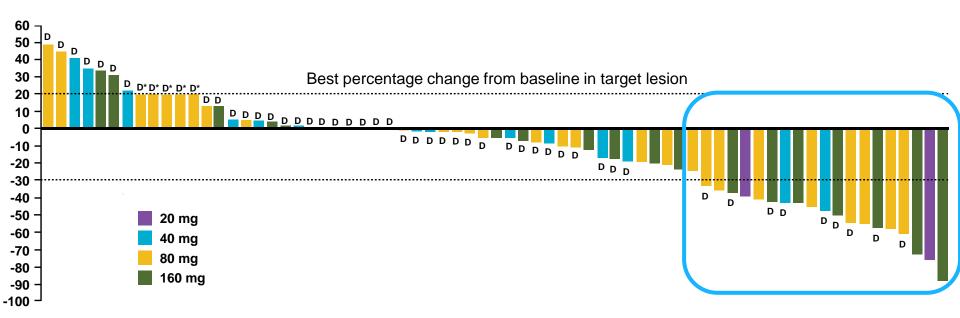

	Brain to blood ratio AUC _{0–90} min
[¹¹ C]AZD92 91	2.6 ± 1.4*
[¹¹ C]CO- 1686	0.025†

Brain metastases – Case Study 2


- Sixty-year-old Taiwanese female diagnosed with advanced NSCLC (L858R) in January 2011
- Prior therapy: erlotinib January 2011–October 2012 (PR), pemetrexed/cisplatin/ carboplatin October 2012–January 2013 (SD), erlotinib January 2013– March 2013 (NE), docetaxel April 2013–June 2013 (SD), gemcitabine June 2013–July 2013 (NE). T790M detected in August 2013
- AZD9291 80 mg daily started 2 September 2013 in expansion cohort, best response PR. A single brain met target lesion decreased from 13 mm at baseline to 12 mm at Week 6, 8 mm at Week 12–18 (38% shrinkage). NTLs including brain mets had non-CR/non-PD reported for 4 months between 8 October 2013 to 2 January 2014, but progressed in the brain met NTLs on 13 February 2014

Brain MRI

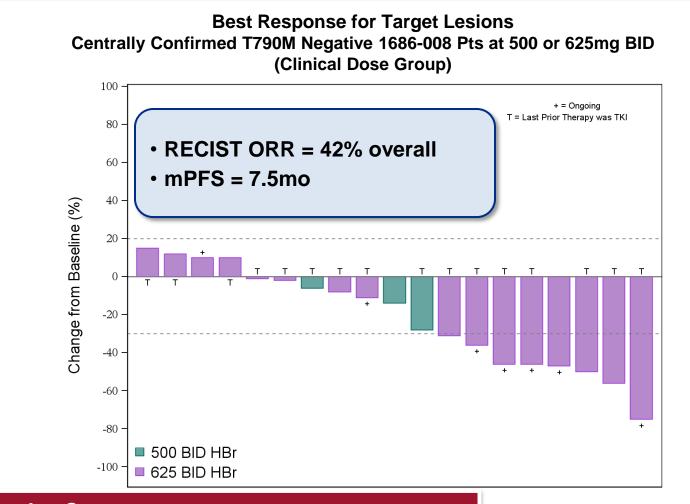
A) Baseline on 9 August 2013. B) 8 October 2013


ORR by medical history of brain metastases AZD9291 data from phase II studies

T790M inhibitor as first line

- 'Hitting harder' the EGFRm target
- Better tolerability profile versus available
 EGFR TKIs
- Optimising brain penetration
- Exposure of the entire EGFR-mut population (T790M false -)

Rate in T790M negative cohorts (central test)

