

EUROPEAN LUNG CANCER CONFERENCE 2016

WHAT IS NEW IN SMALL CELL LUNG CANCER? NOVEL TARGETS IN SCLC

Enriqueta Felip Vall d'Hebron University Hospital Barcelona, Spain

SCLC, where are we?

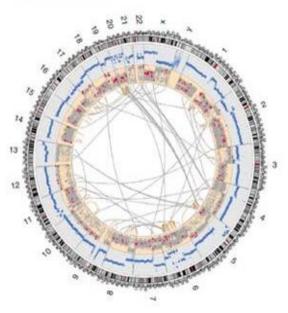
- Accounts for ~15% of newly diagnosed lung cancer
- Predominately associated with tobacco smoking
- Rapid doubling times and early propensity to metastasize
- Initial sensitivity to CT with 60-80% RR

SCLC, where are we?

- 1st-line treatment for both LD and ED: platinum/etoposide x 4-6 cycles
- For patients with LD
 - Early TRT (<30 days from CT start) should be added to CT</p>
 - PCI for patients with CR/PR
- 2nd-line: topotecan or re-induction
- No new agents approved in over 20 years
- No targeted agents approved

Novel targets in SCLC

- Review paper:
 - Bunn PA Jr et al. Small cell lung cancer: can recent advances in biology and molecular biology be translated into improved outcomes? J Thorac Oncol. 2016
- I will not cover immunotherapy


Genomic Analysis of SCLC

Hot spot mutations

- TP53, RB1, PIK3CA, CDKN2A, PTEN
- RAS family regulators (RAB37, RASGRF1, RASGRF2)
- Chromatin modifiers (EP300, DMBX1, MLL2, MED12, etc.)

Hot spot mutations PLUS q-score

- RUNX1T1, CDYL, RIMS2
- Gene families and pathways
 - PI3K pathway, Notch and Hedgehog, glutamate receptor family,
 DNA repair/checkpoint, SOX family
- Focal amplifications
 - MYC, SOX2, SOX4, KIT
- Recurrent translocations and fusion genes
 - Recurrent: RLF-MYCL1
 - Kinase fusions

Circos plot whole genome SCLC 22 significantly mutated genes

Published in final edited form as: Nat Genet. 2012 October; 44(10): 1111–1116. doi:10.1038/ng.2405.

Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer

Charles M Rudin^{1,8}, Steffen Durinck^{2,3,8}, Eric W Stawiski^{2,3,8}, John T Poirier^{1,8}, Zora

Published in final edited form as:

Cancer Discov. 2012 September; 2(9): 798-811. doi:10.1158/2159-8290.CD-12-0112.

Proteomic Profiling Identifies Dysregulated Pathways in Small Cell Lung Cancer and Novel Therapeutic Targets Including PARP1

Lauren Averett Byers¹, Jing Wang², Monique B. Nilsson¹, Junya Fujimoto³, Pierre

SCLC: comprehensive mutation analysis program at MSKCC

- Prospectively testing of SCLC biopsies genotyping with Sequenom and NGS
- Sequenom (n=32 samples): AKT1E17-mut (n=1) and PIK3CA E542K-mut (n=1)
- NGS (n=25 samples): loss of RB1 (N=18 mutations; N=4 deletions); TP53-mut (N=24), MLL3 (N=9), and EPHA 5 (N=9); and amplifications of CDKN2C (N=5), MYCL1 (N=3), SOX2 (N=2), and FGFR1 (N=1, confirmed by FISH)

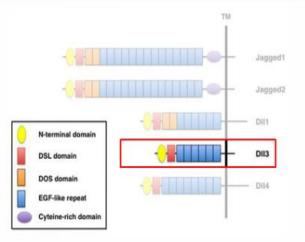
Clinical correlation of extensive-stage SCLC genomics