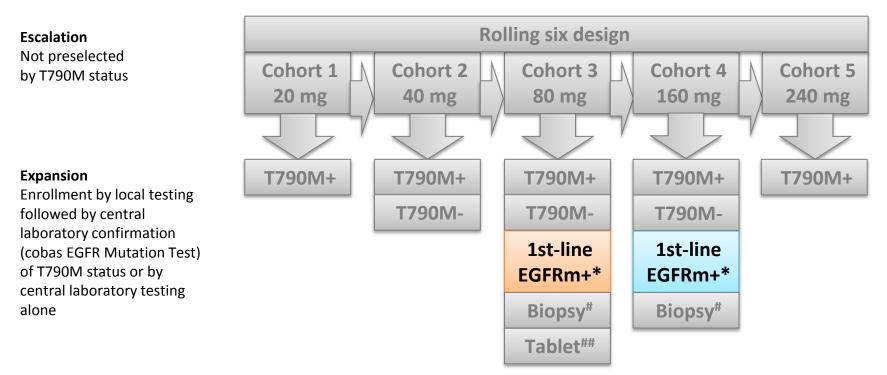


DCR (CR+PR+SD) in patients with centrally tested T790M negative tumours was 64% (44 / 69; 95% CI 51, 75)

	20 mg	40 mg	80 mg	160 mg	Total
N (69)	3	17	29	20	69
ORR (95% CI)	67% (9, 99)	12% (2, 36)	21% (8, 40)	30% (12, 54)	23% (14, 35)

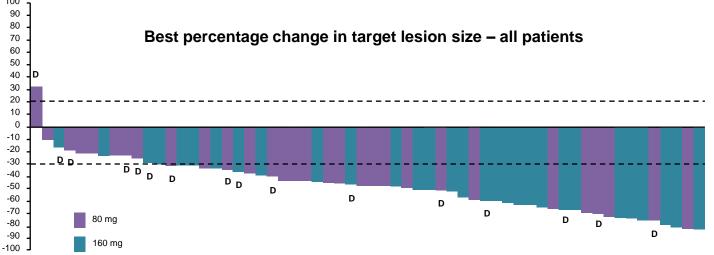
*Imputed values for patients who died within 14 weeks (98 days) of start of treatment and had no evaluable target lesion assessments Patients are evaluable for response if they were dosed and had a baseline RECIST assessment. Data cut-off 2 Dec 2014 Presented by Pasi A Jänne at the 2015 European Lung Cancer Conference. Ann Oncol 2015; 26(Suppl1): i60, LBA3.

Striking Activity in T790M-negative Patients

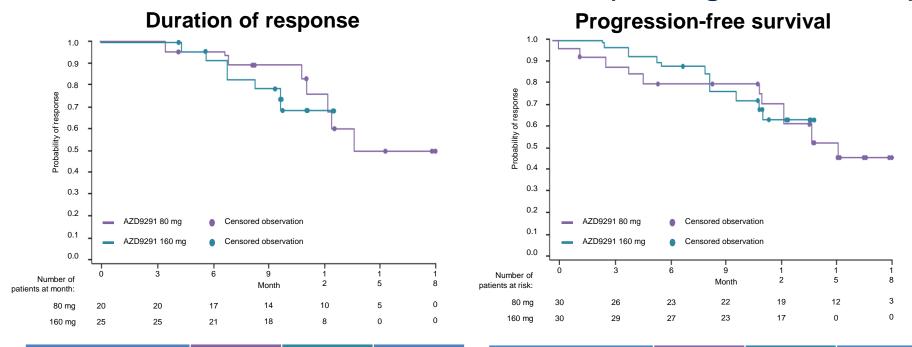


-False negative ?-Real tumor heterogeneity ?-Specific mechanism of action of the compound ?

JC. Soria et al


Phase I dose escalation/expansion study design (NCT01802632)

- For the first-line cohorts, patients with a documented EGFR-TKI-sensitising mutation and who have received no prior therapy for advanced stage NSCLC were enrolled
- Patients received AZD9291 once daily as an 80 mg or 160 mg capsule


*Prior therapy not permissible in this cohort. #Paired biopsy cohort patients with T790M+ tumours. ##Not selected by mutation status, US only.

Tumor response in AZD9291 first-line cohorts by dose

	80 mg	160 mg	Total
	N=30	N=30	N=60
Confirmed objective response rate	67%	83%	75%
	(95% CI 47, 83)	(95% Cl 65, 94)	(95% Cl 62, 85)
Disease control rate	93%	100%	97%
	(95% CI, 78, 99)	(95% CI 88, 100)	(95% CI 89, 100)
Best objective response Complete response Partial response Stable disease Progressive disease	0 20 8 2	2* 23 5 0	2* 43 13 2

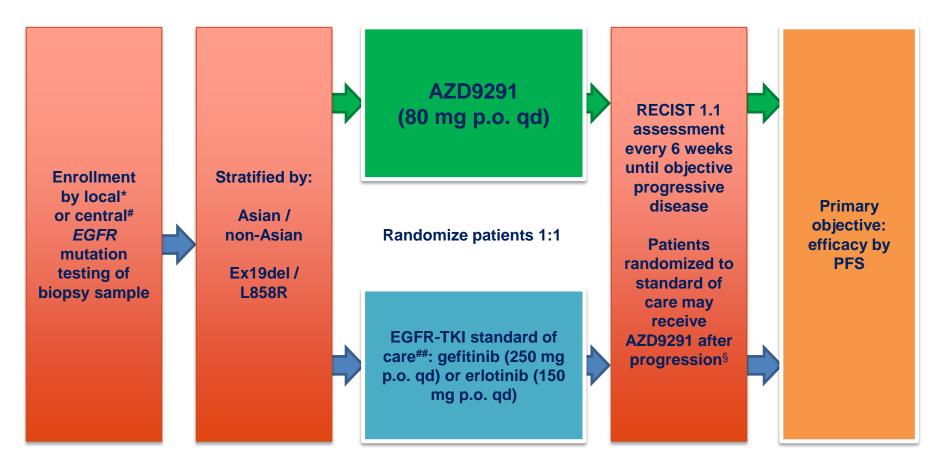
DoR and PFS in AZD9291 first-line cohorts (investigator assessed)

Median DoR,* months	13.6 (11.1,						N=30	N=60	
(95% CI)	NC) Maturity: 35%	NC (9.7, NC) Maturity: 28%	NC (12.3, NC) Maturity: 31%		Median PFS, [‡] months (95% CI)	NC (12.3, NC) Maturity: 40%	NC (11.1, NC) Maturity: 30%	NC (13.7, NC) Maturity: 35%	
Maximum DoR, 18.0+ 12.6+ 18.0+ Maximum PFS, 19.2+ 13.8+ 19.2+ Mont LBA1_PR - Osimertinib as first-line treatment for EGFR mutation-positive advanced NSCLC: updated efficacy and safety results from two Phase I expansion cohorts 9 12 S. Ramalingam ¹ , J. Yang ² , C. Lee ³ , T. Kurata ⁴ , DW. Kim ⁵ , T. John ⁶ , N. Nogami ⁴ , Y. Ohe ⁴ , P. Jänne ⁷ 9, 89) population: all or ogression events ; ¹ GA/US, ² TW, ³ NSW/AU, ⁴ JP, ⁵ KR, ⁶ VIC/AU, ⁷ MA/US 9, 89) 8, 82)									

DoR, duration of response; NC, not calculable; PFS, progression-free survival

Suresh S. Ramalingam et al, IASLC 2015

Adverse events (all causality) in AZD9291 first-line cohorts


AEs by preferred term (all	All patients									
grade) occurring in ≥25% of patients overall	80 mg N=30 n (%)		160 N= n (30	Total N=60 n (%)					
	Any grade	Gr ≥3	Any grade	Gr ≥3	Any grade	Gr ≥3				
Rash (grouped terms)	21 (70)	0	25 (83)	1 (3)	46 (77)	1 (2)				
Diarrhea	18 (60)	0	26 (87)	2 (7)	44 (73)	2 (3)				
Dry skin	12 (40)	0	12 (40)	0	24 (40)	0				
Paronychia	9 (30)	0	15 (50)	2 (7)	24 (40)	2 (3)				
Stomatitis	10 (33)	0	13 (43)	1 (3)	23 (38)	1 (2)				
Fatigue	8 (27)	0	8 (27)	0	16 (27)	0				
Decreased appetite	8 (27)	0	7 (23)	0	15 (25)	0				
Nausea	7 (23)	1 (3)	8 (27)	0	15 (25)	1 (2)				
Pruritus	8 (27)	0	7 (23)	0	15 (25)	0				
Select AEs of interest										
ILD (grouped terms)	3 (10)	0	0 (0)	0	3 (5)	0				
Hyperglycemia	1 (3)	0	2 (7)	0	3 (5)	0				
QT prolongation	2 (7)	0	3 (10)	0	5 (8)	0				