- 50 SCLC tumors examined
- TP53 (86%) and RB1 (58%), the two most frequently mutated genes
- Other mutated genes (>10% pts), involved in epigenetic regulation / mTOR pathway
- Low-frequency of targetable mutations, including RICTOR, FGFR1, KIT and RET

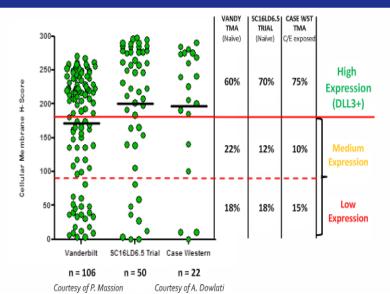
Comprehensive genomic profiles of SCLC

- 110 SCLC genomes sequenced
- Nearly all tumors analyzed had inactivation of TP53 and RB1
- Uncommonly, SCLC tumors exhibited kinase gene mutations
- Inactivating mutations in NOTCH family genes found in 25% of SCLC
 - Activation of NOTCH signaling in SCLC mouse model reduced the number of tumors and extended the survival

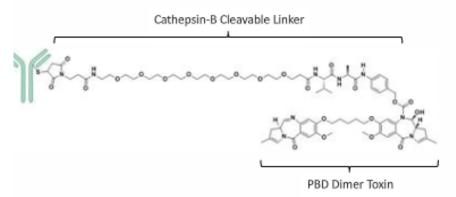
NOTCH pathway


- Delta-like ligand 3 (DLL3)
 - Inhibits NOTCH pathway activation
 - One of several NOTCH ligands possibly associated with neuroendocrine phenotype and contribute to neuroendocrine tumorigenesis
- Rovalpituzumab tesirine is an antibody drug conjugate that targets the atypical Notch ligand DLL3 on the cell surface and then delivers the DNAdamaging agent pyrrolobenzodiazepine dimer toxin

Rovalpituzumab tesirine, a delta-like protein 3 (DLL3)-targeted antibody drug conjugate (ADC), in SCLC. Phase I Trial in recurrent pts after 1 or 2 previous lines



DLL3 expression by IHC in SCLC



- Normally expressed during development in the Golgi
- Aberrantly expressed in SCLC tumor-initiating cells
- Interacts with and inhibits Notch1 in cis
- May mediate Notch inhibition downstream of ASCL1

Kume et al., J Angiogen Res 2009

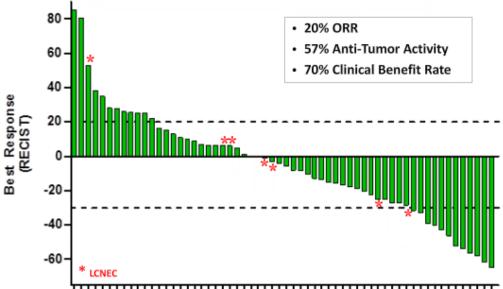
Drug-to-Antibody Ratio (DAR) = 2

Pietanza et al. Ann Oncol 2015; 26 (suppl 6): abstr 7LBA

Phase I study of a delta-like protein 3 (DLL3)-targeted antibody drug conjugate, rovalpituzumab tesirine, in pts with relapsed and refractory SCLC

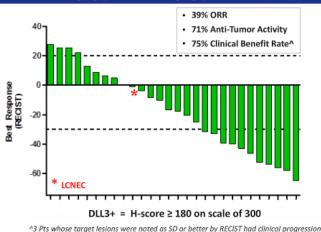
Study population: 73 SCLC pts enrolled

Basel	ine Characteristic (SCLC)	Total (%) or Median (Range)
Demographics	Age	61 (44-81)
	Male	41 (56%)
Disease Characteristics	ECOG 0/1	19 (26%) / 53 (73%)
	Refractory/"Resistant"/"Sensitiv e"*	9 (12%) / 23 (32%) / 39 (53%)
	Prior CNS metastases	20 (27%)
Prior Therapies	Prior therapies: 1/2	40 (55%) / 33 (45%)
	Cisplatin/Carboplatin + Etoposide	45 (62%) / 28 (38%)
	Topotecan	8 (11%)
	Prior Radiation	60 (82%)