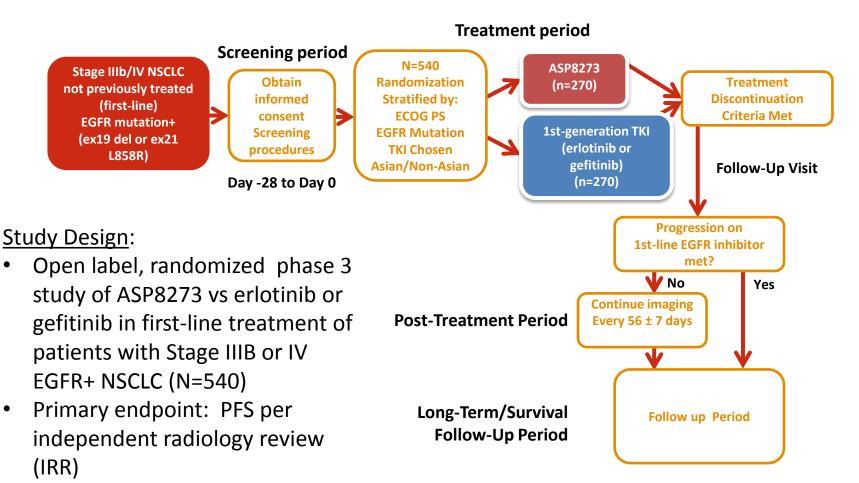
SIX Grade 2, 18 Grade 23, two currently ungraded. Of these, a total of four patients are reported to have died due to ILD (Grade 5)

Population: all dosed patients, data cut-off August 1, 2015

AE, adverse event

FLAURA Study Design

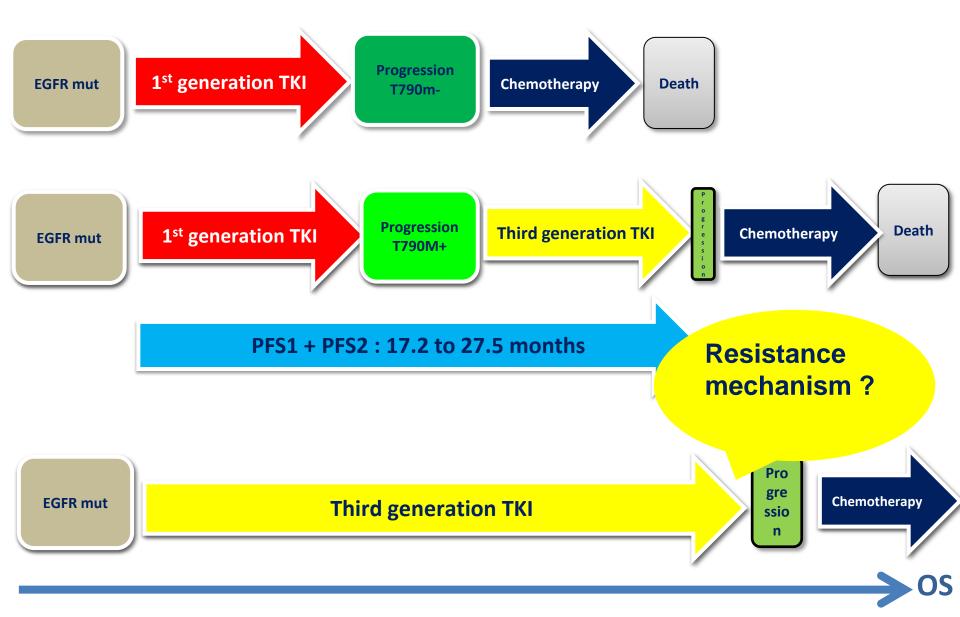
*With central laboratory assessment performed for sensitivity

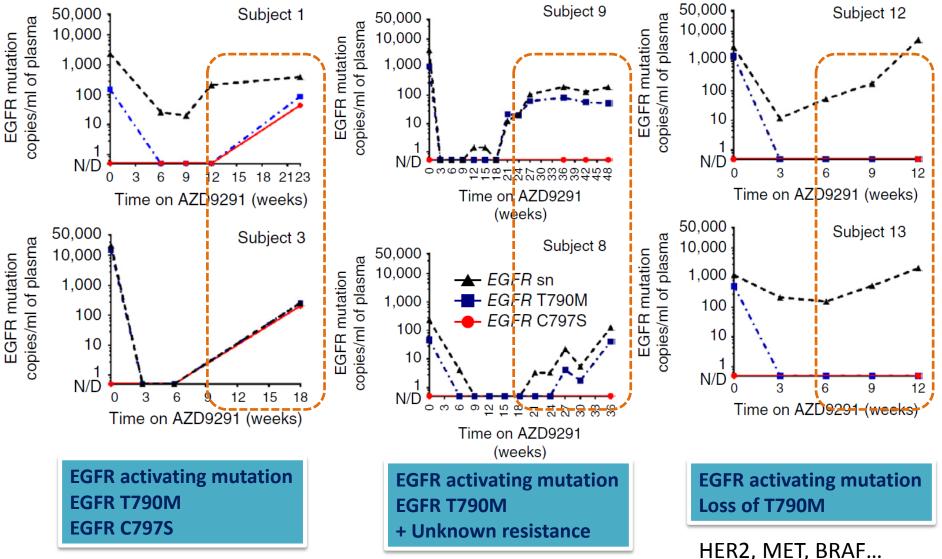

#cobas™ EGFR Mutation Test (Roche Molecular Systems)

##Sites to select either gefitinib or erlotinib as the sole comparator prior to site initiation

[§]Patients randomized to the standard of care treatment arm may receive open-label treatment with AZD9291 on central confirmation of both objective disease progression and T790M positive tumor

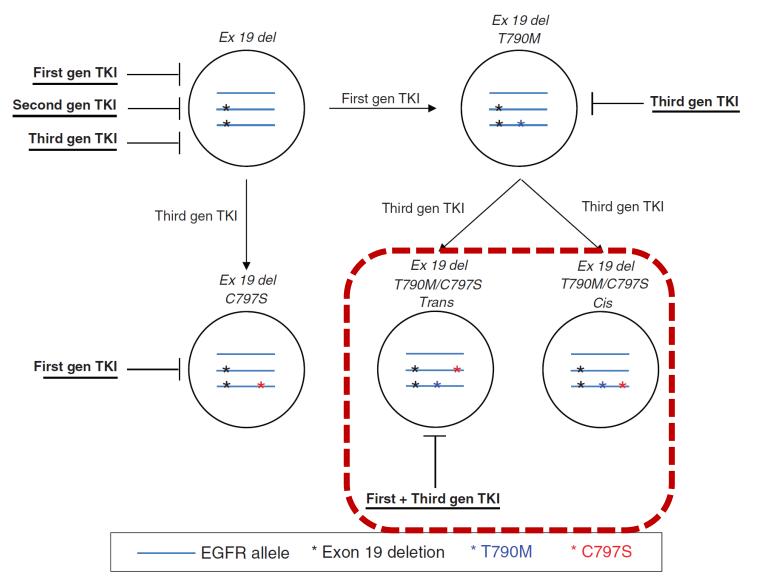
OS, overall survival; PFS2, second progression-free survival (time from randomization to second progression); p.o., orally


Phase 3 SOLAR Study Schematic (NCT02588261)