Related AEs occurring in > 10% of patients

Phase 1b Expansion Cohorts (7/6/15 cutoff)


# Patients Enrolled 25		15	40	
Dose/Schedule	0.2 Q3W		0.3 Q6W	
	All	Gr 3/4	All	Gr 3/4
Fatigue	24%	4%	28%	5%
Thrombocytopenia	4%	0%	23%	15%
Decreased Appetite	0%	4%	18%	0%
Rash Maculo-Papular	12%	0%	13%	5%
Oedema Peripheral	16%	0%	13%	3%
Anaemia	12%	0%	13%	0%
Erythema	8%	4%	13%	0%
Serosal Effusions	16%	12%	10%	0%
Nausea	20%	0%	10%	0%
Vomiting	8%	0%	5%	0%

Rova-T: best response data in evaluable patients 0.2 mg/kg q3w and 0.3 mg/kg q6w cohorts (n=60)

Rova-T: best response data in evaluable DLL3+ patients

0.2 mg/kg q3w and 0.3 mg/kg q6w cohorts (n=28)

TILL

Rova-T: best response data in evaluable DLL3+ patients

0.2 mg/kg q3w and 0.3 mg/kg q6w cohorts (n=28)

LUNOFLAN LUNG CANCEN CONFENEINCE ZUID

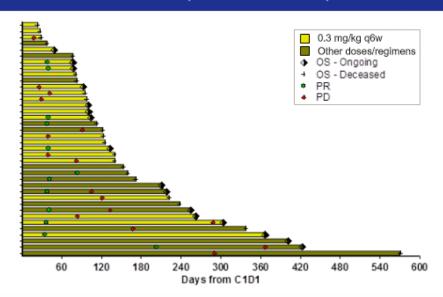
Results support biomarker-guided phase II studies

Overall response rates

		Rova-T; S	C16LD6.5
	Topotecan†	All Pts & dose levels	DLL3+ Ph 1b Cohorts
2 nd Line	17%	22%	40%
3 rd Line	No Approved Drug	17%	38%
Sensitive to C/E	23%	24%	62%
Resistant to C/E	9%	14%	20%

Durability of Response at RP2D (0.3 mg/kg q6w): 182+ days

-Tabulated from published trial data with Topotecan: von Pawel (2014) JCO, Jotte (2011) JCO, O'Brien (2006) JCO, Huber (2006) Eur Respir J, von Pawel (1999) JCO, and Ardizzoni (1997) JCO



Duration of response by dosing cohort

Dose & Regimen	Objective Responses	# Remaining Progression Free	Mean DOR (Range)	# Alive	Mean OS (Range)
0.2q3w	5	0	88 (68-130)	1	184+ (113-255)
0.3q6w	7	6	182+ (50-332)†	7	227+ (104-367)†
0.4q3w	2	0	164‡	1	437+
Total	14	6		9	

TDOR and OS excluding 3 new responses observed within last 30 days that have not yet been confirmed

Rova-T swimmer plot for DLL3+ patients

¹1 patient censored due to subsequent chemo prior to signs of progression

An open-label, single-arm, phase 2 Study evaluating the efficacy, safety and pharmacokinetics of Rovalpituzumab Tesirine (SC16LD6.5) for third-line and later treatment of subjects with relapsed or refractory delta-like protein 3-expressing SCLC (TRINITY)

- Histologically confirmed SCLC with documented PD after at least 2 prior systemic regimens, including at least one platinum-based regimen
- DLL3-expressing SCLC based on central IHC assessment of banked or otherwise representative tumor tissue. Positive is defined as staining in ≥ 1% of tumor cells
- ECOG PS of 0 or 1
- Estimated enrollment, 154 pts