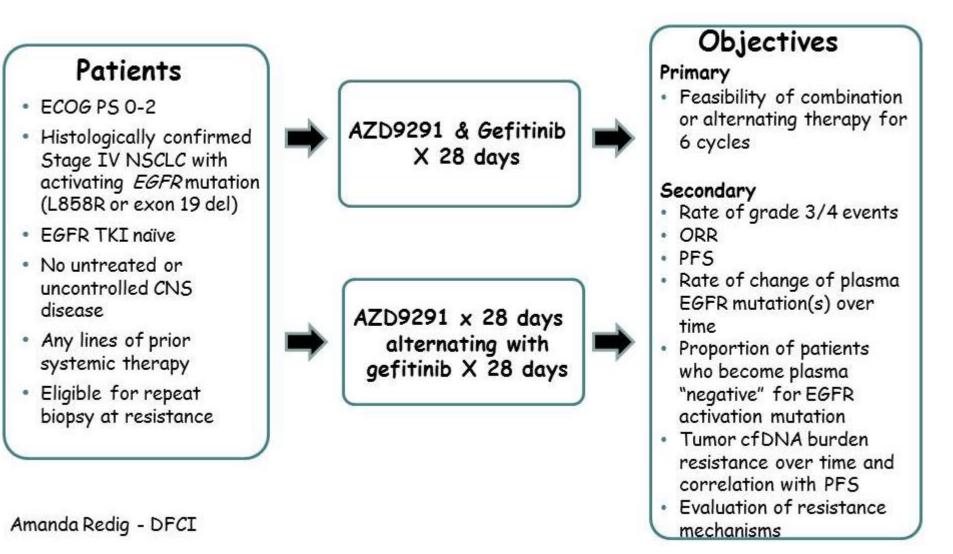

 Key secondary endpoints: OS, ORR per IRR, PFS (inv), DCR

Astellas Pharma

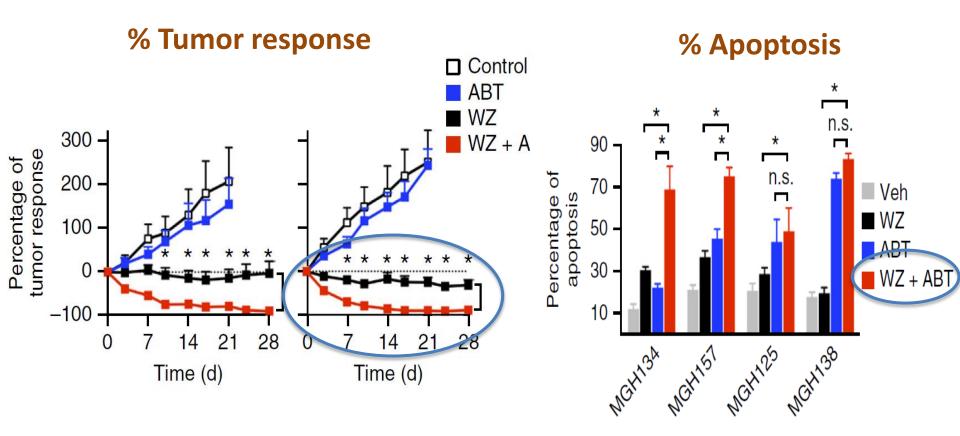
What will be the magnitude of the PFS T790M inhibitor 1st line and resistence ?



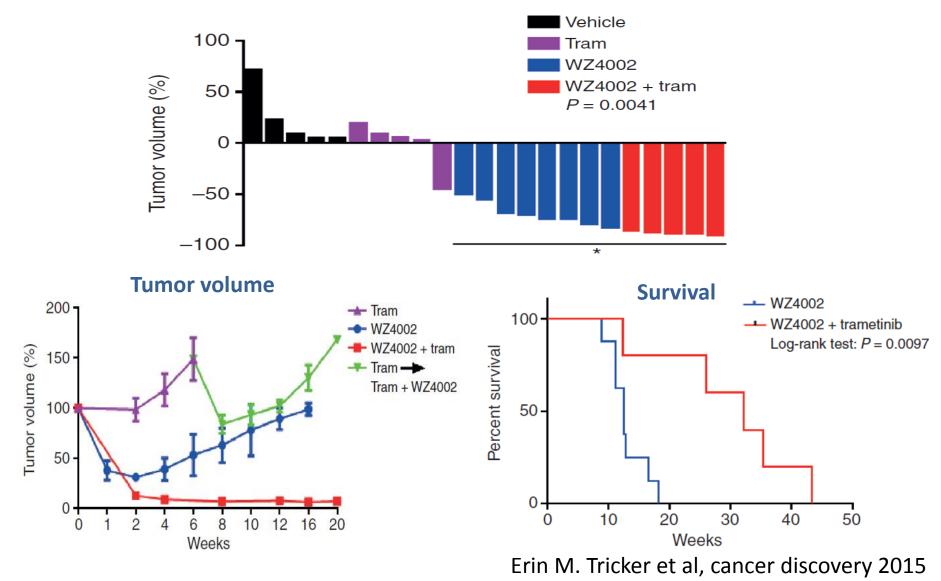
Tumor heterogeneity has important clinical implications