NOTCH inhibitors in **SCLC**

- OMP-59R5, a fully human IgG2 antibody, inhibits signaling of NOTCH 2 / 3 receptors
- Phase Ib/II study of OMP-59R5 in combination with etoposide/platinum in untreated ED-SCLC showed promise with 13/16 (81%) attaining a PR and 3 achieving SD

PARP pathway

- Treatment for SCLC relies on DNA-damaging agents (CT, RT); inhibition of DNA damage repair, logical approach
- PARP inhibition, activity in preclinical models and in a subset of SCLC pts
- Single activity of veliparib and synergy with platinum/etoposide demonstrated in cell lines and animal models
 - Phase II trial of platinum/etoposide +/- veliparib ongoing
- Randomized phase II trial of olaparib vs placebo as maintenance after CT, recruitment closed
- Talazoparib, single agent activity in SCLC in a phase I trial

Temozolomide/veliparib

- SCLC, characterized by frequent aberrant methylation and epigenetic silencing of the MGMT gene
- Temozolomide phase II in 62 pts with relapsed SCLC (Pietanza, CCR 12)
 - 20% ORR (23%, sensitive group / 13%, refractory cohort)
 - Pts with tumor demonstrating MGMT promoter methylation responded better to treatment
- Phase II comparing temozolomide/veliparib vs temozolomide/placebo, ongoing

Hedgehog pathway

- Hedgehog signaling pathway frequently disrupted in SCLC
 - Occurs in cell-autonomous manner, independent of the lung microenvironment
 - May play a significant role in the development and proliferation of SCLC
 - Inhibition of hedgehog pathway decreases cell growth
- Ongoing trials of hedgehog inhibitors in SCLC, GDC-0449, IPI-926, LDE225

Aurora kinases

- Aurora kinases comprise a family of protein kinases that play a critical role in the mitotic process
- Aurora kinase inhibitors effective in SCLC cell lines bearing MYC amplification, which occurs in 3-7% of SCLC pts
- Phase II of alisertib in SCLC
 - RR 21%, 19% in sensitive relapse and 27% in resistant relapse
 - PFS 2.6 mo in the sensitive and 1.4 mo in the resistant relapse
 - Ongoing randomized phase II trial comparing paclitaxel alone to paclitaxel/alisertinib in SCLC pts who progress after etoposide/platinum (NCT02038647)

Fibroblast growth factor receptor signaling pathway

- FGFR1 gene amplified in 5-6% of pts with SCLC
- High levels of serum FGF2 associated with poor prognosis in SCLC
- Efficacy of ponatinib being studied in a biomarker-driven trial (NCT01935336)
- Phase II trial to analyze lucitanib in pts with lung cancer, ongoing (NCT02109016)

PIK3CA

 Whole exon sequencing and copy number analysis on Japanese pts with SCLC detected genetic alterations in the PI3K/AKT/mTOR pathway in 36% of the tumors

Transcriptional addictions of SCLC

- High-throughout cellular screen of a diverse chemical library discovered that SCLC is sensitive to THZ1, a covalent inhibitor of CDK7
 - THZ1 may represent a prototype drug for tailored SCLC therapy
- In SCLC, evaluation of online databases and cell lines showed 30-40% have copy number gain for JAK1/2
 - AZD1480 (which targets JAK1/2/3) has single-agent activity / synergy with CT

RET

- An activating M918T RET somatic mutation identified in a metastatic SCLC tumor specimen (Davir JTO 14)
- A subpopulation of pts with SCLC may derive benefit from TKIs targeting RET

Novel targets in SCLC: summary

- Nearly uniform loss of function of TP53 and RB1
 - Not targetable at present
- Too many genetic alterations/pathways (mostly tumor suppressor genes)
- A number of potentially targetable molecular pathways have been identified
 - NOTCH most promising target
- GENOMICS and IMMUNOTHERAPY investigation required also in SCLC!!

Thanks!!

efelip@vhebron.net