Kenneth S Thress et al, nature 2015

<u>Allelic Context of C797S Mutation</u> Acquired Impacts Sensitivity to Subsequent Treatment Strategies


Matthew J. Niederst et al, CCR 2015

Phase I of AZD9291 in combinaition or alternating with gefitinib in EGFR inhinitor naive EGFR mutant lung cancer


Inhibitor of anti-apoptotic factors BCL-xL and BCL-2

enhances apoptotic response of late-resistant EGFRT790M cells

Cotargeting EGFR and MEK

prolongs effective treatment duration in EGFR L858R/T790M genetically engineered mice

Osimertinib + Durvalumab: Toxicity (TATTON study)

 AZD9291 + durvalumab combination regimens have demonstrated a comparable safety profile with AZD9291 and durvalumab in patients with advanced NSCLC

AEs*		3 mg/kg (Asia) n=6		3 mg/kg (ROW) n=7		10 mg/kg (Asia) n=4		10 mg/kg (ROW) n=6	
Number of events, n	Any Grade	Grade ≥3	Any Grade	Grade ≥3	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Diarrhoea	4		-			0	0	0	
Vomiting	6		3 cases of			0	0	0	
Anaemia	3				•	0	2	0	
Constipation	3		pneumonitis				1	0	
Cough	1	ro	porte	d	\mathbf{c}	0	3	0	
Nausea	3	Ie	pulle	u αι Α	JU	0	3	0	
WBC count decreased	4	i	i <mark>n 23 </mark>	oatier	nts	1	0	0	

136O - Osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: Results from the TATTON phase lb trial

<u>M.-J. Ahn</u>¹, J. Yang², H. Yu³, H. Saka⁴, S. Ramalingam⁵, K. Goto⁴, S.-W. Kim¹, L. Yang⁶, A. Walding⁷, G. Oxnard⁸; ¹KR, ²TW, ³NY/US, ⁴JP, ⁵GA/US, ⁶CN, ⁷GB, ⁸MA/US

*Occurring in ≥3 instances at any dose

Oxnard GR, et al. J Clin Oncol 2015;33:(suppl abstract 2509).

Rociletinib Clinical Development Program

Front-line	TIGER-1 (Phase 2)	 Randomized rociletinib vs erlotinib Includes front-line, treatment-naïve patients Enrollment complete
Ē	NCT02630186 (Phase 1b/2)	 Rociletinib in combination with MPDL3280A (atezolizumab) First and later line patients Enrollment open in USA; enrollment in France opens soon
ate-line	TIGER-2 (Phase 2)	 Single-arm, single-agent rociletinib 2nd-line EGFR mutant NSCLC Enrollment complete
	TIGER-X (Phase 1/2)	 Single-arm, single-agent rociletinib ≥2nd-line patients who have received ≥1 prior EGFR-directed therapy Enrollment complete
La	TIGER-3 (Phase 3)	 Randomized rociletinib vs single-agent chemotherapy >2nd-line EGFR mutant NSCLC; T790M-positive and negative patients Enrollment open

EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer.

Conclusion

- **Drug resistance** limits the long term sucess of even the most effective targeted therapies
- **Prevention** may be a better stategy than treatment of resistance
- Best treatment strategy needs to be both effective and tolerable
- In treatment-naïve patients with EGFRm positive advanced NSCLC, Osimertinib demonstrates encouraging clinical activity and a manageable tolerability profile
- Role of tumor heterogeneity with EGFR T790M + and cancer cells can both pre-exist and evolve from drug-tolerant cells
- To further improve outcomes, combination regimens that prevent or overcome resistance might be needed in first line

THANK YOU!

Acknowledgments

Jean-Charles SORIA Benjamin BESSE Thierry Le Chevalier

david.planchard@gustaveroussy.fr

